
RICE UNIVERSITY

Scheduling Macro-DataFlow Programs on

Task-Parallel Runtime Systems

by

Sağnak Taşırlar

A Thesis Submitted
in Partial Fulfillment of the

Requirements for the Degree

Master of Science

Approved, Thesis Committee:

Vivek Sarkar
Professor of Computer Science
E.D. Butcher Chair in Engineering

Keith D. Cooper
L. John and Ann H. Doerr Professor of
Computational Engineering

Lin Zhong
Assistant Professor of Electrical and
Computer Engineering and Computer
Science

Zoran Budimlić
Research Scientist

Houston, Texas

April, 2011

ABSTRACT

Scheduling Macro-DataFlow Programs on Task-Parallel Runtime Systems

by

Sağnak Taşırlar

Though multicore systems are ubiquitous, parallel programming models for these

systems are generally not accessible to a wide programmer community. The macro-

dataflow model is an attractive stepping stone to implicit parallelism for domain

experts who are not the target audience for explicit parallel programming models.

We use Intel’s Concurrent Collections (CnC) programming model as a concrete

exemplar of the macro-dataflow model in this work. CnC is a high level coordination

language that can be implemented on top of lower-level task-parallel frameworks.

In this thesis, we study an implementation of CnC, based on Habanero-Java as the

underlying task-parallel runtime system. A unique feature of CnC, first-class decou-

pling of data and control dependences, allows us to experiment with schedulers by

taking these data and control dependences into account for better scheduling deci-

sions. Our observations led to the proposal and implementation of a new task-parallel

synchronization construct for Habanero-Java, namely Data-Driven Futures.

We obtained two kinds of experimental results from our implementation. First, we

compare the effectiveness of task scheduling policies for CnC programs. Secondly, we

show that data-driven futures not only reduce execution time but also shrink memory

footprint. In summary, this thesis shows a macro-dataflow programming model can

deliver productivity and performance on modern multicore processors.

Acknowledgments

I would like to start with thanking my committee for taking time from their busy

schedules to listen to my defense, read my thesis and provide feedback. I would also

like to single out my academic adviser, Professor Vivek Sarkar, whose patience and

effort in the sisyphean task of advising me proved the labor was instead herculean.

His initial suggestion for me to pursue this area, introducing me to the community

and providing opportunities where the questions arise that is addressed this work,

he deserves my deepest gratitude and the most credit for this work. Secondly, my

committee member, Dr. Zoran Budimlić have been filling the position that I have

imposed on him to be my secondary adviser and provided me with hours of his time

discussing technical details under his quite generous open door policy. Professor Keith

D. Cooper have been an influence for me throughout my graduate studies as I have

listened to his classes, worked as his teaching assistant and in personal communication.

I appreciate Professor Lin Zhong’s help he provided as a committee member.

I have been lucky to work with the tightly-knit Habanero research group that

has been supporting me with constant stream of ideas, technical intellectual curiosity

and moral support. I would like to acknowledge the rigorous and prompt technical

help Vincent Cavé has provided, without whom nothing would have finished on time.

I would also like to thank other group members, Dr. Jisheng Zhao, Dr. Philippe

Charles, Dragoş Sb̂ırlea and Raghavan Raman.

Being an intern in Intel for the Concurrent Collections team has provided me

insight to address this work. I would like to thank Dr. Geoff P. Lowney, Dr. Mark

Hampton, Dr. Kathleen Knobe and Dr. Ryan R. Newton for their help, support and

ongoing collaborative spirit. Kathleen Knobe and Ryan R. Newton have influences

iv

all over this work and Ryan’s challenging of the tabular data structure use was the

kindling of chapter 4.

I have used applications and benchmarks from collaborators that has helped me

tremendously in evaluating my thesis. I would like to thank Aparna Chandramowlish-

waran from Georgia Tech whose implementation of Cholesky factorization has been

the first real application to show Concurrent Collections’ worth, that is also used

as an influence in our Cholesky factorization implementation. Fellow Rice gradu-

ate student David Peixotto has provided the implementation for the porting of the

Black-Scholes benchmark from the PARSEC benchmark suite. UCLA graduate stu-

dent Yu-Ting Chen has provided the Rician Denoising benchmark written in Matlab,

which has been the basis for our implementation. Fellow Habanero group member,

Alina Sb̂ırlea has provided the implementation for the porting of the Heart Wall

Tracking application from the Rodinia benchmark suite.

We are grateful to the generosity of NSF for funding the Center of Domain-Specific

Computing through the NSF Expeditions and Intel for funding our research.

Finally, I should acknowledge all my friends and family without whom I would

not have been able to survive graduate studies. This work is a dedicated to them.

Contents

Abstract ii

Acknowledgments iii

List of Illustrations viii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Organization . 3

2 Background 4

2.1 Parallel Programming Models . 4

2.1.1 Thread based parallelism . 5

2.1.2 Data parallelism . 6

2.1.3 Dynamic Light-Weight Task Based 7

2.1.4 Macro-DataFlow Model . 7

2.2 Futures . 8

2.3 Habanero-Java . 9

2.4 Concurrent Collections Model . 11

2.5 Runtime Scheduling . 16

2.5.1 Work-Sharing . 16

2.5.2 Work-Stealing . 16

3 Scheduling of CnC 18

3.1 Challenges . 19

vi

3.1.1 Methods and restrictions for CnC 21

3.2 Delayed Asyncs . 22

3.3 Eager Scheduling . 23

3.3.1 Blocking Scheduler . 24

3.3.2 Data-Driven Rollback & Replay 25

3.4 Data-Driven Scheduling . 27

3.4.1 Delayed Async Scheduler . 27

4 Data-Driven Futures 29

4.1 Introduction . 29

4.2 Runtime Scheduling with Data-Driven Futures 32

4.2.1 Motivation . 32

4.2.2 Methods and restrictions for tasks awaiting DDFs 34

4.2.3 A Data-Driven Runtime Scheduler supporting Data-Driven

Futures . 35

4.2.4 A Blocking Runtime Scheduler supporting Data-Driven Futures 36

4.3 Implementation . 36

5 Results 41

5.1 Methodology . 41

5.2 Benchmarks . 42

5.2.1 Cholesky Factorization . 42

5.2.2 Black-Scholes . 48

5.2.3 Rician Denoising . 51

5.2.4 Heart Wall Tracking . 54

6 Related Work 57

6.1 Parallel Programming Models . 57

6.2 Futures . 59

vii

7 Conclusions & Future Work 61

7.1 Conclusions . 61

7.2 Future Work . 63

7.2.1 Locality aware scheduling with DDFs 63

7.2.2 DDF support for a work-stealing runtime 63

7.2.3 Compiling CnC for Data-Driven Runtime scheduling 64

7.2.4 Compiler support for automatic DDF registration 64

7.2.5 DDF data structures and Hierarchical DDFs 65

Bibliography 66

Illustrations

2.1 Sample Habanero-Java Fibonacci micro benchmark 10

2.2 Graphical representation of a sample CnC Graph 12

2.3 Textual representation of a sample CnC Graph 12

2.4 Sample pseudo-code with cyclical data dependences 15

3.1 Simplified sample CnC Graph to show the separation of control and

data providers . 19

4.1 A Habanero-Java code snippet with Data-Driven Futures 31

4.2 Data dependency graph of Figure 4.1 (left) and the unified

dependency graph of the fork/join equivalent of the same program . . 34

4.3 Snapshot of a subset of Data-Driven Futures and tasks during runtime 38

5.1 Minimum execution times of 30 runs of single threaded and

16-threaded executions for blocked Cholesky factorization CnC

application with Habanero-Java steps on Xeon with input matrix size

2000 × 2000 and with tile size 125 × 125 43

5.2 Average execution times and 90% confidence interval of 30 runs of

single threaded and 16-threaded executions for blocked Cholesky

factorization CnC application with Habanero-Java steps on Xeon

with input matrix size 2000 × 2000 and with tile size 125 × 125 . . . 44

ix

5.3 Minimum execution times of 30 runs of single and 16-threaded

executions for blocked Cholesky factorization CnC application with

Habanero-Java and Intel MKL steps on Xeon with input matrix size

2000 × 2000 and with tile size 125 × 125 45

5.4 Average execution times and 90% confidence interval of 30 runs of

single and 16-threaded executions for blocked Cholesky factorization

CnC application with Habanero-Java and Intel MKL steps on Xeon

with input matrix size 2000 × 2000 and with tile size 125 × 125 . . . 46

5.5 Minimum execution times of 30 runs of single threaded and 64-thread

executions for blocked Cholesky factorization CnC application with

Habanero-Java steps on Niagara with input matrix size 2000 × 2000

and with tile size 125 × 125 . 47

5.6 Average execution times and 90% confidence interval of 30 runs of

single threaded and 64-thread executions for blocked Cholesky

factorization CnC application with Habanero-Java steps on Niagara

with input matrix size 2000 × 2000 and with tile size 125 × 125 . . . 47

5.7 Minimum execution times of 30 runs of single threaded and

16-threaded executions for blocked Black-Scholes CnC application

with Habanero-Java steps on Xeon with input size 1,000,000 and with

tile size 62500 . 48

5.8 Average execution times and 90% confidence interval of 30 runs of

single threaded and 16-threaded executions for blocked Black-Scholes

CnC application with Habanero-Java steps on Xeon with input size

1,000,000 and with tile size 62500 . 49

5.9 Minimum execution times of 30 runs of single threaded and 64-thread

executions for blocked Black-Scholes CnC application with

Habanero-Java steps on Niagara with input size 1,000,000 and with

tile size 15625 . 50

x

5.10 Average execution times and 90% confidence interval of 30 runs of

single threaded and 64-thread executions for blocked Black-Scholes

CnC application with Habanero-Java steps on Niagara with input

size 1,000,000 and with tile size 15625 50

5.11 Minimum execution times of 30 runs of single threaded and

16-threaded executions for blocked Rician Denoising CnC application

with Habanero-Java steps on Xeon with input image size 2937 ×
3872 pixels and with tile size 267 × 484 (Scheduling algorithms with

* required explicit memory management by the programmer to avoid

running out of memory) . 52

5.12 Average execution times and 90% confidence interval of 30 runs of

single threaded and 16-threaded executions for blocked Rician

Denoising CnC application with Habanero-Java steps on Xeon with

input image size 2937 × 3872 pixels and with tile size 267 × 484

(Scheduling algorithms with * required explicit memory management

by the programmer to avoid running out of memory) 52

5.13 Minimum execution times of 30 runs of single threaded and 64-thread

executions for blocked Rician Denoising CnC application with

Habanero-Java steps on Niagara with input image size 2937 × 3872

pixels and with tile size 267 × 484 (Scheduling algorithms with *

required explicit memory management by the programmer to avoid

running out of memory) . 53

5.14 Average execution times and 90% confidence interval of 30 runs of

single threaded and 64-thread executions for blocked Rician

Denoising CnC application with Habanero-Java steps on Niagara

with input image size 2937 × 3872 pixels and with tile size 267 × 484

(Scheduling algorithms with * required explicit memory management

by the programmer to avoid running out of memory) 54

xi

5.15 Minimum execution times of 13 runs of single threaded and

16-threaded executions for Heart Wall Tracking CnC application with

C steps on Xeon with 104 frames . 55

5.16 Average execution times and 90% confidence interval of 13 runs of

single threaded and 16-threaded executions for Heart Wall Tracking

CnC application with C steps on Xeon with 104 frames 56

1

Chapter 1

Introduction

1.1 Motivation

In the last decade, not only have we observed almost all academic publications and

talks beginning with references to Moore’s law and how the frequencies have plateaued

but also ubiquitous adoption of multicore architectures. This has been a paradigm

shift foreseen, nevertheless not well prepared on the programming languages and soft-

ware engineering fronts. Preliminary remedies were provided by the distributed com-

puting and functional languages communities, yet these approaches have not gained

traction as the mainstream programmer and the legacy code-base have had shared

memory and imperative programming as axioms.

Parallel programming models have traded conciseness for performance as com-

puter science community is the driving force for these models as ‘supply side par-

allelism’. As multicore adoption brought parallelism down to earth, the trend is to

provide more accessible parallelism to a wider audience. Native thread libraries pro-

vided an API for users to write parallel programs at the level of hardware threads and

thereby exposed details far lower level than necessary. By imposing this inherently

nondeterministic construct, it burdens users by pruning the nondeterminacy that is

intractable to achieve exhaustively and counterintuitive [1]. OpenMP standard pro-

vided a higher level abstraction for the same approach by adopting fork-join model,

though have not been the best match for fine grain or unstructured parallelism, which

2

is of more relevance to a wider community. Data parallelism using array program-

ming languages, vectorizing compilers, data parallel languages like NESL and the

recent adoption of GPGPU have been providing expressibility or performance but

not both at the same time and have restricted application on programs with intri-

cate dependences. Dynamic light-weight task parallelism, as adopted in Cilk, Intel

Threading Building Blocks and Habanero-Java, is the modern trend to alleviate most

of the problems mentioned above. Users can now express parallelism in finer gran-

ularity without being exposed to low level details and without trading performance

for expressibility. This model is also applicable to problems with complicated depen-

dences. Even though this model is a leap in the right direction, it has not attained

access to a non-computer-scientist audience. As the discussion deepens in classifying

computation as a new pillar of science, our goal is to provide a model with which non-

computer-scientists, ‘demand side parallelism’, can express their applications without

performance penalties.

We have embraced macro-dataflow coordination as our parallel programming

model since it allows us all the expressiveness and more of models mentioned above.

It also provides us the safety nets such as determinism, deadlock freedom and race

freedom, yet it still is accessible to a domain expert. Additionally, it breaks the as-

sumption adopted by imperative parallel languages that data dependence is to be

satisfied before control dependence, therefore exposing more parallelism. Our goal in

this thesis is to provide schedulers for an efficient macro-dataflow model used as a

coordination language exposing all the inherent parallelism and map it efficiently to

a multicore system with a dynamic light-weight task-parallel runtime. For the scope

of this thesis and the embodiment of our ideas, we have chosen Concurrent Collec-

tions as the macro-dataflow model where Habanero-Java has provided the underlying

3

task-parallel runtime.

1.2 Contributions

On this thesis, we

• provide explanations of scheduling algorithms for Concurrent Collections

• introduce Data-Driven Futures as a new language construct for synchronization

and item implement Data-Driven Futures for a work-sharing runtime

• implement a data-driven runtime with Data-Driven Future support

• compare various scheduling algorithms and data-driven runtime with Data-

Driven Future support both theoretically in our discussions and empirically

by implementing various benchmarks and observing effects on execution times

and scaling.

1.3 Organization

In Chapter 2, we will provide background as a foundation for our work. The following

chapter, Chapter 3, will talk about our design choices, algorithms and the language

constructs we used for scheduling CnC. Chapter 4 introduces data-driven futures and

a data-driven scheduling mechanism built to support this construct. We will look into

some benchmarks, on Chapter 5 to observe how various schedulers perform. Chapter 6

will cover relevant work and where our works fits with respect to previously proposed

concepts. Lastly, on Chapter 7 we deduce conclusions based on the empirical evidence

and our experience and lay out a plan for follow-up research to this work.

4

Chapter 2

Background

As our work advocates for a new parallel programming model and we have briefly

touched alternative models on our introduction, we will provide a brief explanation

for these models here and also cover them on chapter 6 for an elaborated compari-

son. On chapter 4, we introduce a new variant of a known language construct, i.e.

futures, so on section 2.2, we cover what futures are. Following chapters assume

an introductory understanding of Concurrent Collections programming model and

Habanero-Java task-parallel runtime, both of which we introduce below. Finally, un-

derlying scheduling algorithms of a task-parallel runtime are covered in addition to

our Habanero-Java coverage because of their relevance to this work.

2.1 Parallel Programming Models

A parallel programming model acts as a framework to map parallel programming

languages to parallelism supporting hardware. Parallel programming languages being

an integral part of this framework and most relevant part for this work, we constrain

our introduction to the parallel programming languages aspect. Though, we will

introduce runtime discussions that fit our work on section 2.5.

By no means the following list is exhaustive, despite it is representative of a

sufficiently big subset. We abstained from addressing parallel programming models

for distributed memory systems for brevity and relevance.

5

Parallel programming models are not single dimensional when it comes to which

model they follow, so the classification below does not necessarily mean they do not

fall under different criterion.

2.1.1 Thread based parallelism

Native thread libraries

used almost synonymously with Pthreads, which is a standardization for native thread

libraries for a portable interface. This model provides an API to create threads by

forking them from a process or another thread. Thread, in this context is finer

grain than a process and coarser grain than a task. On shared memory systems,

threads share the memory space of the process and can communicate through that

space. Synchronization between threads are established through a join operation,

which stalls a thread until the thread to be joined arrives at the synchronization

point. Synchronization to block acces to critical regions to prevent data races between

threads are supported through a mutual exclusion lock.

This model provides the bare bones of parallelism, exposes threads to their full

potential and can be deemed the ‘assembly language for parallelism’. Therefore one

can use Pthreads to implement data parallelism or task parallelism mentioned below.

OpenMP [2]

is relatively higher level to bare threads. Parallelism is expressed through compiler

directives which annotates parallel regions embedded in a serial language. Rather

than the explicit thread creation and joining observed on Pthreads, OpenMP im-

plicitly forks slave threads at the entrance of a parallel region, to be joined at the

region’s exit. It provides interfaces to support loop level parallelism, data and task

6

parallelism. The type of data parallelism is expressed, is provided by the user via

scheduling clauses under the restrictions of data sharing clauses which also is provided

by the user. Task parallelism is expressed by parallel region constructs on OpenMP

2 and recently OpenMP 3 has introduced a task concept. Regarding synchroniza-

tion, OpenMP provides collective synchronization support, barriers, in addition to

Pthreads. Critical sections are expressed via a clause named after them, rather than

the explicit mutual exclusion locks of Pthreads.

2.1.2 Data parallelism

Data parallel languages

exploit SIMD (Single Instruction Multiple Data) type parallelism, which can be best

described as vector parallelism. Instructions applied to a data structure, e.g. an array,

is applied to a range of data rather than a single datum. These languages require

vector registers and vector instructions on the architecture they are compiled to, for

performance. Known examples include High Performance Fortran [3] and NESL [4].

High Performance Fortran exposes data parallelism by directives on the sequential

code, where NESL is a declarative language with nested data parallelism is the core

construct. Additionally, Intel has been working on Array Building Blocks which has

been recently released as a beta version.

SPMD

stands for Single Program Multiple Data and as the name implies, it defines parallel

programs where a single program is applied on multiple data points. The abbreviation

standard reminds of Flynn’s taxonomy, on which SPMD would fall under MIMD. A

common misconception is the equivalence of SPMD and SIMD. SPMD is more general

7

in the sense, it does not conform to the synchronized execution of the data stream

as SIMD does. As mentioned above, both OpenMP and Pthreads can be made to

express SPMD, however we will talk about another exemplar, OpenCL/CUDA.

For general purpose computing on graphics processing units (GPGPU), CUDA

is proposed by NVidia and OpenCL by a consortium for open standards for the

same purpose. A GPU can be alternatively interpreted as a nested abstractions of

computation units. In this nesting, the lowest level computation units exploit SIMD

parallelism, where the higher levels exploit SPMD parallelism through shared memory.

2.1.3 Dynamic Light-Weight Task Based

model expects the user to express all the inherent parallelism in a given application

at a finer grain level than what thread level or SPMD models expect. This finer grain

abstraction is called a task.

Dynamically at runtime, these models assign tasks to coarser grain threads and

therefore achieve the coarsening by the serialization of tasks assigned to a thread.

Though this bookkeeping introduces more runtime overhead, it reaps the benefits of

more parallelism exposed and portable scalability, free from the underlying architec-

ture.

Languages pursuing this paradigm can be exemplified by Cilk [5], Intel Thread-

ing Building Blocks [6], X10 [7], Chapel [8], Fortress and our choice for this work,

Habanero-Java [9].

2.1.4 Macro-DataFlow Model

A dataflow architecture keeps track of the data an instruction needs and executes an

instruction as data becomes available, where availability of data imposes the execution

8

order. This paradigm is an alternate to a von-Neumann machine which is the de-

facto industry standard. A von-Neumann machine adopts a program counter, which

points to an instruction being executed and updated to point to the next instruction,

under the assumption that computations are topologically sorted to conform to their

data dependences. One can interpret this model by control-flow imposing execution

order. Nevertheless, out-of-order execution support for von-Neumann architectures

and register renaming introduces dataflow concepts in a restricted manner.

Macro-dataflow model takes dataflow paradigm to a coarser grain level by de-

scribing dataflow not on an instruction but on a much coarser (task) level. Tasks

are scheduled on this model conforming to the partial ordering defined by the macro-

dataflow graph, which is the inherent data dependence graph in between the tasks it

is composed of.

Concurrent Collections, to be discussed in more detail in section 2.4, is an exemplar

of a macro-dataflow parallel programming model. It expects the user to express

the macro-dataflow graph of computations and maps this model to underlying task-

parallel runtimes. Therefore it is used as a coordination language that separates the

communication (macro-dataflow between the computations) and the computation.

2.2 Futures

Futures bind references to values to those values’ computations. This binding is a

contract that the reference is resolved through this computation before or during the

value needs to be read. Therefore the evaluation of the computation for a value is

not imminent at binding time like assignments on eager evaluation languages. Par-

allelism can be achieved by this delay in resolution of a value, as the binding time

can be interpreted as a fork in control-flow and the read as a synchronization point.

9

Introduction of futures can be traced back to [10] and implementations have been

proposed in MultiLISP [11] and many other languages ever since. We will cover the

differences in semantics and implementations of futures in section 6.

2.3 Habanero-Java

As our choice for the underlying dynamic light-weight task parallelism language

and runtime which we build our CnC implementation on top of, we will introduce

Habanero-Java briefly and exclude features that are not directly relevant to this work.

Habanero-Java is an extension to X10 version 1.5, which in turn is an extension

to Java, and supports language constructs for portable parallelism, some of which we

cover below:

async construct creates a child task which may execute parallel to the parent task.

The definition of a child task starts with the keyword async and followed by a lexical

scope defined by curly braces. A child task has access to the data declared until the

parent’s lexical scope at the creation point of the child.

finish construct synchronizes all the asyncs created within its scope that it is an

immediate parent scope of. finish scopes can be nested and asyncs synchronize

with their innermost finish scopes. This construct also has support for exception

handling, as it propagates the exceptions thrown by child asyncs that have not been

caught. Once an async throws an exception, that async fails and unwinds without

effecting other computations. We will make use of this support on some schedulers

covered in section 3.3.

10

phaser [12] construct provides collective and point-to-point synchronization sup-

port. Parallel tasks that have producer-consumer relationships or control dependences

register themselves to phaser objects which regulate their execution order. Though

we have not used phasers on our work, we will observe the relevance of the phaser

concept to the data-driven futures.

We see a sample Habanero-Java code that computes a given Fibonacci number in

Figure 2.3.

public class Tester {
public static class BoxInt {

public BoxInt() { this(0); }
public BoxInt(int passed) { this.value = passed; }
public int value;

}
public static void fibonacci (int index, BoxInt result) {

if (index < 2) {
result.value = index;

} else {
BoxInt prev = new Tester.BoxInt(0);
BoxInt prevPrev = new Tester.BoxInt(0);
finish {

async fibonacci (index-1, prev);
async fibonacci (index-2, prevPrev);

}
result.value = prev.value + prevPrev.value;

}
}
public static void main(String args[]) {

Tester.BoxInt result = new Tester.BoxInt(0);
fibonacci(new Integer(args[0]).intValue(),result);
System.out.println(result.value);

}
}

Figure 2.1 : Sample Habanero-Java Fibonacci micro benchmark

Habanero-Java is a dynamic task-parallel framework, therefore computations get

11

dynamically created to be scheduled at runtime. There are two main runtime sched-

ulers to assign tasks to multiple cores, namely work-sharing and work-stealing sched-

ulers. These topics will be covered in section 2.5.

2.4 Concurrent Collections Model

Concurrent Collections (CnC) [13] parallel programming model can be described as

a macro-dataflow, coordination language. The model requires explicit declaration of

communications, as control and data, between serial kernels at the granularity level

of a task as a CnC graph. This graph is an extension of a macro-dataflow graph

with control-flow edges. By this CnC graph we separate computation apart from the

communication and therefore CnC is also a coordination language. A sample CnC

program’s graphs, both graphical and textual, are represented in Figure 2.2 and 2.3.

Concurrent Collections is provably deterministic and employs dynamic single as-

signment, consequently it is race-free. Despite the possibility of creating a deadlock

like state in CnC by having computations whose data will never be provided (including

cyclic data dependent computations) and those tasks will be waited on indefinitely.

However, it is easy to pinpoint the error given the determinacy property. We will

revisit this discussion below.

Three pillars of the CnC models are steps, items, control and data tags. The static

descriptions of these concepts are called collections, whence the name Concurrent

Collection came. The dynamic instantiations of these collections are called instances.

In Figure 2.2, triangles represent control tag collections, rectangles represent item

collections and ellipses represent step collections. In Figure 2.3, item collections are

wrapped in square brackets, control tag collections are wrapped in angle brackets and

step collections are wrapped in parenthesis.

12

inputStrings

string
Tag

(tokenize) tokens

token
Tag

(filter) filteredTokens

Figure 2.2 : Graphical representation of a sample CnC Graph

Before furthering the explanation, let us address one common confusion which is

caused by the overloading of the term collection. In statical domain, a collection rep-

resents what is common to all instances that can be generated from that collection.

This is the same relationship between a Class and an Object in the object oriented

programming paradigm. Nevertheless, all dynamically instantiated entities of a col-

lection is maintained by a concurrent data structure during runtime, which also is

named a collection. We will address the statical descriptions more explicitly as static

collections and runtime collections remain to be dynamic collections to emphasize the

differences in between and prevent possible confusions.

[String inputStrings];
env -> [inputStrings];
<point stringTag>;
env -> <stringTag>;
<stringTag>::(tokenize);
[String tokens];
<point tokenTag>;
[inputStrings] -> (tokenize) -> [tokens], <tokenTag>;
<tokenTag>::(filter);
[tokens] -> (filter);
[int filteredTokens];
(filter) -> [filteredTokens];

Figure 2.3 : Textual representation of a sample CnC Graph

13

Step is the delineation of computation in CnC. A static step collection is a procedure

parametrized by control tag instances, therefore a step instance is an invocation of

that procedure with a given control tag instance. The CnC graph also provides the

prescription relation, which is a binary relation over static tag collections and static

step collections. This relation describes, which static step collections should have

invocations with a given control tag instance once that control tag instance is added

to dynamic control tag collections. The properties of this binary relation, prescription,

is such that its inverse has to be a function. A static step collection can be prescribed

by at most one static tag collection, where a static tag collection can prescribe multiple

static step collections.

The communication into and out of steps is achieved by providing access to the

dynamic item collections from which a step instance is going to read or to which a step

instance will write. The item instances are extracted from and fed into a dynamic

item collection by a data tag instance which is a function of the control tag instance

that step instance is invoked with. A step instance may put a control tag instance

into a dynamic tag collection that is has been provided access to, which leads to the

invocation of step instances of static step collections prescribed by that given static

tag collection, assuming all other conditions (to be covered in scheduling) are met.

Item is a dynamic single assignment value on the CnC domain. A static item collec-

tion is an abstraction to describe a collection of data statically, which has producer-

consumer relationships with static step collections. As covered in the previous para-

graph, item instances are created and consumed by step instances. Step instances

access an item instance by querying a dynamic item collection with a data tag which

is computed from the control tag the step instance is associated with. The producing

14

interface for an item instance is called a put into a dynamic item collection and the

read interface is called a get from a dynamic item collection.

Tag serves two purposes in CnC. A data tag instance is a key to access a value

on a dynamic item collection, where a control tag instance is a proxy to invoke step

instances with that control tag instance from static step collections that have been

prescribed by the static control tag collection of that control tag instance.

Given these concepts, a solution to a problem is built by the user providing the

CnC graph and the kernel computations for the static step collections, that are step

nodes on that graph. Additionally, the user needs to provide a special step instance,

the environment, which initiates the computation by feeding the initial control tag

instances and the initial item instances. Scheduling decisions are made by the un-

derlying runtime schedulers, which will be covered in more depth in chapter 3. For

our implementation, we chose Habanero-Java to be the language of the environment

and static step collections and Habanero-Java runtime to be the underlying runtime.

The mapping between these two models are achieved in this following manner. The

CnC graph is translated to create the signatures, abstract Habanero-Java classes, for

static step collections, which have to be implemented, by extending those abstract

classes, by the user to describe the computation that static step collections entail.

For the environment step, the user instantiates a graph object and starts its execu-

tion by putting control tag instances into some dynamic tag collections of that graph.

To ensure the synchronization of all the step instances that unfolds as the graph is

executed, the code introducing the control tags into the graph is wrapped within in a

finish scope. The parallelism is expressed through the implicit wrapping of each step

instance invocation by an async.

15

One restriction CnC employs is that every get operation within a step implemen-

tation precedes a put operation. This is rather a best-practices approach to CnC

coding, however it does not solve the deadlock like state mentioned before.

stepm(itemCollectionk) {
· · ·
itemCollectionk.put(tagj,value)
local=itemCollectionk.get(tagi)
· · ·

}

stepn(itemCollectionk) {
· · ·
local=itemCollectionk.get(tagj)
itemCollectionk.put(tagi, value)
· · ·

}

Figure 2.4 : Sample pseudo-code with cyclical data dependences

A pseudo-code snippet that does not conform to the CnC restrictions is depicted

above on Figure 2.4. In this code, step instances m and n will wait for each other

indefinitely. However, it is possible to transform any code to conform to the all-

gets-before-any-put restriction. One possible transformation would split the step

implementations in every put operation to make sure every step ends in with a put

operation and the rest of the code, the continuation, will be encapsulated in a new

step implementation and a new control tag collection will be created to invoke that

new step. This new step will be invoked by a put operation for the newly created tag

collection for this continuation step. If get and put operations are interleaved this

process can go recursively until every step implementation ensures that get operations

occur before put operations. CnC does not prevent users from creating a deadlock

cycle that is created by a cyclical data dependence, however it should be noted that

cyclical data dependence is a design error.

16

2.5 Runtime Scheduling

On a dynamic light-weight task-parallel runtime, the runtime scheduler needs to as-

sign tasks to threads as they created during execution and maintain load balance

with minimal runtime scheduling overhead. Two main subsets for these algorithms

are explained below.

2.5.1 Work-Sharing

These schedulers hand out work as new work becomes available to achieve load bal-

ance. The centralized work queue approach maintains a global list of ready tasks

from which all threads extract new work as they need and once new work becomes

available, it is fed into the global task queue. A decentralized work-sharing scheduler,

may maintain task queues per thread to represent ready tasks that gets populated by

other threads that eagerly share their work once more ready tasks appear.

X10 version 1.5 has an underlying centralized work-sharing runtime implementa-

tion which Habanero-Java inherited. Our work and results are based on the work-

sharing runtime and scheduling, though work-stealing runtime implementations are

listed as future work.

2.5.2 Work-Stealing

These schedulers are inherently decentralized and the sharing of work is not eager,

from where the name ‘stealing’ comes. Every threads task queue maintains a list of

ready tasks that are to be executed by that thread. As more tasks gets created, no

sharing occurs and they are reserved in the same thread’s ready task queue, however

once a thread runs out of work, it steals work from other threads’ queues to achieve

load balance.

17

There are two alternative policies for work-stealing scheduling administration.

Work-first work-stealing, eagerly starts executions of child tasks, leaving the parent

task’s continuation on the ready task queue. This depth first execution traversal of

the task tree is proven to be efficient both in execution time and memory footprint

in bounds, given sufficient parallel slackness [5, 14]. Help-first work-stealing policy

pushes children tasks created into the ready task queue rather than eagerly starting

their execution, which is breadth first traversal of a parent tasks children which

exposes a wider computation frontier which helps with lacking slackness in a subset of

problems, however the bounding of memory and execution time proof does not hold

anymore [15].

Habanero-Java employs both these possible work-stealing policies and also provide

an adaptive scheduler [16] that alternates in between as slackness changes during

runtime.

18

Chapter 3

Scheduling of CnC

As dynamic light-weight task based parallel programming models move to the main-

stream, runtime scheduling with less overhead, more load balance, hence better per-

formance, proves to be an important research topic. The challenge of engineering a

scheduler for such a model is handling varying number and granularity of compu-

tations without incurring prohibitive costs during runtime. A taxonomy of popular

runtime schedulers has been covered in section 2.5 as the bifurcation of work-sharing

and work-stealing.

In section 2.4, we have noted that the Concurrent Collection programming model

aims at implicit parallelism through macro-dataflow at the granularity level of tasks.

The declarative nature of the model allows us to capture task and data parallelism in-

herent in any application. The expression of parallelism is attained by the Habanero-

Java code compiled from a CnC application, using async-finish constructs. Conse-

quently, we execute the parallel code on the Habanero-Java runtime.

Arcs on a dataflow graph represent data being passed from a node to another

and for relaxed dataflow models these data can be tagged in order not to delay

nodes on their output channel. As we have covered before, we use a hashmap that

is accessible by every computation and can be queried with a given tag, to simulate

data channels. However, dataflow or data-driven scheduling fires computations when

their data is ready, nevertheless our model allows computations to be created ahead

of time because of the introduction of control-flow as a first level construct.

19

To simulate dataflow semantics or a data-driven runtime scheduling, we use block-

ing on uninitialized data as an alternate solution. Additionally, we use delayed

asyncs(see section 3.2), and introduce data-driven futures on chapter 4 as our pro-

posed constructs to help us with the mapping of CnC on a task-parallel environment.

The following sections 3.3 and 3.4 describe implementations of CnC schedulers in two

main subsets, namely eager schedulers and data-driven schedulers.

3.1 Challenges

The parallelism expressed in CnC is not trivially mappable to an async-finish com-

putation. The challenge arises from CnC’s expression of control dependences between

tasks possibly before data dependences are satisfied. The control dependences, on

CnC domain, determine if a computation is going to be executed but when it is

going to be executed is determined based on the satisfaction of data dependences or

lack thereof during runtime.

[someInput1]

some
Tag

(controlProvider) (someTask)

(dataProvider1)

(dataProvider2) [someInput2]

[someOutput]

Figure 3.1 : Simplified sample CnC Graph to show the separation of control and data
providers

For example, let us look at a simplified sample CnC graph on Figure 3.1. In a

given execution trace, let us suppose that a controlProvider step instance puts control

20

tag instance (i,j) into the someTag control tag collection. This will eventually lead to

the execution of a someTask step instance. However, there is no guarantee that the

item instances from item collections someInput1 and someInput2 that the someTask

step instance will read, would have been provided preceding the put of the control

tag instance. Therefore the execution of the someTask step instance has to delayed

at runtime to ensure that the needed data is ready.

In some models, take fork/join or serial languages, if and when are tightly coupled;

if a computation will be executed, it may be executed anytime beginning from when

it is told it may be executed. For example, Habanero-Java’s async-finish style

parallelism on a work-stealing runtime with work-first or help-first policy, in which an

async does not guarantee immediate execution though it does not prohibit imminent

execution either. The execution of a task may be delayed until the enclosing finish is

observed, while all other siblings may be running or finished execution. However, this

is still more restrictive than the CnC approach, since in CnC a task may be created

and marked logically parallel whether it is ready or not, even possibly preceding the

tasks with which it may have data dependences.

Even though the separation of if and when is not exclusive to CnC, most mod-

els conform to the notion that data dependences of a task is satisfied prior to the

expression of the control dependence. As most parallel languages are embedded into

or implemented on top of serial languages, this imperative, serial semantics of pro-

grams percolate up to their parallelized versions. Tasks labeled to be parallel in these

languages uses values that are currently in lexical scope, which guarantees that the

values are created before the parallel task is forked apart. This property does not

hold for CnC, which introduces possible complications to be handled if CnC is to be

mapped to a task-parallel language like the ones mentioned above.

21

3.1.1 Methods and restrictions for CnC

Only restriction CnC imposes on the implementation is that every step computation

should perform all get operations before any put operation as noted in section 2.4.

However we need to restrict the step definition even further to achieve better perfor-

mance.

Let us assume that a step performs a costly computation before performing any

get operation. The number of executions of that step until the get operation is sched-

uler dependent and can be repeated many times. Therefore to get better performance

from out implementations, we have adopted a best-practices-policy of performing all

the gets in the beginning of a step definition. Hoisting all get operations to the be-

ginning of a step definition is trivial under the assumption that the get operations are

data and control dependence free and executed regardless of any other computation

within the step. It may seem restrictive to enforce get operations to be control in-

dependent however this is as expressive as the default model and this transformation

can be done automatically.

Let us assume that a get operation is control dependent to the results of many

other computations, even including other get operations results. This hampers the

analyzability of the code makes the readiness checking and possible rollbacks more

expensive. We instead transform these types of codes into steps definitions beginning

with control dependence free get operations by expressing the control dependence

at the CnC graph level instead of within the step. We duplicate the step code from

the first get operation point where the one copy has the condition satisfied and the

other copy has it unsatisfied. We create these two new kinds of step collections and

we also create two tag collections to spawn these steps. Additionally, we change the

original step definition to evaluate the condition and put a tag into the appropriate

22

tag collection based on the condition and finish execution.

Following the best-practices or employing this transformation lets us statically

analyze the data-dependence graph, cuts readiness checking and rollback costs.

3.2 Delayed Asyncs

Delayed asyncs, introduced in [17], are guarded execution constructs, that extends

Habanero-Java asyncs to be susceptible to a boolean flag which denotes whether the

computation is ready or not.

The syntax adopted for delayed asyncs is async (〈booleanExpr〉) 〈Expr〉 . The

scheduling and therefore the execution of 〈Expr〉 is delayed until boolean expression

〈booleanExpr〉 evaluates to true. The challenge here is to decide when and how

frequently to evaluate the boolean expression to promote delayed asyncs to full-fledged

asyncs. The answer is dependent on the given underlying runtime scheduler.

As discussed in 2.5, our work-sharing scheduler maintains a global task queue

which is populated by asyncs scheduled, though not yet run. Prior work provided

augmentation to support delayed asyncs is to treat them as if they are proper asyncs

when extracted from the work pool. They evaluate their boolean expressions to check

if they are ready to run and if they are, they get executed. However if they are not,

they get re-queued and go to the back of the queue. This may seem as a potential for

overhead, since at worst case (a post order traversal of the dependence graph of step

instances), it is possible to cause O(N2) total re-queue operations readiness checking

operations, where N is the number of all possible step instances, even if all step

instances were to finish executions instantaneously. The reason for this cost can be

expressed as follows. Since the queue may be the postorder traversal of the readiness

graph the very first available task will be at the end of the queue therefore it is needed

23

to evaluate all N queued tasks to find the first available task. This whole queue

checking will continue as the queue size shrinks which would lead to
∑N

i=0 readiness

checking which amounts to O(N2) readiness checking and re-queueing operations.

Under real-world circumstances, an execution of a step instance is not instanta-

neous. Consequently, it is possible that all threads looking for tasks to execute, may

dequeue and re-queue the whole task queue over and over again until some ongoing

task execution finishes, which is preventing its dependents from running. One may

classify this behavior as busy-waiting on a queue. However, our observations led us

to believe this is never the case and even if the program dumps all possible step in-

stances to the work queue, this pathological case has not been created with real world

benchmarks that we implemented. Applications of this construct will be covered in

section 3.4 as Delayed Async scheduler is based on support mentioned.

Delayed async support is implemented differently on work-stealing runtime since

there is no global queue to enqueue tasks to delay execution once they are dequeued

prematurely. So, we have a queue to store all delayed asyncs for a finish scope.

Once a worker walks into the end of a finish scope, rather than picking up the

continuation, the worker traverses the delayed async queue and promotes all ready

delayed asyncs to normal asyncs. This relaxation loops until the delayed async queue

is empty, when the worker picks the continuation just like the default case.

3.3 Eager Scheduling

We have mentioned previously how CnC is inherently different than task-parallel

languages by pointing out that the data dependences may not have been satisfied

at the point where the control dependence is expressed. Therefore, one possible

scheduling mechanism is to assume that the data for any task is ready and treat

24

tasks whose control dependence is satisfied as ready for execution. However, we

need to make sure that the execution of eagerly scheduled tasks are either delayed

or blocked until their data are ready. If we also allow eager execution, we should

unroll the computations that started without their data being ready. Follows are the

schedulers that employ these policies.

3.3.1 Blocking Scheduler

This policy makes sure you conform to the data dependences by using gets with

blocking semantics. A blocking get waits on an item that it is called to consume

until that data is ready. We use the wait-notify mechanism provided by Java to

implement this functionality.

If a task blocks on a failed get, so will the coarse grain thread which holds that

light-weight task. At worst case, we may block all the threads since the tasks on the

computation frontier may not be enabling any formerly blocked threads. We remedied

this condition by augmenting our work-sharing scheduler to have varying number of

threads on its thread pool as threads block to avoid deadlock. However one may

point out that there will be more than number of threads initially designated on the

pool when blocked threads get woken up. This not only introduces context switching

cost but also increases the demand for memory if too many threads get blocked. The

same augmentation could have been applied for a work-stealing scheduler with even

more complications so we did not provide an implementation for that case.

Blocking schedulers for work-sharing runtime have been proposed as a näıve initial

step and therefore a baseline for other schedulers. We will visit performance results

in detail in chapter 7.

25

Coarse Grain Blocking

In this particular policy, every item collection has a single monitor to synchronize

access to the whole collection. Therefore a failed get will wait on the single monitor.

Despite the simplicity, the downside to this approach is that every get will be using

the same monitor. So even if a put with data tag (k) will be waking up threads that

are waiting on other other item instances with different tags. All unnecessarily waken

up threads need to be eagerly run again to either read the value if it has been put or

lock the same monitor again. As one would expect because of multiple failures and

the contention on the monitor, this scheduler is expected to under perform, which

will be compared on the results section.

Fine Grain Blocking

We proposed finer grain monitor synchronization to alleviate the problems mentioned

in the previous paragraph associated with a coarse grain locking approach. For this

policy, every item instance has its own monitor. Therefore once a get fails on an item

instance with data tag (k), only a put with data tag (k) will notify those threads and

only those threads. This approach reduces contention on locks by giving each item a

monitor and also threads are only waken up when the data they slept on gets ready.

3.3.2 Data-Driven Rollback & Replay

Eager blocking schedulers, as explored on the previous subsection, suffer from blocking

coarse grain threads just to block light weight tasks. In order to mitigate this problem,

one needs to disassociate tasks from threads once they become a hazard for the whole

thread. Data-Driven Rollback and Replay policy scheduling is built based on this

premise.

26

Like any other eager scheduling policy, it is assumed that a task is ready for

execution even if the data dependences are not satisfied. During the execution of a

task, if a get is performed on a data anticipated to be ready but is not, an exception is

thrown to unwind all the computation that has been done. Since CnC computations

are functional with respect to their inputs and are side-effect free, this rollback and

possible rerun in the future is legal. Preceding the exception thrown, the computation

that executed the failed get, notes itself as a closure to the data it failed to read.

If more tasks are to fail reading the same data, they stack up their closures to the

same entry. When the data is made ready by a corresponding put call, all closures

recorded to have failed are scheduled to be rerun.

The explanation above, ensures that a task can not run to completion before its

data is ready due to the exception for reading uninitialized data. Additionally, a

coarse grain thread does not block or gets unwound, since the tasks do not block and

the exception is caught by the Habanero-Java runtime just to be ignored, however

unwinding the task it originated from. This approach observes the fine grain data

dependences of a task during runtime by stumbling on the data items a task performs

get on, hence we named the policy data-driven rollback and replay.

One handicap for this policy though, is the possibility of multiple failures before

execution. If a task features multiple gets, gets scheduled, picked to be run and fail

to succeed in the first get, the closure for that task will survive in the queue for the

data it failed on. When that data is put by some task, it will get reinstated. On the

second run, the first get will succeed, although it is possible to fail on the second get

attempt and get queued waiting on the second data. On worst case, it is possible to

reinstate a task for the number of gets it performs and incur the cost of creating a

task, scheduling it and unwinding the computation it may have done by then by and

27

exception. These observations laid the groundwork for our Data-Driven Future work,

which will be covered in greater detail on chapter 4.

3.4 Data-Driven Scheduling

Even though all legal schedules of a program will delay any task until all required

data is ready, eager schedulers achieve this goal by assuming the data would be there

during execution optimistically and handling error cases if the assumption fails. In

contrast, data-driven schedulers delay the execution by checking whether the data is

ready or not without execution. In these schemes, computations delegate the data

dependence checking to additional constructs which fails on behalf of the computation.

We propose two schedulers complying with this policy. Firstly, the Delayed Async

scheduler with the help of the language construct we covered in section 3.2 where

it gets its name from. Secondly, we propose pure data-driven scheduling that is

influenced by dataflow execution model with the help of the language construct,

data-driven futures, to be covered in chapter 4.

3.4.1 Delayed Async Scheduler

Given a guarded execution construct like delayed asyncs, this policy converts all com-

putations into guarded computations with guards being the data dependences. Even

though the item instance level dependences can be expressed on the CnC graph ahead

of compile time or can be deduced by the compiler at compiler time, for simplicity we

assume that the guard is provided by the programmer. Since we provide the program-

mers with abstract classes to provide implementations to based on their declaration

of computations, we also provide a readiness function stub to be implemented. This

boolean readiness function has the same parameters that the computation function,

28

where the expectations from the programmer are to check the presence of the data

tags for items the computation would consume.

Once all tasks are created as delayed asyncs, where the guards validity represents

the satisfaction of data dependences, the runtime scheduler with the delayed async

support discussed in section 3.2 makes sure a task is run only once and after all its

data is provided. As we discussed in that section, not throwing away tasks that should

not have run in the first place or not blocking coarse grain threads translates into

better performance. Yet again, there also are inherent downsides to this approach.

Delayed async evaluation, which is the delegation of the safety of a computation,

has to be repeated rather than the whole computation. This seems as an advantage

given that the guard evaluation is cheaper than the computation, though it may be

a bottleneck and turn into busy waiting in unlikely cases.

29

Chapter 4

Data-Driven Futures

In this chapter, we introduce a new synchronization object, namely Data-Driven Fu-

tures, to keep track of inter-task dependences based solely on data and to provide sup-

port for a dataflow like scheduling policy. We have implemented data-driven futures

on Habanero-Java using a new data-driven runtime scheduler. Section 4.1 introduces

data-driven futures. In section 4.2, we describe a data-driven runtime scheduler we

implemented that can be used to support data-driven futures and includes a discus-

sion on a blocking runtime scheduler for the sake of completeness. Finally section 4.3

elaborates how we implement this concept.

4.1 Introduction

A data-driven future (DDF) encapsulates a value and acts as its proxy. Nor the value

may have been computed and neither the task to resolve that value may yet have

been created when a DDF is instantiated. Data-driven futures provide support for

the regulation of accesses of tasks that have a consuming relationship with that value

and the producing task. Below is a suggested interface for this language construct:

get is the interface for accessing the result of a data-driven future. If the DDF

has already been provided a value via a put, described below, a get delivers that

value. However if the producer task has not yet been created or its execution not

finished at the time of the get invocation, that get fails. The definition of failure is

30

dependent on the underlying runtime scheduler. On a data-driven runtime scheduler,

the expected action is an unrecoverable error, as that get should have never been

executed. In contrast, on a runtime scheduler with blocking support, the task from

which the get is invoked should synchronize with the producer task and wait for it

to be created and its execution finished. The latter case scales data-driven futures

down to mere futures, so one may support that functionality. Further discussion on

runtime scheduling aspects of DDFs are covered in section 4.2.

put provides the functionality for the resolution of a data-driven future. Every

DDF has a unique computation that would resolve the value associated, which we

call the producer. Once the producer initializes the data field of a DDF, it needs to

wake all consumers that have either not been spawned or blocked preceding that put.

As DDF is a reference to a value and not a variable, only one producer may set the

value and any other attempt at setting the value, should be an unrecoverable error

independent of the underlying runtime.

Creation is mere creation of a reference object that points to nothing. Both pro-

ducer task and consumer tasks may have handles for this object, where the producer

task resolves the reference to an actual value via a put and consumer tasks derefer-

encing it via a get. It is possible to provide the computation or even the value during

creation, though that blurs the distinction from mere futures and as mentioned above,

we will abstain from that discussion.

Registration describes the association relation between a DDF and the tasks con-

suming it. A task, designated to consume DDFs, is created by registering itself to all

the DDFs it may read. These registrations help regulate the spawning of tasks for

31

execution on a data-driven runtime and helps resolving which task to synchronize on

a blocking runtime. Further discussion on runtime scheduling aspects of DDFs are

covered in section 4.2.

// Create two DDFs
DataDrivenFuture left = new DataDrivenFuture();
DataDrivenFuture right = new DataDrivenFuture();
finish { // begin parallel region

async left.put(leftBuilder());//Task1

async right.put(rightBuilder());//Task2

async await (left) leftReader(left);//Task3

async await (right) rightReader(right);//Task4

async await (left, right) bothReader(left, right); //Task5

} // end parallel region

Figure 4.1 : A Habanero-Java code snippet with Data-Driven Futures

The sample code snippet in Figure 4.1 shows five logically parallel tasks and how

they are synchronized through DDFs. Initially two DDFs are created as containers

for data items left and right. Then a synchronization scope is started via a finish,

which harbors five logically parallel tasks, annotated with asyncs as in Habanero-Java

and X10. The registration declaration of which DDFs a task should read, is expressed

by an await clause in the async. The tasks suffixed Reader, are passed references to

perform a get on the DDF instances that they receive.

For instance, the fifth task registers itself on both left and right DDFs, which

declares a data dependence from the first two asyncs that are the producers for those

DDFs. Regardless of the underlying scheduler, the first two asyncs are guaranteed

to execute before the fifth async. This ability for a task to wait on two (or more)

DDFs is unique to our DDF model, and was not supported by past work which will

be covered in section 6.

32

4.2 Runtime Scheduling with Data-Driven Futures

4.2.1 Motivation

Data dependence edges as first level constructs

Concurrent Collections programming model builds a coarse grain task graph statically,

where the fine grain task graph is exposed as the computation unfolds during runtime.

However, the exposed task graph, which we are calling frontier from here on, is not

necessarily just enabled tasks. This is a direct conclusion from the case we built on

the previous chapter based on how control dependences are not sufficient to deduce

readiness as they do not encapsulate data dependences. As we have covered in our

discussion on eager schedulers, the computation frontier for those schedulers consists

only of ready task nodes though it may mislabel tasks, that have not satiated their

data dependences, as ready. Therefore our computation frontier is unnecessarily

larger which increases book-keeping costs and incur scheduling costs for tasks that

should not have been scheduled. In order to maintain an execution frontier, we need

to maintain what is currently available, what will become available and what has

completed.

Default programming convention is to describe a task dependency graph linearly

by providing a valid topological sorting of these tasks. For example compilers use de-

pendency analysis to reverse engineer the intended task graph from the linear code.

As this linear code is traversed, every encountered computation is ready and schedu-

lable since the description of the program followed the aforementioned convention.

This is not much different for parallel programming languages either. Since there are

multiple flows of control, it is possibly unsafe to read effects of another flow of control

preceding a synchronization point, so it is safe to assume all parallelly executed tasks

33

are independent of each other. Therefore a correct, race-free parallel program also

conforms to the same convention. There are exceptions to this rule, e.g. one can

describe a parallel program where there are control dependences between the parallel

tasks. In order to guarantee safety, a synchronization between those steps have to

be adopted. For example Habanero-Java phaser[12] construct is a remedy for this

example.

Data-Driven Futures serve the data dependency equivalent of a synchronization

object for parallel tasks with data dependences in between.

Arbitrary task graph construction

The nested fork/join model, widely adopted by many current parallel programming

models, restrains the edges of the task graph to unify control and data dependences.

The source of the dependency edge in those graphs (parent) provides the child not

only with control but also with data through its lexical scope. However, the parent

task that creates a downstream parallel computation, does not necessarily create the

data consumed by that computation.

For example, looking back at Figure 4.1, we see that the dependence graph be-

tween those five tasks can not be described by standard nested fork/join without

constraining parallelism. The data dependency graph between the tasks in Figure 4.1

can be described by the left side of Figure 4.2. This graph can not be created with

nested fork/joins operations. An alternate solution in a fork/join model would be to

hoist task1 and task2 to the parent task, thereby creates an implicit barrier between

producers and consumers. That approach would result in a dependency graph rep-

resented on right side of Figure 4.2, which has less parallelism than left side of the

same figure. Additionally, the lack of a construct like DDFs burdens the programmer

34

Task1	

Task4	

Task2	

Task3	
 Task5	

Task1	

Task4	

Task2	

Task3	
 Task5	

Figure 4.2 : Data dependency graph of Figure 4.1 (left) and the unified dependency
graph of the fork/join equivalent of the same program

in thinking about creating fork/join structures to satisfy data dependences.

4.2.2 Methods and restrictions for tasks awaiting DDFs

We have adopted restrictions for our coding principles using DDFs parallel to the

discussion mentioned in section 3.1.1. When a task declares to read a set of DDFs

through its waiting list, we expect that all these reads are data and control dependence

free. If not, one can adopt the same transformation described in section 3.1.1 but

with no need for tag collections as they are irrelevant for this scope. Hence, we can

hoist the data and control dependent get operations out of a step by splitting the step

into the data and control dependence free subparts. Additionally, any computation

deemed not data dependent on the Data-Driven Futures in the waiting list does not

belong into a task that awaits them and therefore they should be hoisted out, too.

We have assumed these restrictions for implementation and as we have shown before

these restrictions are as powerful and expressive as the non-restricted counterpart and

35

can be transformed into and out of.

4.2.3 A Data-Driven Runtime Scheduler supporting Data-Driven Futures

A data-driven runtime supporting DDFs would follow asynchronous dataflow seman-

tics. This runtime assumes that all tasks that consume data-driven futures would

register themselves to what they are consuming. As in dataflow scheduling, the tasks

that are to be executed are not spawned or invoked but rather consume the data they

declare to consume once that data becomes available. Therefore, it is the availability

of the data that runs the scheduling, not explicit scheduling requests. Consequently

when a DDF becomes resolved, every task registered as its consumer would become

ready, given that is the only DDF that task is waiting for. If there are multiple DDFs

for a task to consume, one can think of the latest arriving DDF as the enabling one.

As we have briefly touched on the effect of runtime scheduling to data-driven

future semantics on section 4.1 and also elaborated on the paragraph above, it is

possible to provide a data-driven runtime scheduling with these design choices:

• Registration of tasks to data-driven futures they consume

• No explicit invocation of a task that consumes DDFs

• DDF signal consumer tasks as they become resolved

• Invocation of a task when all DDFs, which that task registered to consume,

have signaled

We have implemented this runtime scheduler, whose implementation details are

covered in section 4.3 and performance results compared to alternative CnC schedulers

can be observed on chapter 5.

36

4.2.4 A Blocking Runtime Scheduler supporting Data-Driven Futures

As in the blocking versus waiting design choice on future constructs on other domains

or as in CnC scheduling policies mentioned in chapter 3, one may choose to implement

the support for data-driven futures by blocking threads from which a get is performed

on an uninitialized DDF until the corresponding put occurs. Additionally, the design

choices can be furthered in handling the case where the computation leading to the

corresponding put is known. One possible choice is to lazily wait for that task to

execute at schedulers sake and another is to enforce execution of that computation.

As we have covered the possible implications of blocking and the overhead associ-

ated with it deduced from our experiences implementing blocking schedulers for CnC,

we have not provided an implementation for this variant. We have concluded that

a data-driven runtime scheduler is a better fit to show the benefits of data-driven

futures, therefore only data-driven runtime scheduler variant is implemented.

4.3 Implementation

Our implementation for data-driven futures and the data-driven runtime scheduling

supporting this construct is based on Habanero-Java and the work-sharing runtime

of Habanero-Java. Accordingly, within this sections scope it is appropriate to read

a task as a Habanero-Java async, an object as a Habanero-Java object and a list as

linked list implementation by Java utilities library.

Data-Driven Futures are objects that hold a single-assignment value and a linked

list of tasks registered as consumers of this value waiting for that value to be assigned.

In general, the value, will be assigned at runtime by a producer task. Since the value

held within a DDF is single-assignment, any attempt to reassign the value results in

37

an exception.

Each task holds a list of Data-Driven Futures it is designated to consume. This

list is populated during the creation of a task at runtime where the compiler intro-

duces the initialization code. Readiness of a task can then be checked any time by

a traversal over the list of DDFs. A consumption ready DDF would be one with

the data field already assigned. Additionally, since the readiness of a single DDF is

monotonically increasing (from uninitialized to assigned and never to be reassigned

or to be uninitialized again), so is the readiness of the whole list of DDFs. Once a

DDF is found to be ready, we can stop checking for its readiness. Every DDF list

can retain a state of where the ready part of that list ends using an iterator and the

sublist being waited on starts, in order not to unnecessarily check ready parts that

can not be made not ready.

We can see a partial sample configuration snapshot in Figure 4.3. This figure

shows the data dependence relationships between tasks A, B and C through the

DDFs α, β and δ. Here are some conclusions we can derive from this snapshot. First

of all, we know taskA will consume data items in DDFα and DDFβ, where taskB

consumes data items in DDFβ and DDFδ. The task designated as the producer for

DDFβ is taskC . Some producers have already provided the values for DDFα and

DDFδ. From the upper left corner of the figure, we can see that a DDF has a list

of tasks which are its consumers and tasks have a list of DDFs they consume. At

the time of this snapshot, taskA has already passed over DDFα since the value has

been produced and is not waited on anymore. However on taskBs case, even though

DDFδ is ready, the task is not aware of that fact yet as it is waiting on DDFβ. In

this scenario, let us assume that the very next action is the assignment of the value

DDFβ is synchronizing. The assignment of that value will induce the traversal of

38

TaskA
PlaceHolderβ

DDFβ

DDFβ

TaskB
DDFδ

XValueα

DDFα

TaskA TaskB
DDFβ

read

DDFδ
read

DDFα
read

DDFβDDFα

DDFβ
read

writewrite

TaskC
read

read

write
DDFβ

XValueδ

DDFδ

Figure 4.3 : Snapshot of a subset of Data-Driven Futures and tasks during runtime

the designated consumer task list. On every task, the wait frontier, shown by a red

dotted arrow, is iterated, which is an asynchronous way of moving every task to its

next phase. For example, taskA will observe the end of the list that will cause its

eventual execution as it is deemed ready where taskBs next phase is to check the

readiness of DDFδ, which will succeed and cause taskBs execution.

We conform to the semantics for data-driven futures described above with the

following API we imposed on our Habanero-Java implementation.

get is implemented as it is covered in section 4.1 given the underlying scheduler is

data-driven runtime scheduling. If an incorrectly implemented program attempts to

access a data-driven future that has not been resolved, an exception is thrown. As

39

the data that is being referenced by a DDF never changes, there is no synchronization

on this method for performance concerns.

put also conforms to our discussions above for a data-driven runtime scheduling

support for a data-driven future. This method is synchronized with readiness checking

method in order to ensure isolation property, in the sense that not a half initialization

would be observed. A DDF being initialized maybe polled during the initialization

by another thread for readiness. Once the initialization is complete, put exits the

critical region to advance the iterators indicating where tasks have been waiting for

all the tasks registered themselves as consumers. Any task created from then on, will

observe the DDF to be ready, therefore consumer tasks succeeding a put do not have

to be advanced.

Creation instantiates an DDF object that is a placeholder for the single-assignment

value that DDF is a reference to and sets the list of tasks registered to be consumers

to an empty list. It is also possible to initialize the data field during creation, which

can be described as the providing of the computation for that DDF, where that

computation is a constant expression. We do not allow for the data-driven future to

be a computation, i.e. like a Habanero-Java future, for simplicity.

Registration is currently provided by the user creating the task. We require tasks

to declare on what DDFs they perform get on. The syntax we proposed for this

declaration is as follows: async await (ddfa, ddfb, · · ·) {〈Expr〉} . For example,

going back to Figure 4.3, declaration of taskA would be async await (ddfα, ddfβ)

{ · · · locala = ddfα.get(); localb = ddfβ.get() · · · }
The changes on a data-driven future consuming task are as follows:

40

Initialization now also initializes the list of data-driven futures that task consumes

by extracting the list mentioned in the registration paragraph above. The state of the

task representing on which data drive future it is currently waiting on, the iterator, is

set to the beginning of the list and subsequently the advance method is called to skip

over the data-driven futures which have already been resolved prior to the creation of

this task. This advance method is synchronized and this is the reason why: Let us say

the very first call to advance, to skip over the data-driven futures already resolved,

finds the first unresolved DDF and inserted itself as a waiting task to that DDF.

Before the advance called by the initialization can return as it has inserted itself to a

waiting list, a put on that object happens and calls advance on that task. Now the

waiting frontier is advanced but the initial advance call returned failure and no other

advance will be called on that task as it is not registered as a consumer at any other

thread.

Invocation is delegated to the list of DDFs readiness condition, rather than the

eager enlisting of a task into a task queue. In this version of a task, running to end

of the list of DDFs and therefore observing the conformance of data dependences

triggers the inclusion of the task to the global task queue.

41

Chapter 5

Results

5.1 Methodology

We test our work and present performance results on the two following machines.

Xeon machine has a quad-core Intel E7730 processor running at 2.4 GHz. Each

processor has two pairs of cores, where each pair shares a L2 cache of size 3MBs.

Amount of total main memory for this machine is 32 GBs. For our tests on this

machine we set the number of workers to be 16, that is one worker per core.

Niagara has a Sun UltraSPARC T2 microprocessor that has 8 cores and supports

concurrent execution of 8 threads per core. There is only one L2 cache of size 4MBs

to be shared between all these cores. For our tests on this machine we set the number

of workers to be 64 to attach workers to all hardware threads.

For both machines above, we use Sun Hotspot JDK 1.6 JVM and since these

are 32-bit versions we cap the memory usage to 4GBs. In our Cholesky factoriza-

tion benchmark that uses optimized vendor libraries, we used Intel Math Kernel

Library(MKL) version 10.2.3.029. For Heart Wall Tracking benchmark, we used

GNU C compiler version 4.1.2 to build the underlying C code that is called from the

Habanero-Java via native interface.

All the tests presented below are either the minimum running times or the mean

running times of 30 runs of a benchmark from a single invocation to ameliorate

42

inconsistencies of a execution times on a time sharing system, clean and dirty cache

impacts and effects of just-in-time compilation. Heart Wall Tracking is the exception

to the 30 test runs as deterministically crashes after 13 runs, which is the limit we have

used to conclude minimum and average execution times. We have been influenced

by [18] in our choice for 30 runs of a program in an invocation and confidence intervals

for the mean.

We have dubbed the single threaded execution of our parallel benchmarks as

‘serial’ on our charts. One may argue that it is not the most conventional use of

the term and also fails to address the overhead of parallelism. This is an intentional

choice to set the scope of this work and we plan to provide overhead analysis on future

work.

5.2 Benchmarks

5.2.1 Cholesky Factorization

For a given symmetric, positive definite square matrix, Cholesky factorization calcu-

late two factors whose multiplication equals that matrix. The factors are lower and

upper triangular matrices, where the upper triangular matrix is the transpose of the

lower triangular matrix. This may be interpreted as a variant of square root.

This particular algorithm is a well known dense matrix linear algebra kernel that

is used frequently in the literature as it is an efficient way to find solutions to sys-

tems of linear equations, part of linear least squares calculations for linear regression,

eigensolvers and many other applications. This algorithm allows various parallelism

opportunities like pipelining, loop parallelism, task parallelism and nested data par-

allelism. However exploiting all these possibilities for parallelism is not a trivial task

43

and Concurrent Collections proved to be best solution[19].

Performance Results

This section provides a summary of our performance results on our Cholesky fac-

torization implementations. We have implemented tiled Cholesky factorization using

Concurrent Collections, where steps are either pure Habanero-Java code or calls to

Intel MKL. Additionally, we present data-driven future versions of both the pure

Habanero-Java and MKL using versions, which does not use Concurrent Collections.

We have not covered the tiling granularity aspect on this section as it is orthogonal

to our discussion.

7,861	
 7,730	

8,818	
 8,789	

7,199	

1,890	

949	

593	
 663	
 578	

0	

1,000	

2,000	

3,000	

4,000	

5,000	

6,000	

7,000	

8,000	

9,000	

Coarse	
 Grain	

Blocking	

Fine	
 Grain	
 Blocking	
 Delayed	
 Async	
 Data	
 Driven	

Rollback&Replay	

Data	
 Driven	
 Futures	

Ex
ec
u>

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.1 : Minimum execution times of 30 runs of single threaded and 16-threaded
executions for blocked Cholesky factorization CnC application with Habanero-Java
steps on Xeon with input matrix size 2000 × 2000 and with tile size 125 × 125

On Figure 5.1, we can observe speedups of 14.8, 13.2, 12.4 for data-driven rollback

& replay, delayed async and data-driven future schedulers, respectively, on a Xeon

with 16 cores. As mentioned in the introduction of schedulers, the aforementioned

44

schedulers do not suffer from blocking bottleneck that proves to be an inhibitor to

scaling on this benchmark. Since all possible work that is to be done is provided as

the program initiates, there are going to be many tasks that fail as their data would

not be ready at that point.

10,081	
 10,010	

10,305	
 10,309	

8,748	

2,472	

1,197	
 979	
 853	
 790	

0	

2,000	

4,000	

6,000	

8,000	

10,000	

12,000	

Coarse	
 Grain	

Blocking	

Fine	
 Grain	
 Blocking	
 Delayed	
 Async	
 Data	
 Driven	

Rollback&Replay	

Data	
 Driven	
 Futures	

Ex
ec
u>

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.2 : Average execution times and 90% confidence interval of 30 runs of single
threaded and 16-threaded executions for blocked Cholesky factorization CnC appli-
cation with Habanero-Java steps on Xeon with input matrix size 2000 × 2000 and
with tile size 125 × 125

During our explanation of data-driven future scheduling, we compared it to data-

driven rollback & replay scheduling and pointed out it has less overhead as it does not

throw exceptions to unwind the computation that failed a get and it does not replay

a computation the number of gets times that computation has. So the numbers fit

with our expectations. Likely, we presented data-driven rollback & replay scheduling

as an improvement to delayed async scheduling, since the readiness of a computation

is not checked by continuously polling if the data needed by that computation is

ready. However the numbers on the chart show that the fastest execution time for

45

delayed async scheduling is lower than the data-driven rollback & replay one. This is

a statistical outlier as the average running times on Figure 5.2 show the picture we

are expecting to see, where delayed async scheduler takes more time than data-driven

rollback & replay scheduler and that scheduler takes more time than data-driven

future scheduling on average.

1,782	
 1,766	

1,834	
 1,821	

1,723	

484	

187	
 156	
 157	
 134	

0	

200	

400	

600	

800	

1,000	

1,200	

1,400	

1,600	

1,800	

2,000	

Coarse	
 Grain	

Blocking	

Fine	
 Grain	
 Blocking	
 Delayed	
 Async	
 Data	
 Driven	

Rollback&Replay	

Data	
 Driven	
 Futures	

Ex
ec
u>

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.3 : Minimum execution times of 30 runs of single and 16-threaded executions
for blocked Cholesky factorization CnC application with Habanero-Java and Intel
MKL steps on Xeon with input matrix size 2000 × 2000 and with tile size 125 × 125

Figure 5.3 and figure 5.4 feature a benchmark which is a different use case where

Concurrent Collections is used more explicitly as a coordination language where com-

putation instances are library calls. We used Intel MKL to calculate the computa-

tionally expensive part of the problem and used CnC to regulate the data depen-

dences under a parallel execution of these library calls. We see faster execution with

respect to pure Habanero-Java computation on both the serial and the parallel ex-

ecution times. The speedups for the minimum execution times are 11.7, 11.5, 12.8

for data-driven rollback & replay, delayed async and data-driven future schedulers,

46

1,999	
 1,983	
 1,993	

1,949	

1,775	

616	

250	
 231	
 194	
 156	

0	

200	

400	

600	

800	

1,000	

1,200	

1,400	

1,600	

1,800	

2,000	

2,200	

Coarse	
 Grain	

Blocking	

Fine	
 Grain	
 Blocking	
 Delayed	
 Async	
 Data	
 Driven	

Rollback&Replay	

Data	
 Driven	
 Futures	

Ex
ec
u>

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.4 : Average execution times and 90% confidence interval of 30 runs of single
and 16-threaded executions for blocked Cholesky factorization CnC application with
Habanero-Java and Intel MKL steps on Xeon with input matrix size 2000 × 2000 and
with tile size 125 × 125

respectively, on a Xeon with 16 cores where the speedups for the average execution

times are 8.63, 10.06, 11.41. The discussion on the Cholesky implementation results

above also applies here as scheduling is not dependent on the underlying computation

language.

The results for Cholesky factorization benchmark on Niagara, as figure 5.5 and

figure 5.6 show, follows the same patterns we have observed on the previous figures

featuring the execution times on a Xeon machine. One interesting observation is that

the benchmark achieves speedups over 18 for all schedulers on the minimum execution

time case and over 15 for average execution time case where this machine has eight

floating operator units and this benchmark is computation bound as a dense linear

algebra kernel.

47

106,883	

103,631	

100,573	

103,297	

96,587	

5,489	
 5,388	
 5,651	
 5,259	
 4,950	

0	

10,000	

20,000	

30,000	

40,000	

50,000	

60,000	

70,000	

80,000	

90,000	

100,000	

110,000	

120,000	

Coarse	
 Grain	

Blocking	

Fine	
 Grain	
 Blocking	
 Delayed	
 Async	
 Data	
 Driven	

Rollback&Replay	

Data	
 Driven	
 Futures	

Ex
ec
u>

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.5 : Minimum execution times of 30 runs of single threaded and 64-thread
executions for blocked Cholesky factorization CnC application with Habanero-Java
steps on Niagara with input matrix size 2000 × 2000 and with tile size 125 × 125

111,204	
 108,863	

104,185	

106,695	

99,032	

7,035	
 6,993	
 6,958	
 6,339	

5,681	

0	

10,000	

20,000	

30,000	

40,000	

50,000	

60,000	

70,000	

80,000	

90,000	

100,000	

110,000	

120,000	

Coarse	
 Grain	

Blocking	

Fine	
 Grain	
 Blocking	
 Delayed	
 Async	
 Data	
 Driven	

Rollback&Replay	

Data	
 Driven	
 Futures	

Ex
ec
u>

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.6 : Average execution times and 90% confidence interval of 30 runs of single
threaded and 64-thread executions for blocked Cholesky factorization CnC application
with Habanero-Java steps on Niagara with input matrix size 2000 × 2000 and with
tile size 125 × 125

48

5.2.2 Black-Scholes

This benchmark calculates the option pricing with Black-Scholes model partial differ-

ential equations. This model, for which the Nobel Prize in Economics is awarded in

1997, applies equations with various parameters for input data points and calculates

resulting data points and therefore does not have any data dependence besides the

user provided input and the programs output. One can look at this problem as a

pipeline with a single stage or a streaming problem.

We chose this benchmark as a representative for embarrassingly data parallel

problems and it also is featured in PARSEC [20] benchmark suite. Since there are no

data dependences of interest in this benchmark, it is a good indicator of overhead.

Performance Results

33,688	
 33,762	
 34,214	
 33,788	
 34,634	

4,148	
 4,155	
 4,216	
 4,145	

2,164	

0	

5,000	

10,000	

15,000	

20,000	

25,000	

30,000	

35,000	

40,000	

Coarse	
 Grain	

Blocking	

Fine	
 Grain	
 Blocking	
 Delayed	
 Async	
 Data	
 Driven	

Rollback&Replay	

Data	
 Driven	
 Futures	

Ex
ec
u>

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.7 : Minimum execution times of 30 runs of single threaded and 16-threaded
executions for blocked Black-Scholes CnC application with Habanero-Java steps on
Xeon with input size 1,000,000 and with tile size 62500

49

33,871	
 33,966	
 34,311	
 34,121	
 34,729	

4,300	
 4,309	
 4,279	

5,061	

2,353	

0	

5,000	

10,000	

15,000	

20,000	

25,000	

30,000	

35,000	

40,000	

Coarse	
 Grain	

Blocking	

Fine	
 Grain	
 Blocking	
 Delayed	
 Async	
 Data	
 Driven	

Rollback&Replay	

Data	
 Driven	
 Futures	

Ex
ec
u>

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.8 : Average execution times and 90% confidence interval of 30 runs of single
threaded and 16-threaded executions for blocked Black-Scholes CnC application with
Habanero-Java steps on Xeon with input size 1,000,000 and with tile size 62500

As this benchmark can be parallelized perfectly and no tasks have data depen-

dences in between, what we see from figure 5.7 and figure 5.8 are the effects of overhead

associated with the bookkeeping. On this Xeon machine every scheduler topped its

speedup at 8 where data-driven futures scaled linearly on Xeon by a 16 speedup.

For the Niagara tests, we have set the tile size to allow 64-way parallelism by

keeping the problem size the same. Therefore it should be noted that we are trying

to achieve strong scaling for this benchmark. As can be observed from figure 5.9

and figure 5.10, we achieved speedups of 27.23, 27.98, 29.87, 30.31 and 40.71 on the

schedulers represented in the figure left to right for the minimum execution times

and speedups of 26.78, 33.62, 34.61, 35.09 and 38.29 for the average execution time

case. Possible explanations for this phenomenon can be explained with memory

bandwidth, thread level parallelism implementation of Niagara and the overhead we

may have introduced by our model. However in any case, as in others data-driven

50

164,252	
 166,342	

179,427	
 181,089	

163,639	

6,032	
 5,944	
 6,006	
 5,973	
 4,019	

0	

20,000	

40,000	

60,000	

80,000	

100,000	

120,000	

140,000	

160,000	

180,000	

200,000	

Coarse	
 Grain	

Blocking	

Fine	
 Grain	
 Blocking	
 Delayed	
 Async	
 Data	
 Driven	

Rollback&Replay	

Data	
 Driven	
 Futures	

Ex
ec
u>

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.9 : Minimum execution times of 30 runs of single threaded and 64-thread
executions for blocked Black-Scholes CnC application with Habanero-Java steps on
Niagara with input size 1,000,000 and with tile size 15625

165,473	

207,079	
 212,870	
 215,636	

164,545	

6,179	
 6,159	
 6,149	
 6,145	
 4,296	

0	

50,000	

100,000	

150,000	

200,000	

250,000	

Coarse	
 Grain	

Blocking	

Fine	
 Grain	
 Blocking	
 Delayed	
 Async	
 Data	
 Driven	

Rollback&Replay	

Data	
 Driven	
 Futures	

Ex
ec
u>

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.10 : Average execution times and 90% confidence interval of 30 runs of single
threaded and 64-thread executions for blocked Black-Scholes CnC application with
Habanero-Java steps on Niagara with input size 1,000,000 and with tile size 15625

51

future scheduling tops the performance chart.

5.2.3 Rician Denoising

This stage of medical imaging pipeline, as the name implies removes noise from im-

ages. The name Rician comes from the Rician noise model. The computation is a

fixed point, stencil computation where the amount of data touched and created is

vast. That is a particularly hard challenge for a single assignment model like Concur-

rent Collections. As we do not know how many iterations leads to convergence, we

can not exploit parallelism across iteration. Additionally, intermediate steps are not

relevant to the results once they have been used but because of the dynamic single

assignment semantics of CnC, they are kept which prohibits the execution of large

problem sets. Our experiences with this benchmark and the observations on memory

footprint contributed to our motivation for a data-driven execution model.

Performance Results

Figure 5.11 and figure 5.12 show us results where delayed async scheduler managed

to outperform data-driven future scheduling by 1% on minimum execution time and

0.5% on average execution time. However data-driven future scheduling beats any

other scheduler by far on single threaded execution times. Besides there is more

parallelism available, the highest speedup for these schedulers is 9 on this 16 core

machine

This benchmark as mentioned in the lead in, is a fixed point computation that

converges after an unknown number of iterations. Correct usage of data-driven fu-

tures cut the lifetime of values to their bare minimum by breaking the tabular nature

of CnC item collections, which makes this problem solvable with realistic memory

52

470,394	

495,089	

459,328	

345,531	

78,630	

56,892	
 51,632	
 52,208	

0	

100,000	

200,000	

300,000	

400,000	

500,000	

600,000	

Coarse	
 Grain	
 Blocking	
 *	
 Fine	
 Grain	
 Blocking	
 *	
 Delayed	
 Async	
 *	
 Data	
 Driven	
 Futures	

Ex
ec
u;

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.11 : Minimum execution times of 30 runs of single threaded and 16-threaded
executions for blocked Rician Denoising CnC application with Habanero-Java steps on
Xeon with input image size 2937× 3872 pixels and with tile size 267× 484 (Scheduling
algorithms with * required explicit memory management by the programmer to avoid
running out of memory)

498,776	
 499,666	
 483,770	

349,051	

81,502	

58,313	
 53,569	
 53,817	

0	

100,000	

200,000	

300,000	

400,000	

500,000	

600,000	

Coarse	
 Grain	
 Blocking	
 *	
 Fine	
 Grain	
 Blocking	
 *	
 Delayed	
 Async	
 *	
 Data	
 Driven	
 Futures	

Ex
ec
u;

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.12 : Average execution times and 90% confidence interval of 30 runs of single
threaded and 16-threaded executions for blocked Rician Denoising CnC application
with Habanero-Java steps on Xeon with input image size 2937 × 3872 pixels and
with tile size 267 × 484 (Scheduling algorithms with * required explicit memory
management by the programmer to avoid running out of memory)

53

requirements. We managed to collect partial CnC numbers, by using explicit mem-

ory deallocation after every iteration which does not naturally belong in the CnC

interface. Therefore, it also should be noted that data-driven future scheduling not

only provides more performance by less overhead but also exposes unnecessary refer-

encing of data which single assignment blurs and reduces memory footprint by letting

garbage collection deallocate unaccessible memory.

1,979,340	
 1,932,078	
 1,932,488	

1,273,583	

189,444	
 188,134	

80,458	
 56,621	

0	

500,000	

1,000,000	

1,500,000	

2,000,000	

2,500,000	

Coarse	
 Grain	
 Blocking	
 *	
 Fine	
 Grain	
 Blocking	
 *	
 Delayed	
 Async	
 *	
 Data	
 Driven	
 Futures	

Ex
ec
u;

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.13 : Minimum execution times of 30 runs of single threaded and 64-thread
executions for blocked Rician Denoising CnC application with Habanero-Java steps
on Niagara with input image size 2937 × 3872 pixels and with tile size 267 × 484
(Scheduling algorithms with * required explicit memory management by the program-
mer to avoid running out of memory)

Figure 5.13 and figure 5.14 shows us the results of the explicitly memory man-

aging CnC scheduling policies and data-driven future scheduling on Niagara. On

this machine delayed async do not surpass data-driven future version as in the Xeon

version.

Speedups observed on this machine have been around 22 for delayed async schedul-

ing and data-driven future scheduling. Given the tile sizes and the problem size for

54

1,988,894	
 1,939,976	
 1,943,861	

1,282,031	

192,451	
 190,600	

81,707	
 58,017	

0	

500,000	

1,000,000	

1,500,000	

2,000,000	

2,500,000	

Coarse	
 Grain	
 Blocking	
 *	
 Fine	
 Grain	
 Blocking	
 *	
 Delayed	
 Async	
 *	
 Data	
 Driven	
 Futures	

Ex
ec
u;

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.14 : Average execution times and 90% confidence interval of 30 runs of single
threaded and 64-thread executions for blocked Rician Denoising CnC application with
Habanero-Java steps on Niagara with input image size 2937× 3872 pixels and with tile
size 267 × 484 (Scheduling algorithms with * required explicit memory management
by the programmer to avoid running out of memory)

the charts above, there are 11 × 8 tiles. As this benchmark is a 5-stencil computation,

the parallelism is available on the diagonal wavefront. On an 11 × 8 tile problem,

the wavefront is of size 19 that is smaller than the speedup achieved.

5.2.4 Heart Wall Tracking

This medical imaging application keeps track of a hearts motion on a given set of

images as video. Since every image is dependent on the previous one there is no

parallelism exploitation across images. However points in an image are free from each

other, which is taken advantage of in this example. We have acquired this benchmark

from the Rodinia benchmark suite [21] and applied CnC as a coordination language

to their serial kernels.

The heart wall tracking benchmark applies various tasks to the individually in-

55

dependent points on an image and the dependency graph of these tasks are not

series-parallel, therefore expressing this synchronization is not trivial in most parallel

programming models.

As indicated in methodology, this benchmark is the exception to the 30 test runs.

It deterministically crashes after 13 runs, from which we calculate minimum and

average execution times.

Performance Results

162,248	

157,554	
 156,159	

47,989	

11,076	
 9,897	

0	

20,000	

40,000	

60,000	

80,000	

100,000	

120,000	

140,000	

160,000	

180,000	

Delayed	
 Async	
 Data	
 Driven	
 Rollback&Replay	
 Data	
 Driven	
 Futures	

Ex
ec
u:

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.15 : Minimum execution times of 13 runs of single threaded and 16-threaded
executions for Heart Wall Tracking CnC application with C steps on Xeon with 104
frames

The intricate nature of the dependency graph of this benchmark’s tasks, makes it

likely to have plenty of failed scheduling attempts if an eager scheduler is adopted.

Data-driven rollback & replay scheduler does not suffer drastically, as failure registers

the task to be revived to the data it failed on and continues execution on another

task. However as discussed in the previous chapter, blocking schedulers cause the

56

164,806	

158,224	
 156,635	

50,287	

11,351	
 10,097	

0	

20,000	

40,000	

60,000	

80,000	

100,000	

120,000	

140,000	

160,000	

180,000	

Delayed	
 Async	
 Data	
 Driven	
 Rollback&Replay	
 Data	
 Driven	
 Futures	

Ex
ec
u:

on
	
 in
	
 m

ill
i-­‐s
ec
s	

Serial	
 Parallel	

Figure 5.16 : Average execution times and 90% confidence interval of 13 runs of single
threaded and 16-threaded executions for Heart Wall Tracking CnC application with
C steps on Xeon with 104 frames

whole thread maintaining the task to be blocked. On a problem with an intricate

dependency graph and with fine grain computation size, many threads will block,

which is what happened in this benchmark. Blocking schedulers run out of possible

number of threads that can be created and run out of memory, which is why there

are no numbers depicting their performance on figure 5.15.

Data-driven futures not only outperform other schedulers both on single threaded

and multi-threaded execution but also have better scalability as the speedup for

minimum execution time and average execution time are both over 15.5 on a 16-core

Xeon machine.

57

Chapter 6

Related Work

6.1 Parallel Programming Models

Native threading libraries, like Pthreads, suffer from the lack of abstraction it provides

as discussed in chapter 2. Besides the exposed technical details leading to boiler plate

code, parallelism exposed in this model does not provide the same scalability once

ported. OpenMP can scale up and down though it still is verbose and needs expertise

to achieve performance. It is also easy to write code that suffers from race conditions

and false sharing. Additionally, OpenMP is not a good fit if the dependency graph

of the application is more complicated than a plain fork/join graph. Data parallel

models to take advantage of SIMD parallelization are restricted to a restricted subset

of parallelism not a big subset of benchmarks would fit and SIMD machines have not

been adopted widely by the market with the exception of SSE instruction support

and partly GPGPUs which are hard to code for as they expose all hardware details.

SPMD models concern the users with granularity, does not allow the exposure of all

the inherent parallelism and, as mentioned for the cases of OpenMP and GPGPU

languages, can not describe benchmarks with intricate dependences with ease.

Most parallel programming models, like OpenMP, CUDA, Cilk, Intel TBB, .Net

Task Parallel library are nondeterministic and imperative in nature. X10, which is the

influence for Habanero-Java, has a declarative subset and High Performance Fortran

supports declarative data distribution. Concurrent Collections parallel programming

58

model disburdens its users from creating race conditions by its declarative nature

and dynamic single-assignment property. CnC is also provably deterministic which

aids debuggability and composability and makes tracing a parallel code seamless by

freeing the user from thinking about intractable number of possible interleavings [22].

StreamIt is a declarative language however it is suited for streaming applications

where CnC has a broader base. Dataflow languages have lost traction, though one

contemporary example would be LabVIEW [23].

We have identified CnC as a macro-dataflow model, though we do not know of

mainstream macro-dataflow models to compare CnC to. According to [24], CnC

conforms to most commonalities of dataflow languages and extends them by bringing

control-flow to a first level construct, which remedies the unintuitive recursion or

iteration space declarations needed in dataflow languages. The addition of control-

flow as a first level construct to a dataflow language may seem counterintuitive,

however this is achieved through tags which resembles the solutions proposed by

dataflow languages. One can interpret a control tag just as another type and instance

of data input.

The tag space of a CnC execution may remind of the tuplespaces of Linda [25],

which is an influence for the CnC model and the reason why we labeled CnC as

a coordination language [26]. One key difference is that a read access in Linda is

destructive and it is not single assignment which leads to nondeterminism. Addition-

ally, Linda uses the tuplespace to hide communication mostly in distributed sense of

communication, where we kept the scope of CnC, at least for this work, to a shared

memory model.

The Nabbit [27] library extension to Cilk++ provides the user support to declare

arbitrary task dependences to create task graphs that can not be created with nested

59

fork/join operations. However, it still has only one type of dependence, which is con-

trol dependence. The unification of data and control dependences cause unnecessary

hoisting of producer tasks which extends life times of values and hampers parallelism,

as we discussed in section 4.2.1.

6.2 Futures

Futures (also as promises, eventuals) have been proposed [10] and an early implemen-

tation of this construct can be seen in MultiLISP [11]. Many other languages have

proposed variations and implementations ever since, including Habanero-Java that

we will cover below.

Initially futures implied eager semantics, where creation of a future meant the

binding of a computation to a reference that initiates the evaluation. The value is

either resolved until it is referenced or forced to resolve by an explicit invocation or

by blocking. Additionally, the E language and some others have used futures as an

abstraction to hide communication in a distributed setting, influenced by [28]. Alter-

natively, a future can be evaluated lazily like thunks [29]. Some languages conform

to a different naming standard about futures and imposes a distinction between pro-

ducer and consumers, for example the latest C++0x standard draft uses a promise

as an interface for providing the resolution of an asynchronous computation where a

future is the consuming interface.

Habanero-Java features a future construct, that can be best explained as an async

that returns a value. Since an async does not execute immediately at the point dec-

laration and ensures it will complete by the end of a finish scope, it can be used

as a building block for a future implementation with augmentation. That augmen-

tation is the get or force interface to futures that defines a read action and ensures

60

completion of execution before a finish scope’s end.

One inherent difference between data-driven futures and futures is the availability

of the computation at creation time. A future is a reference to a result of a com-

putation but you need to have the computation that you are making a reference of

at binding time. However DDFs are references that can be assigned only once after

they have been created. Therefore one may describe a complicated set of producer-

consumer relationships with more ease compared to basic futures. Even though, it

would be illegal to have cyclic producer-consumer relationships, expecting the pro-

grammer to provide a partial order on declaration of futures during implementation to

be able to express correct producer-consumer relationships is an unnecessary burden

without any benefits on expressiveness. Data-driven futures remedy these complica-

tions.

There is no interface to force the resolution of a DDF and the consumer tasks do

not get created until the DDF is deemed ready by the producer of that DDF. However,

a DDF that is to be passed to its producer tasks will eagerly get resolved, so the DDF

can be described as eager resolution semantics once the producer computation binds

to it. One construct that can also be labeled a type of future, I-Vars/M-Vars [30] have

much in common with DDFs. Both are place-holders for a single-assignment value

and both provide a get and put interface and therefore separate the binding of the

resolver computation and the declaration of the synchronization object. However, our

understanding is that DDFs allow a task to await for an unordered set of any size to

be waited on where it is not trivial to achieve the same semantics with I-Vars. M-Vars

are the sibling of I-Vars that does not conform to the single assignment semantics

and we do not allow multiple assignments to a DDF.

61

Chapter 7

Conclusions & Future Work

7.1 Conclusions

We addressed the accessibility of known parallel programming models and how a

macro-dataflow parallel programming model helps a broader domain by implicit par-

allelism. This model expects parallel applications to be expressed by laying down

kernel computations, their interactions with respect to data and the causality rela-

tions. These high level abstractions, almost at the level of software engineering design

concepts, prevent the presupposed seriality imposed by imperative languages and par-

allel programming models built on top of them. Our exemplar CnC, as a coordination

language, decouples computation and communication and thereby takes advantage of

the performance of underlying imperative parallel languages for kernel computations

but delegates the communication aspect to the runtime, which this work addresses.

We challenge the notion that data dependences between tasks are regulated by

control dependences. Mainstream parallel programming models ensure data depen-

dence compliance by making the parent task provide the data needed to the child

tasks. This requires the programmer to represent tasks that are not actually control

dependent to be control dependent and impose a topological sort of data dependent

tasks during programming. On an application with a complicated control and data

dependence graph, this proves to be an onerous and error-prone task. We remedy

this problem by adopting Concurrent Collections.

62

As it has been covered in the literature, modern task-parallel programming lan-

guages and runtimes provide performance, scalability and load balance. However, as

mentioned above breaking assumptions task-parallel frameworks presuppose, we had

to bridge this assumption gap by our work by providing schedulers and constructs

that ensure safety as task-parallel languages define safety.

We implemented a new construct, Data-Driven Futures, to support arbitrary task

graph creation by declaring data dependences between tasks. This new construct

extends the expressiveness of futures and provides support for data-driven scheduling

decisions when used as a synchronization construct. Additionally, it allows tasks to

wait on an arbitrary set of unordered synchronization objects which is novel to this

construct.

We conclude by on our empirical results that a data-driven runtime with data-

driven future support outperforms data-driven rollback and replay scheduling which in

turn outperforms delayed async scheduling that outperforms blocking schedulers. We

observe competitive results for both structured and unstructured parallelism baring

benchmarks both for absolute running time and scalability. Additionally, data-driven

futures restrict the lifetimes of variables to their absolute necessity, which also relin-

quishes the user from having memory footprint concerns during implementation and

still retains the dynamic single assignment abstraction.

We believe this macro-dataflow model implemented on top of a task-parallel run-

time increases the abstraction level for application domain users, provides them with

safety nets and fills the gap between expressiveness and performance.

63

7.2 Future Work

7.2.1 Locality aware scheduling with DDFs

As we have covered in background, Habanero-Java also employs an adaptive and local-

ity aware scheduling policy. This scheduler can be used to expose and take advantage

of the memory hierarchy which is crucial to performance in today’s architectures. If

we can integrate the locality aware scheduling underneath our data-driven scheduling,

one can assign affinities to data-driven futures and tasks and the research challenges

remain to be solved when out of place data or computation access is needed. This

may also be used by a tuning expert to constrain the memory footprint of a program.

7.2.2 DDF support for a work-stealing runtime

We introduced work-stealing runtime and schedulers in section 2.5, mentioned their

performance and the bounds it provides. We believe it is possible to take advantage

of these schedulers using data-driven futures.

We have provided an implementation of data-driven futures for work-sharing run-

time which enqueued tasks that become ready to be popped by idle threads looking

for work. However because of the decentralized nature of work-stealing scheduler, it

is not immediately apparent which threads ready task queue an enabled task needs to

go to. One possible answer may be to ship an enabled task to the latest data provider

or the control provider if all the data were ready. However this assumes that when

a data is provided, it needs to know the context from which it originated. That is

likely to increase cost either through bookkeeping or contention. If an enabled task

goes to a random thread’s ready task queue, then it is possible to suffer performance

penalties because of locality.

64

7.2.3 Compiling CnC for Data-Driven Runtime scheduling

When we introduced CnC and provided artificial examples. It should have been ap-

parent that the dependence relation is between collections not instances. It is natural

to associate a data-driven future object with an instance and we have implemented

our DDF equivalent of CnC benchmarks by associating every item instance with a

data-driven future. Therefore we need to deduce the dependency relations in in-

stance grain rather than collection level to be able to map CnC programs down to a

data-driven future equivalent.

In [31], it has been proposed to use slicing annotations to describe the dependences

in instance level by annotating what function of the tag is used to access which

instances of data through the textual CnC graph specifications. We believe given these

annotations, it is possible to describe a CnC application using DDFs automatically.

One can describe a CnC item collection as an array of DDFs and it is known through

the textual graph what step instances will read which DDF instances. However this

is not going to restrict the lifetimes of the DDFs therefore can not be used to restrict

the memory footprint. One possible fix is for the compiler to split the DDF array

representing the item collection to the innermost scope while it is safe to do so to

restrict the lifetimes.

7.2.4 Compiler support for automatic DDF registration

Currently the await clause declaring what DDFs to be read by a task is explicit.

However it can be easily deduced by analyzing the code and what DDF instances

are accessed in the lexical scope of a task. Then, we can delegate the populating of

the await clause DDF list to the compiler which will make the jobs of implementors

easier.

65

7.2.5 DDF data structures and Hierarchical DDFs

As we have mentioned in mapping CnC to DDFs, one can implement item collections

as arrays or associative arrays of DDFs. However for particular problems a tabular

structure may not be a good fit and may hamper expressibility and exacerbate possible

memory footprint issues. Additionally, DDFs are expected to encapsulate fine grain

data. For portable parallelism where the overhead of parallelism may be a challenge,

DDFs should be a hierarchical abstraction. For example, a whole matrix of values

can be one DDF, though it may be a list of column DDFs which are an array of

item DDFs, where the proper granularity may be decided either at compile time or

runtime. The relationship between DDFs and DDF data structures or Hierarchical

DDFs may be the same between I-Vars and I-Structures.

66

Bibliography

[1] E. A. Lee, “The problem with threads,” Computer, vol. 39, pp. 33–42, May 2006.

[2] OpenMP Architecture Review Board, OpenMP Application Program Interface,

3.0 ed., May 2008.

[3] C. Rice University, “High performance fortran language specification,” SIG-

PLAN Fortran Forum, vol. 12, pp. 1–86, December 1993.

[4] G. E. Blelloch, “Nesl: A nested data-parallel language,” tech. rep., Pittsburgh,

PA, USA, 1992.

[5] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the cilk-5

multithreaded language,” in Proceedings of the ACM SIGPLAN 1998 conference

on Programming language design and implementation, PLDI ’98, (New York,

NY, USA), pp. 212–223, ACM, 1998.

[6] J. Reinders, Intel threading building blocks. Sebastopol, CA, USA: O’Reilly &

Associates, Inc., first ed., 2007.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. von Praun, and V. Sarkar, “X10: an object-oriented approach to non-uniform

cluster computing,” in Proceedings of the 20th annual ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications, OOPSLA

’05, (New York, NY, USA), pp. 519–538, ACM, 2005.

67

[8] “The chapel language specification,” tech. rep., February 2005.

[9] R. Barik, Z. Budimlić, V. Cavè, S. Chatterjee, Y. Guo, D. Peixotto, R. Raman,

J. Shirako, S. Taşırlar, Y. Yan, Y. Zhao, and V. Sarkar, “The habanero multicore

software research project,” in Proceeding of the 24th ACM SIGPLAN conference

companion on Object oriented programming systems languages and applications,

OOPSLA ’09, (New York, NY, USA), pp. 735–736, ACM, 2009.

[10] H. C. Baker, Jr. and C. Hewitt, “The incremental garbage collection of pro-

cesses,” SIGART Bull., pp. 55–59, August 1977.

[11] R. H. Halstead, Jr., “Implementation of multilisp: Lisp on a multiprocessor,” in

Proceedings of the 1984 ACM Symposium on LISP and functional programming,

LFP ’84, (New York, NY, USA), pp. 9–17, ACM, 1984.

[12] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer, “Phasers: a uni-

fied deadlock-free construct for collective and point-to-point synchronization,”

in Proceedings of the 22nd annual international conference on Supercomputing,

ICS ’08, (New York, NY, USA), pp. 277–288, ACM, 2008.

[13] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton, J. Palsberg,

D. Peixotto, V. Sarkar, F. Schlimbach, and S. Taşırlar, “Concurrent collections,”

Sci. Program., vol. 18, pp. 203–217, August 2010.

[14] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations by

work stealing,” J. ACM, vol. 46, pp. 720–748, September 1999.

[15] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-first scheduling

policies for async-finish task parallelism,” Parallel and Distributed Processing

Symposium, International, vol. 0, pp. 1–12, 2009.

68

[16] Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “Slaw: a scalable locality-aware adap-

tive work-stealing scheduler for multi-core systems,” SIGPLAN Not., vol. 45,

pp. 341–342, January 2010.

[17] Z. Budimlić, A. Chandramowlishwaran, and K. Knobe, “Multi-core implemen-

tations of the concurrent collections programming model,” CPC’09: 14th . . . ,

2009.

[18] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java perfor-

mance evaluation,” in Proceedings of the 22nd annual ACM SIGPLAN conference

on Object-oriented programming systems and applications, OOPSLA ’07, (New

York, NY, USA), pp. 57–76, ACM, 2007.

[19] A. Chandramowlishwaran, K. Knobe, and R. Vuduc, “Performance evaluation

of concurrent collections on high-performance multicore computing systems,” in

Parallel Distributed Processing (IPDPS), 2010 IEEE International Symposium

on, pp. 1 –12, April 2010.

[20] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:

characterization and architectural implications,” in Proceedings of the 17th inter-

national conference on Parallel architectures and compilation techniques, PACT

’08, (New York, NY, USA), pp. 72–81, ACM, 2008.

[21] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,

“Rodinia: A benchmark suite for heterogeneous computing,” IEEE Workload

Characterization Symposium, vol. 0, pp. 44–54, 2009.

[22] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir, “Parallel programming

must be deterministic by default,” in Proceedings of the First USENIX conference

69

on Hot topics in parallelism, HotPar’09, (Berkeley, CA, USA), pp. 4–4, USENIX

Association, 2009.

[23] J. Travis and J. Kring, LabVIEW for Everyone: Graphical Programming Made

Easy and Fun (3rd Edition) (National Instruments Virtual Instrumentation Se-

ries). Upper Saddle River, NJ, USA: Prentice Hall PTR, 2006.

[24] W. Ackerman, “Data flow languages,” Computer, vol. 15, pp. 15 – 25, Feb. 1982.

[25] D. Gelernter, “Generative communication in linda,” ACM Trans. Program. Lang.

Syst., vol. 7, pp. 80–112, January 1985.

[26] D. Gelernter and N. Carriero, “Coordination languages and their significance,”

Commun. ACM, vol. 35, pp. 97–107, February 1992.

[27] K. Agrawal, C. Leiserson, and J. Sukha, “Executing task graphs using work-

stealing,” in Parallel Distributed Processing (IPDPS), 2010 IEEE International

Symposium on, pp. 1 –12, April 2010.

[28] B. Liskov and L. Shrira, “Promises: linguistic support for efficient asynchronous

procedure calls in distributed systems,” in Proceedings of the ACM SIGPLAN

1988 conference on Programming Language design and Implementation, PLDI

’88, (New York, NY, USA), pp. 260–267, ACM, 1988.

[29] P. Z. Ingerman, “Thunks: a way of compiling procedure statements with some

comments on procedure declarations,” Commun. ACM, vol. 4, pp. 55–58, Jan-

uary 1961.

[30] Arvind, R. S. Nikhil, and K. K. Pingali, “I-structures: data structures for parallel

computing,” ACM Trans. Program. Lang. Syst., vol. 11, pp. 598–632, October

70

1989.

[31] Z. Budimlić, A. M. Chandramowlishwaran, K. Knobe, G. N. Lowney, V. Sarkar,

and L. Treggiari, “Declarative aspects of memory management in the concurrent

collections parallel programming model,” in Proceedings of the 4th workshop on

Declarative aspects of multicore programming, DAMP ’09, (New York, NY, USA),

pp. 47–58, ACM, 2008.

