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Abstract. This paper proposes a novel optimization framework for the
Data-Flow Graph Language (DFGL), a dependence-based notation for
macro-dataflow model which can be used as an embedded domain-specific
language. Our optimization framework follows a “dependence-first” ap-
proach in capturing the semantics of DFGL programs in polyhedral rep-
resentations, as opposed to the standard polyhedral approach of deriv-
ing dependences from access functions and schedules. As a first step,
our proposed framework performs two important legality checks on an
input DFGL program — checking for potential violations of the single-
assignment rule, and checking for potential deadlocks. After these le-
gality checks are performed, the DFGL dependence information is used
in lieu of standard polyhedral dependences to enable polyhedral trans-
formations and code generation, which include automatic loop transfor-
mations, tiling, and code generation of parallel loops with coarse-grain
(fork-join) and fine-grain (doacross) synchronizations. Our performance
experiments with nine benchmarks on Intel Xeon and IBM Power7 mul-
ticore processors show that the DFGL versions optimized by our pro-
posed framework can deliver up to 6.9× performance improvement rela-
tive to standard OpenMP versions of these benchmarks. To the best of
our knowledge, this is the first system to encode explicit macro-dataflow
parallelism in polyhedral representations so as to provide programmers
with an easy-to-use DSL notation with legality checks, while taking full
advantage of the optimization functionality in state-of-the-art polyhedral
frameworks.

1 Introduction

Hardware design is evolving towards manycore processors that will be used in
large clusters to achieve exascale computing, and at the rack level to achieve
petascale computing [29], however, harnessing the full power of the architecture
is a challenge that software must tackle to fully realize extreme-scale computing.
This challenge is prompting the exploration of new approaches to programming
and execution systems, and specifically, re-visiting of the dataflow model — but
now at the software level.

In the early days of dataflow computing, it was believed that programming
languages such as VAL [5], Sisal [27], and Id [7] were necessary to obtain the
benefits of dataflow execution. However, there is now an increased realization
that “macro-dataflow” execution models [30] can be supported on standard
multi-core processors by using data-driven runtime systems [4,3,36]. There are



many benefits that follow from macro-dataflow approaches, including simpli-
fied programmability [12], increased asynchrony [15], support for heterogeneous
parallelism [32], and scalable approaches to resilience [39]. As a result, a wide
variety of programming systems are exploring the adoption of dataflow princi-
ples [21,28,31], and there is a growing need for compiler and runtime components
to support macro-dataflow execution in these new programming systems.

At the other end of the spectrum, polyhedral and other compiler frameworks
implicitly uncover dataflow relationships in sequential programs through depen-
dence analysis and related techniques. Though this approach can result in good
performance, it usually requires a sequential program as input, which often limits
portability when compared to higher-level dataflow program specifications.

We argue that a combination of declarative dataflow programming and im-
perative programming can provide a practical approach both for migrating exist-
ing codes and for writing new codes for extreme-scale platforms. We propose the
use of a Data-Flow Graph Language (DFGL) as an embedded domain-specific
language (eDSL) for expressing the dataflow components in an application. The
DFGL notation is based on the Data Flow Graph Representation (DFGR) in-
troduced in [31]. It enables individual computations to be implemented as ar-
bitrary sequential code that operates on a set of explicit inputs and outputs,
and defers the packaging and coordination of inter-step parallelism to the com-
piler and the runtime system. We propose a novel optimization framework for
DFGL which enables correctness analysis of the application as well as low level
transformations using a polyhedral compiler. Our performance experiments with
nine benchmarks on Intel Xeon and IBM Power7 multicore processors show that
the DFGL versions optimized by our proposed framework can deliver up to
6.9× performance improvement relative to standard OpenMP versions of these
benchmarks.

Section 2 provides the background for this work, Section 3 discusses the
motivation for the DFGL approach, Section 4 gives an overview of the compiler
flow for DFGL subprograms, Section 5 describes the key technical points in our
approach, Section 6 presents our experimental results, Section 7 discusses related
work and Section 8 contains our conclusions.

2 Background

This section briefly summarizes the underlying DFGL programming model and
the polyhedral compilation framework, which together form the foundation for
the approach introduced in this paper.

2.1 DFGL model

The Data-Flow Graph Language (DFGL) model is a dependence based notation
for dataflow parallelism, which is based on the Concurrent Collections (CnC)
model [21,12] and the Data Flow Graph Representation (DFGR) [31]. DFGL
describes computations using two main components: steps, that represent se-
quential subcomputations; and items, that represent data read and written by
steps. The user describes an application by writing a graph that captures the
relation among the items and steps.



As in the CnC model, steps are grouped into step collections, and represent
all dynamic invocations of the same computational kernel. A unique identifier
(tag) identifies a dynamic instance of a step S in a collection, (S: tag ). A
special env step handles communications with “outside”, e.g., initialization and
emitting final results. Items are grouped into item collections and model all
data used as inputs and outputs to steps. Analogous to tags for steps, elements
in item collection A are uniquely identified by a key : [A: key ]. In general,
keys are represented as functions of step tags, such as affine functions or pure
functions evaluated at run time [31]. The relations among steps and items are
described by the “->” and “::” operations. The operation -> describes data-
flow as follows: [A: key ] -> (S: tag ) denotes item(s) read by a step1, (S:
tag ) -> [A: key ] denotes item(s) written by a step, and (S: tag1 ) -> (S:
tag2 ) denotes a step-to-step ordering constraint. The operation :: describes
step creation; i.e., (S: tag1 ) :: (T: tag2 ) denotes instance(s) of T created
by an instance of S2. The detailed semantics are shown in past work [31].

DFGL guarantees determinism and data race freedom by enforcing a dynamic
single assignment rule. This rule states that any item in any collection can only
be written once during the whole execution of the program. The model can be
implemented to rely on different underlying runtimes. The compiler also has a
lot of freedom in packaging the parallelism through code transformations such
as loop tiling and generation of fine-grained (doacross) parallelism.

2.2 Polyhedral compilation framework

The polyhedral model is a flexible representation for arbitrarily nested loops.
Loop nests amenable to this algebraic representation are called Static Control
Parts (SCoPs) and represented in the SCoP format, where each statement con-
tains three elements, namely, iteration domain, access relations, and schedule.
SCoPs require their loop bounds, branch conditions, and array subscripts to be
affine functions of iterators and global parameters.

Iteration domain, DS : A statement S enclosed by m loops is represented
by an m-dimensional polytope, referred to as an iteration domain of the state-
ment [19]. Each element in the iteration domain of the statement is regarded as
a statement instance i ∈ DS .

Access relation, AS(i): Each array reference in a statement is expressed
through an access relation, which maps a statement instance i to one or more
array elements to be read/written [40]. This mapping is expressed in the affine
form of loop iterators and global parameters; a scalar variable is considered as
a degenerate case of an array.

Schedule, ΘS(i): The sequential execution order of a program is captured
by the schedule, which maps instance i to a logical time-stamp. In general, a
schedule is expressed as a multidimensional vector, and statement instances are
executed according to the increasing lexicographic order of their time-stamps.

Dependence Polyhedra, DS→T : The dependences between statements S
and T are captured by dependence polyhedra — i.e., the subset of pairs (i, i′) ∈
DS × DT which are in dependence. We note n the dimensionality of DS→T .

1 Step I/O may comprise a list of items, and item keys may include range expressions.
2 A typical case is env step to create set of step instances where tag is a range.



Given two statement instances i and i′, i′ is said to depend on i if 1) they
access the same array location, 2) at least one of them is a write and 3) i has
lexicographically smaller time-stamp than i′, that is ΘS(i) ≺ ΘT (i′).

Fig. 1. Computation and dependence for Smith-Waterman.

[ int A ] ;
( corner : i , j ) −> [A: i , j ] ;
( top : i , j ) −> [A: i , j ] ; ( l e f t : i , j ) −> [A: i , j ] ;
[A: i −1, j −1] , [A: i −1, j ] , [A: i , j −1] −> ( main center : i , j ) −> [A: i , j ] ;
env : : ( corner : 0 , 0 ) ;
env : : ( top : 0 ,{1 . . NW} ) ; env : : ( l e f t :{1 . . NH} , 0 ) ;
env : : ( main center :{1 . . NH} ,{1 . . NW} ) ;
[A:NH,NW] −> env ;

Fig. 2. Input: DFGL for Smith-Waterman.

corner (0 , 0 ) ;
for ( c3 = 1 ; c3 <= NW; c3++) top (0 , c3 ) ;
for ( c1 = 1 ; c1 <= NH; c1++) l e f t ( c1 , 0 ) ;
#pragma omp p a r a l l e l for private ( c3 , c5 , c7 ) ordered (2 )
for ( c1 = 0 ; c1 <= NH/32 ; c1++) {

for ( c3 = 0 ; c3 <= NW/32 ; c3++) {
#pragma omp ordered depend ( s ink : c1−1, c3 ) depend ( s ink : c1 , c3−1)

for ( c5 = max(1 , 32∗ c1 ) ; c5 <= min (NH, 32∗ c1 +31); c5++)
for ( c7 = max(1 , 32∗ c3 ) ; c7 <= min (NW, 32∗ c3 +31); c7++)

main center ( c5 , c7 ) ;
#pragma omp ordered depend ( source : c1 , c3 )
} }

Fig. 3. Output: optimized OpenMP for Smith-Waterman (using our system).

3 Motivating Example

The Smith-Waterman algorithm is used in evolutionary and molecular biology
applications to find the optimal sequence alignment between two nucleotide or
protein sequences, using dynamic programming to obtain the highest scoring so-
lution. We show how this algorithm is encoded in our graph-based representation
and then optimized by our polyhedral framework.



Figure 1 gives a visual representation of the Smith-Waterman algorithm,
which contains 4 kind of steps: a single corner step (C) computing the top-left
matrix corner and collections of steps computing the top row (T), left column
(L) and the main body (M) of the matrix. The three-way arrows mark the flow of
data between steps. As mentioned in Section 2.1, each instance of the same step
collection is identified by a unique tag. Using a (NH+1)×(NW+1) integer matrix
(which comprises item collection A), there are NH × NW main steps, each of which
is identified by a tuple-tag (i,j), with 1 ≤ i ≤ NH and 1 ≤ j ≤ NW.

The data dependences (represented by arrows in Figure 1) are modeled by
using the tag (i,j) to identify a step instance and keys (affine functions of tag)
to specify items; Note that all main steps read 3 items and write one item of
collection A: [A:i-1,j-1], [A:i-1,j], [A:i,j-1] -> (M:i,j) -> [A:i,j].

The DFGL specification for Smith-Waterman is shown in Figure 2. The first
line of code declares an item collection, where each item is of type int. The
next four lines of code specify, for each of the 4 steps, what items are read and
written, as a function of the step instance’s tag.

The final four lines specify what the environment needs to produce for the
graph to start, and what it needs to emit after completion of the graph as
output data. The environment starts all computation steps via :: operation,
(e.g., main steps of {1 .. NH} × {1 .. NW}). It also reads one item resulting
from the computation (the bottom right corner, which contains the optimal
sequence alignment cost).

Although the dependences in this DFGL program expose a wavefront paral-
lelism (e.g., step instances (M:1,10), (M:2,9), ... (M:10,1) can run in parallel),
the computation granularity of each instance is too small to be implemented as
a concurrent task on current computing systems. Furthermore, there are several
choices on how to implement this wavefront parallelism, e.g., as a regular forall
loop parallelism via loop restructuring (skewing) or using a special runtime that
supports software pipelining. Figure 3 shows the optimized code in OpenMP, as
generated by our framework. Loop tiling is applied to the kernel so as to improve
both data locality and computation granularity. To implement the pipeline par-
allelism, we rely on an OpenMP-based fine-grained synchronization library [34],
which will be supported in OpenMP 4.1 standard [28]. These transformations
brought significant improvements as reported in Section 6.

4 Converting DFGL to Polyhedral Representation

In this section, we first introduce the programming flow using DFGL as an em-
bedded domain-specific language (eDSL) for expressing the dataflow components
in an application. We also introduce the overview of our optimization framework,
as well as the restrictions placed upon DFGL programs for compatibility with
the polyhedral framework.

4.1 Embedded DFGL programming flow

As shown in Figure 4, we use pragma dfgl to specify a DFGL program embed-
ded in a regular C program. Each item collection in the DFGL program requires
a corresponding array that is declared and in scope at the dfgl pragma. Users
can initialize items and obtain computation results outside the DFGL program



void f oo ( ) {
//C reg ion
int A[NH+1] [NW+1] ;
. . .

#pragma d f g l
{

//DFGL reg ion
[ int A ] ;
. . .

}
pr in t (A[NH] [NW] ) ;

}

Fig. 4. DFGL as an embedded
DSL
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Fig. 5. Optimization and build flow for a DFGL par-
allel region.

via the corresponding arrays. To enable legality check in Section 5.2, users need
to describe which items are to be initialized/emitted as a form of write/read
on the environment, e.g., env -> [A: key ] or [A: key ] -> env. The flow for
compiling a DFGL parallel region is shown in Figure 5. The user creates the
DFGL description and provides the main program (DFGL environment) and
codes for the compute steps. Then, they use our toolchain, which couples an ex-
tended translator [37] that we created for conversion to SCoP, and an extension
to ROSE Compiler framework [2,33], to obtain an executable for running the
application.

The first component of the toolchain is the SCoP converter that transforms
the DFGL representation into a simplified SCoP format as described in Sec-
tion 5.1. Next, we use the Analyzer to report errors in the input DFGL program
and obtain the dependences. The dependences, along with the information from
the DFGL SCoP, are then fed into the Optimizer. The final stage is the generation
of the optimized OpenMP code, which is built together with the user-provided
main program, kernels and libraries to obtain the executable.

4.2 DFGL restrictions for enabling polyhedral optimizations

To facilitate the conversion to a polyhedral representation, we focus on a re-
stricted subset of DFGL that can be summarized as follows: (1) step tags are
of the form i = (i1, ..., ik) with k the dimensionality of the associated step col-
lection; (2) item keys are affine expressions of step tags; and (3) all steps are
started by the environment such that the set of steps started can be described
using only affine inequalities of the step tag. Note that a step-to-step dependence
is converted into step-to-item and item-to-step dependences using a new item
collection. Both rectangular regions (ranges [31]) and simple polyhedra shaped
by affine inequalities of step tags are supported in DFGL. In practice, ranges
and simple polyhedra are often enough to express the tag sets needed to model
regular applications. They also come with the benefit of easy compilation to a
loop-based language, which we will use to generate parallel OpenMP code.

The implementation we propose relies on generation of C code due to the
benefits of high performance given by a low level language and the ease of pro-



gramming provided by DFGL, which abstracts applications using a high-level
representation. This approach is also appropriate for using DFGL as an embed-
ded DSL, since the OpenMP code that our toolchain generates can be integrated
into larger code bases (in effect, an OpenMP parallel region is generated for each
DFGL parallel region), while the user steps, which the generated code calls, can
themselves be optimized routines or library calls (possibly with non-affine data
accesses, since only the DFGL program is processed by the polyhedral frame-
work, not the internal step code).

5 Polyhedral Optimizations for DFGL

In this section, we present the details of our analysis and optimizations for an
input DFGL program, in the context of a polyhedral compilation framework.

5.1 Polyhedral representation of DFGL program

This section introduces our approach for creating a polyhedral representation of
a DFGL program. Each step is viewed as a polyhedral statement, for which an
iteration domain is constructed by analyzing the creation of step instances by
the environment and access functions are constructed by analyzing the dataflow
expressions.

SCoP for DFGL model As shown in Section 2.2, the original SCoP format con-
sists of three components: iteration domain, access relation, and schedule. The
restricted DFGL model defined in Section 4.2 allows to seamlessly create the it-
eration domain to be represented as a polyhedron bounded by affine inequalities,
and the I/O relations of each step instance to be modeled as affine read/write
access relations. Examples of DFGL code fragments and their SCoP representa-
tions are shown below.

[A:i-1,j+1]->(S:i,j)->[B:i,j] ⇔ ASR1 (i, j) = (A, i−1, j+1), ASW1 (i, j) = (B, i, j)

env::(S:{1 .. N},{i .. M}) ⇔ DS = {(i, j) ∈ Z2 | 1 ≤ i ≤ N ∧ i ≤ j < M}
Instead of specifying the sequential execution order (total order) among all step

instances, the DFGL model enforces ordering constraints via dataflow: a step
instance is ready to execute only once all of its input items (data elements) are
available. Therefore, the SCoP format specialized for DFGL contains iteration
domains and access functions, but no explicit schedule.

Dependence computations To compute polyhedral dependences between any two
step instances, we need to determine their Happens-Before (HB) relation — i.e.,
which instance must happen before another [24]. By definition of the dynamic
single assignment form, only flow dependences can exist and any read to a mem-
ory location must necessarily happen after the write to that location. So we can
define the HB relation between instance i of step S and i′ of step T as:

HBS→T (i, i′) ≡ ASWl (i) = ATRm (i′) ∧ (S 6= T ∨ i 6= i′)

This simply captures the ordering constraints of the DFGL model: step instance
i′ reading an item cannot start before step instance i writing that item com-
pleted, even if step instance i′ of T appears lexically before instance i of step



S in the DFGL program. According to the definition in Section 2.2, dependence
polyhedra between steps S and T are simply expressed as:

DS→T ≡ {(i, i′) | i ∈ DS ∧ i′ ∈ DT ∧ HBS→T (i, i′)}

which captures that i/i′ is an instance of step S/T , i writes the item read
by i′ (access equation), and i happens before i′ (HB relation). Because of the
dynamic single assignment rule, the DFGL model disallows Write-After-Write
dependence and Write-After-Read dependences. The next section outlines how
polyhedral analysis can be used to check of these error cases.

5.2 Legality analysis

This section introduces the compile-time analyses to verify the legality of a
DFGL program. Enforcing the DFGL semantics, it detects the violation of the
dynamic-single-assignment rule, plus three types of deadlock scenarios.

Violation of the single-assignment rule is equivalent to the existence of Write-
After-Write dependences, and is represented by the following condition, which
indicates that instances i and i′ write an identical item (data element):

∃i ∈ DS , ∃i′ ∈ DT : ASWl (i) = ATWm (i′) ∧ (S 6= T ∨ i 6= i′ ∧ l 6= m)

Self deadlock cycle is the simplest case of deadlock. An instance i needs to read
an item which is written by i itself, thereby resulting in indefinite blocking.

∃i ∈ DS : ASWl (i) = ASRm (i)

General deadlock cycle is the second of deadlock scenarios, where the depen-
dence chain among multiple step instances creates a cycle. Any instance on the
cycle waits for its predecessor to complete and transitively depends on itself. As
discussed in Section 5.3, transformations in the polyhedral model are equivalent
to a multidimensional affine schedule such that, for each pair of instances in
dependence, the producer is scheduled before the consumer. The existence of
such legal schedule [18] guarantees the absence of general deadlock cycle, and
optimizers are built to produce only legal schedules.

Deadlock due to absence of producer instance is the third deadlock scenario.
Even without a cycle in the dependence chain, it can be possible that a step
instance i′ needs to read an item that any other step instance does not write.
Detecting this scenario is represented by the following condition, which means
there is no step instance i that writes an item to be read by i′. Note that the
items written/read by the environment env are also expressed as domains and
access relations (Section 4.1)3.

∃i′ ∈ DT : ¬ (∃i ∈ DS : ASWl (i) = ATRm (i′))

For instance, the following compile-time error message is shown if we remove the
second line “(corner:i,j) -> [A:i,j];” in Figure 2:
Legality check: Deadlock due to no producer of (main center:1,1)

3 In future work, we may consider the possibility of not treating this case as an error
condition by assuming that each data item that is not performed in the DFGL region
has a initializing write that is instead performed by the environment.



5.3 Transformations

Given a set of dependence polyhedra {D∗→∗} that captures all program depen-
dences, the constraints on valid schedules are:

ΘS(i) ≺ ΘT (i′), (i, i′) ∈ DS→T , DS→T ∈ {D∗→∗}

For any dependence source instance i of step S and target instance i′ of step T ,
i is given a lexicographically smaller time-stamp than i′. Because of the transla-
tion of the DFGL program into a complete polyhedral description, off-the-shelf
polyhedral optimizers can be used to generate imperative code (i.e., C code)
performing the same computation as described in the DFGL program. This op-
timization phase selects a valid schedule for each step based on performance
heuristics — maximizing objective functions. There have been a variety of poly-
hedral optimizers in past work with different strategies and objective functions
e.g., [11,33]. The schedule is then implemented to scan the iteration domains in
the specified order, and a syntactic loop-based code structure is produced using
polyhedral code generation [8].

We used the PolyAST [33] framework to perform loop optimizations, where
the dependence information provided by the proposed approach is passed as
input. PolyAST employs a hybrid approach of polyhedral and AST-based com-
pilations; it detects reduction and doacross parallelism [17] in addition to regular
doall parallelism. In the code generation stage, doacross parallelism can be effi-
ciently expressed using the proposed doacross pragmas in OpenMP 4.1 [28,34].
These pragmas allow for fine-grained synchronization in multidimensional loop
nests, using an efficient synchronization library [38].

6 Experimental Results

This section reports the performance results of the proposed DFGL optimization
framework obtained on two platforms: (1) an IBM POWER7: node with four
eight-core POWER7 chips running at 3.86GHz, and (2) an Intel Westmere: node
with 12 processor cores per node (Intel Xeon X5660) running at 2.83 GHz. For
benchmarks, we use Smith-Waterman, Cholesky Factorization, LULESH and six
stencil kernels from PolyBench [25].

Smith-Waterman is used as our motivating example (Section 3). We run the
alignment algorithm for 2 strings of size 100,000 each, with a tile size varying
between 16 and 1024 in each dimension. As the baseline OpenMP implementa-
tion, we manually provided a wavefront doall version via loop skewing. Figure 6
shows the speedup results on our two test platforms, relative to the sequential
implementation. We observe that the performance varies depending on the tile
size chosen: for Westmere the best tile size is 1024, while for POWER7 the
best tile size is 64. However our approach gives a big performance improvement
compared with the skewed wavefront OpenMP implementation: up to 6.9× on
Westmere and up to 2.3× on POWER7 for the maximum number of cores, due
to cache locality enhancement via tiling and efficient doacross synchronizations.

To evaluate the efficiency of doacross (point-to-point synchronizations) and
wavefront doall (barriers), we provided variants that removes all computations
in the kerenel and only contains synchronizations. Table 1 shows the synchro-
nization and overall execution times in second. When using 32 cores, the syn-
chronization overheads for doacross with tile size = 64 and wavefront doall is



OpenMP DFGL-16 DFGL-64 DFGL-256 DFGL-512 DFGL-1024

Overall 9.863sec 4.508sec 4.188sec 4.283sec 4.571sec 5.047sec
Synch. 1.720sec 0.482sec 0.163sec 0.128sec 0.129sec 0.143sec

Table 1. Overall and synchronization time (Smith-Waterman onPower7 with 32 cores)

0.163[sec] and 1.72[sec], respectively. In addition to this synchronization effi-
ciency, loop tiling by the optimization framework enhanced data locality; overall
improvement over the OpenMP variant is 2.36× when using 32 cores and tile
size = 64.

(a) Intel Westmere (b) IBM POWER7

Fig. 6. Smith-Waterman using 2 sequences of 100k elements each. Results are for DFGL
optimized code with loop tiling using tile sizes between 16 and 1024, and OpenMP
baseline with parallelism obtained via loop skewing.

Cholesky Factorization is a linear algebra benchmark that decomposes a sym-
metric positive definite matrix into a lower triangular matrix and its transpose.
The input matrix size is 2000 × 2000 and the generated code has 2D loop tiling
with tile size varying between 4 and 32. In figure 7 that even though this ap-
proach does not yield a large speedup, it still gives improvement compared to
the OpenMP implementation: 1.4× on Westmere and 3.0× on POWER7.

As reported in previous work [13], the combination of data tiling (layout
transformation) and iteration tiling is a key technique for Cholesky Factorization
while the current toolchain supports only iteration tiling. Alternatively, we man-
ually implemented 50×50 iteration and data tiling within the user-provided steps
and underlying data layout; the input DFGL is unchanged and our toolchain
generated the same inter-step parallel code via doacross. This version brought
significant improvements due to optimized cache locality, up to 15× on West-
mere and up to 10.8× on POWER7 over standard OpenMP implementation.
Furthermore, it gives on par performance with Parallel Intel MKL on 12 cores,
on Westmere4 and outperforms ATLAS on POWER75 on more than 4 cores.

4 MKL is the best tuned library for Intel platforms. We compare against Sequential
and Parallel MKL.

5 On POWER7 we use ATLAS — the sequential library — as MKL cannot run on
POWER7, and a parallel library was not available.



These results further motivate our work, since the application tuning can
be accomplished both by the polyhedral transformations and the user by re-
placing the steps with optimized versions. For example, in the case of cholesky,
it is possible to call optimized MKL/ATLAS kernels inside the user steps. In
our results, these steps are regular sequential steps and all parallelism comes
from the OpenMP code generated by the polyhedral tools. Further, since DFGL
can be used as an embedded DSL, the OpenMP code being generated can be
incorporated in larger applications and coupled with optimized user steps.

(a) Intel Westmere (b) IBM POWER7

Fig. 7. Cholesky Factorization using 2000x2000matrix. Results are for loop tiling using
tile sizes between 4 and 32, OpenMP parallelism, data tiling resulting of the inner steps
and reference MKL/Atlas implementations.

LULESH is a benchmark needed for modeling hydrodynamics [1]. It ap-
proximates the hydrodynamics equations discretely by partitioning the spatial
problem domain into a collection of volumetric elements defined by a mesh. In
this implementation each element is defined as a cube, while each node on the
mesh is a point where mesh lines intersect and a corner to 4 neighboring cubes.
The mesh is modeled as a 3D space with N3 elements and (N + 1)3 nodes.
The benchmark uses an iterative approach to converge to a stable state. We
pre-tested the application and saw a convergence after 47 iterations; thus in our
results we use a fixed number of 50 iterations for simplicity.

Figure 8 gives the results for a 1003 space domain and our toolchain tiled both
the time loop and the 3D loop nest corresponding to the space. We see that even
with a time tile size of 2, this leaves only 25 parallel iterations at the outermost
doacross loop, which for the POWER7 in particular leads to a smaller speedup.
The best results are obtained with no time tiling and a space tile of 83, on both
Westmere and POWER7. We also observe a significant increase in performance
compared with the reference C++ implementation which uses OpenMP [22].

Finally, we summarize results for the stencil benchmarks from the Polybench
suite [25]: Jacobi-2D, Jacobi-1D, Seidel-2D, FDTD (Finite Different Time Do-
main), FDTD-APML (FDTD using Anisotropic Perfectly Matched Layer) and
ADI (Alternating Direction Implicit solver) in figures 9 when using the maxi-
mum number of cores on each platform. We created the baseline OpenMP imple-
mentations in a standard manner: parallelism added at the outer most loop for
fully parallel loops and after skewing for loops with loop-carried dependences.
We did not add manual polyhedral optimizations.

The results show that the best tile sizes vary between platforms: on the
Westmere the best results are generally for the larger time tile (4) and the
largest space tile size (128), while for the POWER7 the best results are for the



(a) Intel Westmere (b) IBM POWER7

Fig. 8. LULESH for 50 time iterations and a 1003 space domain. Results are for time
loop tiling with tiles 1,2 and space loop tiles 2,4,8,16, and reference C++ OpenMP
implementation.

smaller time tile (2) and the smallest space tile (16). We also note that the results
obtained using the DFGL toolchain outperform the OpenMP implementations
for most cases, with up to 1.8× speedups.

(a) Intel Westmere, 12 cores (b) IBM POWER7, 32 cores

Fig. 9. Stencil benchmarks from the Polybench suite.Results compare DFGL tiling
with standard OpenMP parallel versions.

7 Related Work

DFGL has its roots in Intel’s Concurrent Collections (CnC) programming model
[12,21], a macro-dataflow model which provides a separation of concerns between
the high level problem specification and the low level implementation. The orig-
inal CnC implementation did not offer a means for definiting dependences at a
high level, and an extended CnC model proposed for mapping onto heteroge-
neous processors [32] became the foundation for DFGL.

Compared to past work related to CnC, DFGL pushes the use of a high-level
data-flow model as an embedded DSL for enabling robust compiler optimizations
using a state-of-the-art polyhedral compilation framework that is capable of
generating code for the new OpenMP 4.1 doacross construct. In addition, to
the best of our knowledge, this work is the first to use polyhedral analyses to
detect potential deadlocks and violations of the dynamic single assignment rule
in a dataflow graph program specification. Other data-flow models also use a
parallel underlying runtime to achieve performance, either a threading library,
such as pthreads used in TFlux [35], or a task library, such as TBB used in



Intel’s CnC, or a parallel language such as Cilk used in Nabbit [6]. Legion [9]
is another language which aims to increase programmability, however it requires
an initial sequential specification of a program, similar to the input assumed
by polyhedral compiler frameworks. DFGL eases programmability by separating
the application description from its concrete implementation, and ensures that
the optimized parallel code generated is not handled by the user. In addition,
DFGL regions can be integrated in large scale applications as an embedded DSL,
and can be coupled with optimized step code implementations or library calls.

Domain specific languages aim to give a high-level view of the applications
and to ease programmability but are generally restricted to particular sets of
problems, such as stencil computations [26] or graph processing problems [20]. In
contrast, DFGL aims to combine the programmability benefits of DSLs with the
optimizability of polyhedral regions, by using an approach that enables portable
specifications of parallel kernels. Alpha [42] is a language which can be viewed as
an eDSL for the polyhedral model. However the specification for Alpha is that
of a full language, whereas DFGL can be composed with optimized step code
defined in other languages, as long as these can be built together.

A number of papers addressed data-flow analysis of parallel programs using
the polyhedral model, including extensions of array data-flow analysis to data-
parallel and/or task-parallel programs [16,41]. These works concentrate on anal-
ysis whereas our main focus is on transformations of macro-dataflow programs.
Kong et al. [23] applied polyhedral analysis and transformations for the Open-
Stream language, a representative dataflow task-parallel language with explicit
intertask dependences and a lightweight runtime. PolyGlot [10] was the first
end-to-end polyhedral optimization framework for pure dataflow model such
as LabVIEW, which describes streaming parallelism via wires (edges) among
source, sink, and computation nodes. On the other hand, our framework aims
at optimizing macro-dataflow model, where asynchronous tasks are coordinated
via input/output variables in data-driven manner.

8 Conclusions

In this paper, we proposed an optimization framework that uses as input the
DFGL model, a dataflow graph representation that results in high performance
generated by polyhedral tools while still allowing the programmer to write gen-
eral (non-affine) code within computation steps. We outlined the language fea-
tures of DFGL and presented our implementation of the model, which provides
a tool that reads in the DFGL specification and generates the SCoP format for
polyhedral transformations. We then described the technical details for comput-
ing dependences based on the access functions and domain, as described in the
SCoP format, using the dynamic single assignment property of DFGL. Further
we described compile-time analyses to verify the legality of DFGL programs
by checking for potential dynamic single assignment violations and potential
deadlocks. We have shown experimental results for our implementation of the
DFGL model, which offers good scalability for complex graphs, and can out-
perform standard OpenMP alternatives by up to 6.9×. The current restrictions
on DFGL are inherited from the polyhedral model itself and should be also ad-
dressed in future work [14]. This work focuses on the C language; future work
could consider C++ notational variants.
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