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Abstract—Optimizing compilers targeting modern multi-core
machines require complex program restructuring to expose the
best combinations of coarse- and fine-grain parallelism and
data locality. The polyhedral compilation model has provided
significant advancements in the seamless handling of compositions
of loop transformations, thereby exposing multiple levels of
parallelism and improving data reuse. However, it usually imple-
ments abstract optimization objectives, for example ”maximize
data reuse”, which often does not deliver best performance,
e.g., the complex loop structures generated can be detrimental
to short-vector SIMD performance. In addition, several key
transformations such as pipeline-parallelism and unroll-and-jam
are difficult to express in the polyhedral framework. In this
paper, we propose a novel optimization flow that combines
polyhedral and syntactic/AST-based transformations. It gener-
ates high-performance code that contains regular loops which
can be effectively vectorized, while still implementing sufficient
parallelism and data reuse. It combines several transformation
stages using both polyhedral and AST-based transformations,
delivering performance improvements of up to 3× over the PoCC
polyhedral compiler on Intel Nehalem and IBM Power7 multi-
core processors.

I. INTRODUCTION

Optimizing compilers attempt to restructure the input pro-
gram to extract the proper grain of parallelism and data locality
that best fit the target architecture. For modern multi-core pro-
cessors this amounts to: (1) exploiting data locality by group-
ing operations accessing the same or nearby data elements,
to achieve both spatial and temporal locality; (2) exposing
enough coarse-grain parallelism to effectively utilize all the
available cores; and (3) exposing enough well-structured fine-
grain parallelism to exploit the available short-vector SIMD
units. Optimizing compilers are in charge of transforming
the input program, typically using loop transformations, so
that the generated code satisfies all three objectives. Such
transformations include loop tiling and loop parallelization, but
numerous complementary loop transformations may be needed
first to make the tiling or parallelization possible.

The complexity of the loop transformation sequence
needed to achieve both data locality and parallelism poses
a significant challenge in the design of the optimization
algorithm: previous work typically focused on one particular
objective (parallelization, vectorization or data locality [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]) and attempts
to find a sequence of loop transformations maximizing this
objective, possibly by being detrimental to the other two ob-
jectives. To address this limitation, the polyhedral compilation
framework restricts the class of programs it can manipulate
to sequences of imperfectly nested loops with particular con-

straints on the loop bound and array subscript expressions.
An immediate benefit is the ability to design optimization
algorithms that can determine an arbitrarily complex sequence
of loop transformations needed to enable tiling, coarse-grain
parallelization and vectorization. In this unified framework,
multiple objectives can be combined and prioritized in a sin-
gle polyhedral formulation, ensuring the loop transformation
sequence found implements the proper amount of tiling and
parallelization. The benefit of this unified formulation has been
best exemplified with the Pluto algorithm [14], [15], which has
been successfully extended and specialized to integrate SIMD
constraints [16].

Years of efforts to integrate the various optimization ob-
jectives in a single formulation have led to excessively com-
plicated polyhedral loop transformations to be generated by
such algorithms. In this work we make a compelling case
for decoupling the optimization problem into multiple stages.
Furthermore, we show that several transformations should be
performed outside of the polyhedral framework, for both sim-
plicity and performance. This apparently counter-intuitive ap-
proach is justified by key observations on the simpler code gen-
erated when using syntactic (e.g., AST-based) transformations
instead of polyhedral transformations for certain stages such
as exploiting pipeline-parallelism. In addition, cost modeling
is simplified when dealing with different stages for different
cost considerations. This in turn results in weaker constraints
on the polyhedral transformation objectives, leading to simpler
loop structures generated. As the final performance on modern
multi-core chips is driven in large part by the effectiveness of
SIMD vectorization, such simpler loops are more amenable
to automatic vectorization by production compilers such as
Intel ICC, leading to significant performance improvements of
up to 3× in our experiments over a fully-integrated state-of-
the-art polyhedral compilation approach, which itself already
widely outperforms native compilers such as Intel ICC and
IBM XL/C.

This paper makes the following contributions. (1) We
present a framework to perform end-to-end program optimiza-
tion, with an integration of polyhedral and syntactic code
transformations. (2) We extend current optimization heuristics
used in polyhedral optimizers by targetting more sophisticated
optimization goals than generating doall parallelism with mini-
mum reuse distance. (3) We present a multi-stage optimization
algorithm, tackling each individual performance goal (intra-
tile data reuse, vectorizability, coarse-grain parallelism, inter-
tile data reuse) with the proper set of loop transformations
(polyhedral, syntactic, or both). (4) We report extensive perfor-
mance results, showing significant performance improvement
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1 for (i = 0; i < NI; i++) {
2 for (j = 0; j < NJ; j++) {
3 R: tmp[i][j] = 0;
4 for (k = 0; k < NK; k++)
5 S: tmp[i][j] += alpha * A[i][k] * B[k][j];
6 }
7 }
8 for (i = 0; i < NI; i++) {
9 for (j = 0; j < NL; j++) {

10 T: D[i][j] *= beta;
11 for (k = 0; k < NJ; k++)
12 U: D[i][j] += tmp[i][k] * C[k][j];
13 }
14 }

Fig. 1: Input 2mm code

1 for (c1 = 0; c1 < NI; c1++) {
2 for (c2 = 0; c2 < NI; c2++) {
3 R: D[c1][c2] *= beta;
4 T: tmp[c1][c2] = 0;
5 for (c7 = 0; c7 < NI; c7++)
6 S: tmp[c1][c2] += alpha * A[c1][c7] * B[c7][c2];
7 for (c7 = 0; c7 <= c2; c7++)
8 U: D[c1][c7] += tmp[c1][c2-c7] * C[c2-c7][c7];
9 }

10 for (c2 = NI; c2 <= 2 * NI -2 ; c2++)
11 for (c7 = c2 - NI + 1; c7 < NI; c7++)
12 U: D[c1][c7] += tmp[c1][c2-c7] * C[c2-c7][c7];
13 }

Fig. 2: 2mm using maximal polyhedral
fusion [15]

1 for (c1 = 0; c1 < NI; c1++) {
2 for (c3 = 0; c3 < NJ; c3++)
3 R: tmp[c1][c3] = 0;
4 for (c3 = 0; c3 < NK; c3++)
5 for (c5 = 0; c5 < NJ; c5++)
6 S: tmp[c1][c5] += alpha * A[c1][c3] * B[c3][c5];
7 for (c3 = 0; c3 < NL; c3++)
8 T: D[c1][c3] *= beta;
9 for (c3 = 0; c3 < NJ; c3++)

10 for (c5 = 0; c5 < NL; c5++)
11 U: D[c1][c5] += tmp[c1][c3] * C[c3][c5];
12 }

Fig. 3: 2mm using our flow

over classical polyhedral optimizers, by ensuring the final
code properly exploits good vectorization, data locality through
tiling, and doall/pipeline/reduction parallelism wherever pos-
sible.

The rest of the paper is organized as follows. Sec. II
motivates our approach and provides an overview of our op-
timization strategy. Sec. III recalls key concepts of polyhedral
compilation, and introduces our framework to select affine
transformations. Sec. IV presents various AST-based optimiza-
tions and shows how to form an end-to-end optimizer mixing
polyhedral and AST transformations. Extensive experimental
results are presented in Sec. V before discussing the related
work in Sec. VI and concluding in Sec. VII.

II. MOTIVATION AND OVERVIEW

To motivate our new optimization flow, we use 2mm as
a driver example. 2mm is a benchmark from PolyBench/C
[17] which computes a sequence of two matrix multiplications
C = A.B;E = D.C. The original code is shown in Fig. 1.
We applied a state-of-the-art polyhedral compiler that enables
maximal data locality, tilability, and coarse-grain paralleliza-
tion in a single optimization stage [15]. The resulting code
structure (tiling is omitted for readability) is shown in Fig. 2.
It corresponds to the output of maximal fusion when using
the native Pluto algorithm [15] as implemented in the PoCC
compiler [18]. In contrast, the loop structure (also with tiling
omitted) generated by our proposed framework is shown in
Fig. 3. Their performance on an Intel Nehalem and an IBM
Power7 processor is shown in Table I.

Variants Intel Nehalem IBM Power7
original 2.4 GF/s 0.5 GF/s
PoCC 14 GF/s 29 GF/s
our flow 19 GF/s 62 GF/s

TABLE I: 2mm performance comparison

Maximal data locality as implemented in Fig. 2 translates
to minimizing the temporal distance between two accesses to
the same memory location. This is a core objective of the
polyhedral optimizer to achieve good data reuse. This objective
is expressed in the polyhedral framework using a minimization
objective. We first formulate the expression of temporal reuse
distance between two operations~x and~y which access the same
memory location as:

|Θ(~x)−Θ(~y)| ≤ dist

where Θ is the function modeling the scheduling of operations,
assigning a virtual timestamp to each operation ~x to be exe-
cuted during the computation. By finding a schedule Θ which
minimizes dist subject to data dependence constraints (which
may require for instance that Θ(~x) > Θ(~y)), we end up with
a schedule of the operations that implements maximal data
locality. This schedule is then implemented through a sequence
of loops transformations on the original code automatically
within the polyhedral framework. A fundamental observation
is that this minimization objective is too strong: there is no
point in minimizing the reuse distance from a performance
point of view. The real performance objective is to ensure that
the implemented reuse distance is such that when reused, the
data will not have been evicted from the cache. This implies the
need to properly model cache replacement. Another key obser-
vation relates to SIMD vectorization: the code implementing
maximal reuse uses a triangular loop and a complex access
(c2-c7 at lines 8 and 12 in Fig 2) along the vectorizable
dimension. Consequently, the SIMD performance achievable
will be very limited.

Our proposed optimization flow addresses these deficien-
cies. To cope with the intricate modeling of the exact data
reuse requirements, we decouple the optimization problem into
stages.

The first stage selects an affine transformation modeling
a combination of loop fusion, distribution and permutation,
by using the DL (Distinct Lines) model, which was designed
to estimate the number of distinct cache lines, or TLB entries,
accessed in a loop nest [5]. The selection of the transformations
to apply is driven by the DL cost model and by the goal
of maximizing the number of “clean” inner-loops that can
be effectively vectorized (corresponds to Fig. 3). Once an
affine transformation for the code is computed, that amounts
to implementing combinations of loop fusion / distribution
/ permutation / code motion / peeling / shifting, we go out
of the polyhedral transformation framework and perform a
series of transformations in a syntactic manner on the program
AST. Skewing may be implemented to ensure tilability —
both skewing and tiling are implemented directly on the
AST representation. Our experience shows that the generated
code from performing skewing and tiling on the AST has
simpler loops than when implementing skewing and tiling in
the polyhedral framework. Parallelization is a separate stage
in our optimization flow, that is taken in isolation from the
computation of the affine transformation. The goal of this sep-
aration is to tackle another key deficiency of integrated poly-
hedral optimization: that as only doall parallelism is explicitly



modeled in the polyhedral framework, pipeline parallelism is
typically implemented as inefficient wavefront schedules. In our
framework, instead of implementing a wavefronting of the tile
loops which generates load imbalance because of the start-up /
draining phases, we rely on a special pipeline-parallel construct
that has been proposed as an OpenMP extension [19] which
achieves the same parallelism but without the negative effects
of wavefronting. An overview of the various stages is shown
in Algorithm 1, where the optimization flow is broken into
stages, each of which addresses a particular performance goal.

Algorithm 1: End-to-end algorithm
Input : Source program P = (Poly,AST )
begin1

P := fusion and permutation with DL(P.Poly);2
P := skewing for tilability(P.AST );3
P := coarse grain parallelization(P.AST );4
P := tiling for locality(P.AST );5
P := intra tile optimizations(P.AST );6

end7
Output: Parallelized and optimized program P

To summarize, our flow has the following key properties.
First, it relaxes the constraints on the polyhedral loop trans-
formation stage by looking for an affine transformation that
achieves enough data locality and preserves some parallelism.
This is in contrast to previous work such as the Pluto algorithm
which embeds tilability and parallelization upfront. As a result,
the loop nest generated by our approach can be significantly
simpler. Second, it uses a collection of AST-based transforma-
tions to ensure all performance goals (data reuse through tiling,
inter-tile parallelization, intra-tile vectorization) are addressed
by the optimization. Using AST-based transformation enables
(1) the use of non-affine transformations, such as the pipeline-
parallel OpenMP construct; (2) in general, a simpler loop
structure than that generated using only polyhedral transfor-
mations, resulting in a more efficient auto-vectorization of the
generated codes. We present in the following the details of
the optimization flow in Secs III and IV, before presenting
extensive experimental results.

III. CACHE-AWARE AFFINE TRANSFORMATIONS

A. Background on the Polyhedral Model

The polyhedral model [20] is an algebraic framework for
affine program representations and transformations. We rely
on this framework for the first stage of our optimization
flow, where the objective is to implement sufficient data
reuse opportunities (in contrast to maximizing data locality)
while preserving SIMD parallelism. The major strengths of
the polyhedral model over AST-based approaches include: 1)
the unified representation of perfectly and imperfectly nested
loops with parametric bounds and a large set of transfor-
mations that can be performed on them [21], [22], and 2)
mathematical approaches to express data dependences and to
encode the legality of transformations [23], [21], [24]. These
features provide a high degree of flexibility in specifying loop
transformations in a unified framework.

The polyhedral model is a flexible and expressive represen-
tation for imperfectly nested loops with statically predictable

control flow. Loop nests amenable to this algebraic repre-
sentation are called static control parts (SCoPs) [21], [22],
roughly defined as a set of consecutive statements such that
loop bounds and conditionals involved are affine functions of
the enclosing loop iterators and variables that are invariant
during the SCoP execution. Numerous scientific kernels exhibit
those properties; they can be found in image processing filters,
linear algebra computations, etc. [22]. We now describe the key
data structures to represent programs.

Iteration domains: For each textual statement in the
program the set of its run-time instances is captured with an
integer set bounded by affine inequalities, intersected with an
affine integer lattice [25], that is the iteration domain of the
statement. Each point in this set represents a unique dynamic
instance of the statement, such that the coordinates of the point
corresponds to the value the surrounding loop iterators take
when this instance is executed. For instance for statement S in
Fig. 1, its iteration domain DS is:

DS = {(i, j,k) ∈ Z3 | 0≤ i < NI∧0≤ j < NJ∧0≤ k < NK}

We denote ~xS ∈DS as a point in the iteration domain.

Access functions: They represent the location of the
data accessed by the statement. In static control parts, memory
accesses are performed through array references (a variable
being a particular case of an array). We restrict ourselves
to subscripts that are affine expressions of surrounding loop
counters and global parameters. For instance, the subscript
function of a read reference A[i][k] surrounded by 3 loops
i, j and k is simply fA(i, j,k) = (i,k).

Data dependences: The sets of statement instances
between which there is a data dependence relationship are
modeled as equalities and inequalities describing a dependence
polyhedron. This relationship is defined at the granularity of
the array cell. If two instances ~xR and ~xS access the same
array cell and at least one of these accesses is a write, then
they are said to be in dependence. Therefore to respect the
program semantics, the transformed program must ensure ~xR
and ~xS are executed in the same order as in the original
program. Given two statements R and S and a data dependence
R→ S, a dependence polyhedron, written DR,S, contains all
pairs of dependent instances 〈~xR,~xS〉. Given a set of statements,
a polyhedral dependence (multi-)graph, PoDG, is defined as
G = (V,E) where V contains all statements and E contains
one edge R→ S per dependence polyhedra DR,S, R,S ∈ V ,
labeled by the dependence polyhedra.

Multiple dependence polyhedra may be required to capture
all dependent instances, at least one for each pair of array
references accessing the same array cell (scalars being a par-
ticular case of array). It is possible to have several dependence
polyhedra per pair of textual statements, as some may contain
multiple array references. In our work, all dependence polyhe-
dra are automatically extracted from the program polyhedral
representation, using the Candl tool [18].

Affine program transformations: An affine transforma-
tion captures, in a single step, what may typically correspond
to a sequence of tens of textbook loop transformations [22]. It
takes the form of a carefully crafted affine multidimensional
schedule represented as a matrix. A schedule is a function
which associates a logical execution date (a timestamp) to



each instance of a given statement. In the case of multidi-
mensional schedules, this timestamp is a vector. In the target
program, statement instances will be executed according to the
increasing lexicographic order of their timestamp. To construct
a full program optimization, we build a collection of schedules
Θ = {ΘS1, . . . ,ΘSn}, that is a list of the statement scheduling
function for each statement in the program, such that for all
dependent instances the producer instance is scheduled before
the consumer one.

In this work, we focus on the affine program transformation
stage for finding a schedule that implements good data locality
while preserving SIMD parallelism opportunities, as explained
in Sec. III-C. By focusing the objective carefully, we can
effectively restrict the set of transformations we consider
to a subset of acceptable polyhedral transformations. More
precisely, we look for a composition of:

• Multidimensional fusion / distribution / code motion
of the statements, to implement good data locality and
preserve parallelism opportunities.

• Multidimensional retiming (a.k.a. index set shifting)
and loop permutation (a.k.a. interchange), to realign
memory accesses for better locality, and/or make the
fusion/distribution chosen legal.

Given a statement S, we model compositions of the trans-
formations above with an affine form of the d enclosing loop
iterators i1,...,id such that (1) the matrix describes a one-to-
one function using exclusively integer coefficients; and (2)
the number of rows in the matrix is 2d + 1, where each odd
row models a constant function [22]. Such a schedule can
then directly be given to a polyhedral code generator such
as CLooG [25] to implement the desired transformation. Such
a schedule can be expressed as follow:

Θ
S(~xS) =



0 . . . 0 β1
α1,1 . . . α1,d c1

0 . . . 0 β2
α2,1 . . . α2,d c2

...
...

0 . . . 0 βd
αd,1 . . . αd,d cd

0 . . . 0 βd+1


.


i1
...

id
1



where ∀k ∈ {1..d}, ∑
d
i=1 |αk,i| = 1 and ∑

d
i=1 |αi,k| = 1. This

encoding is reminiscent of classical 2d+1 encoding [26], [16]
where β coefficients are used to model multidimensional state-
ment interleaving (i.e., multidimensional fusion/distribution/-
code motion), the α coefficients with the property above model
loop permutation and loop reversal, and the c coefficients
model multidimensional retiming (i.e., index set shifting).

For example, the code in Fig. 3 is obtained from Fig. 1 by
using four schedules, one for each statement, and the schedule
for statement T is:

Θ
T (~xT ) =


0 0 0
1 0 0
0 0 2
0 1 0
0 0 0

 .

 i
j
1

=


0
i
2
j
0


The form of affine schedule described above is a restriction

on more general affine scheduling [24]. However, the key

benefits of this representation outweigh its limitations. First
and foremost, such schedules are invertible, which implies
that Θ−1 is well defined and can be used in the optimization
algorithm to reason about the array access functions after trans-
formations, without having to generate the code implementing
the transformation. We also remark that by construction each
even row is linearly independent to the other even rows.
Second, each even row - i.e., loop dimension - corresponds to
one of original loop iterators; the transformed loops naturally
keep the original access pattern (or its reversal) and are more
amenable to SIMD vectorization.

B. DL Model for profitability analysis

The DL (Distinct Lines) model was designed to estimate
the number of distinct cache lines, or TLB entries, accessed in
a loop nest [27], [5]. In this section, we briefly introduce how
this analytical model is used as the memory cost model that
guides loop fusion and permutation in the proposed framework.
In contrast to reuse distance minimization algorithms like
Pluto [28], this cost model captures spatial data locality in
addition to temporal locality.

Based on machine parameters, e.g., cache line size and
TLB page size, and program parameters, e.g., array dimension
size and access function, the DL model expresses the number
of distinct lines on a given cache/TLB as a function of
enclosing loop sizes [27], [5]. In the following discussion, we
assume loop tiling to be applied and DL is a function of tile
sizes - i.e., DL(t1, t2, · · · , td). Figure 4 shows a simple case with
two array references enclosed in a triply nested tiled loops.

for ti = 0, N-1, Ti
 for tj = 0, M-1, Tj
  for tk = 0, K-1, Tk
   for i = ti, ti+Ti-1
    for j = tj, tj+Tj-1
     for k = tk, tk+Tk-1
      A[i][j] += B[k][i];

A[i][j] B[k][i]

Tj

Ti

Tk

Ti

DL(Ti, Tj, Tk)  =  DLA + DLB  =  Ti *⎡Tj / L⎤+ Tk *⎡Ti / L⎤
L : cache line size / TLB page size

Fig. 4: Example of DL for tiled loop nest

The per-iteration memory cost of a given loop nest on a
specific cache/TLB is defined as follow.

mem cost(t1, t2, · · · , td) =
Costline×DL(t1, · · · , td)

t1× t2×·· ·× td

Costline represents the memory cost (miss penalty) per line
on cache/TLB of interest. Under the assumption that the
cache/TLB keeps any data until the last reuse, Costline×DL
represents the total cost to bring all data of the loop nest on the
cache/TLB. The following profitability analyses suppose the
proper application of loop tiling in the latter AST-based phase
and data per tile is confined to cache/TLB capacity. Although
the applicability of tiling depends on loop dependences and
other transformations, optimistic assumptions are generally
acceptable for guiding profitability analyses. In the following,
DL and mem cost are used as functions of tile sizes.



1) Best Permutation Order Analysis: The partial deriva-
tive of mem cost with respect to tile size ti, δmem cost/δti,
represents the variation rate of memory cost when increasing
ti. δmem cost/δti < 0 indicates that increasing ti causes a
decrease in memory cost and placing the loop with the most
negative value of δmem cost/δti at the innermost position
could yield the largest benefit on data locality. In our approach,
δmem cost/δti is used as the priority for loop permutation
- i.e., the ascending order of δmem cost/δti is the most
profitable permutation order (from inner to outer).

2) Loop Fusion Profitability Analysis: The DL memory
cost is also used as a metric of loop fusion profitability by com-
paring mem cost before and after fusion. In general, proper
loop fusion enhances inter-statement data reuse while reduces
upper bounds of tile sizes that fit within cache/TLB capacity.
These boundaries can be analytically estimated by an extension
of DL model [29] and the minimum mem cost within the
boundaries is computed to check whether fusion can reduce
the minimum mem cost. Note that the profitability of fusion
will be affected by multiple factors including data reuse via
cache/TLB/register, parallelism, and prefetching. The current
criteria for applying loop fusion are listed in Algorithm 5 in
Sec. III-C.

C. Optimization Algorithms

This section describes the proposed algorithms to compute
the various coefficients of the scheduling matrices. The overall
algorithm is shown in Algorithm 2, which starts from the top
loop level (k = 1 with S as all statements in the target program
scope) and recurses until all schedules for S become one-to-
one mapping. Note that the number of rows of the produced
schedules may be more than 2d+1 but such schedules are
always convertible to a 2d+1 form. A polyhedral dependence
graph, PoDG, captures all data dependences among statements
(Sec. III-A). All edges in the PoDG - i.e., dependence poly-
hedra - are tagged as unsatisfied before starting Algorithm 2.

Algorithm 2 first computes the Strongly Connected Com-
ponents (SCC) of statements in S at loop level k based on
unsatisfied dependence edges - i.e., dependences not carried by
the outer dimensions - in PoDG and stores them into SccSet
(lines 2–3). For each Scca in SccSet, Algorithm 4 is applied
and computes a permutation for level k, so that all statements
in Scca are fused at level k (lines 5–7). Note that this process
always succeeds because at least the original loop order sat-
isfies all dependences among Scca. Algorithm 5 computes the
fusion/distribution at level k, for all statements in S based on
profitability and legality of fusion (line 9). The statements with
identical βk value are fused, and grouped into Fusea ∈FuseSet.
Algorithms 4 and 5 also provide the constraints on loop
reversal (the sign of α) and multidimensional retiming (ck)
to ensure only legal transformations are considered. For each
statements in Fusea reversal and retiming are computed, under
polyhedral legality constraints [21], [30], and to minimize the
cost functions of reuse distance and skewing factor (line 11).
After computing the schedule for statements in Fusea at level
k, it recursively processes the next dimension k+ 1 if Fusea
contains a statement such that all loop iterators are not yet
scheduled in the schedule ΘSi until current level k (line 13).
If Fusea is a single SCC at level k (line 15), Fusea is passed
to Algorithm 3 that tries to perfectly fuse all statements so

Algorithm 2: Affine transformation
Input : S : set of statements Si,

PoDG : polyhedral dependence graph,
k : current nest level, or dimension,
niterSi : # iterators not yet scheduled in ΘSi

begin1
PoDG′ := subset of PoDG w/o satisfied dependence;2
SccSet := compute SCCs of PoDG′;3
// Intra-SCC transformation (permutation)4
for each Scca ∈ SccSet do5

if ∃Si ∈ Scca : niterSi ≥ 1 then6
compute permutation and get constraints on7
reversal (αk,∗) and retiming (ck) at level k
for statements in Scca (Algorithm 4);

// Inter-SCC transformation (fusion)8
FuseSet := compute βk and get constraints on9
reversal and retiming for statements in S
(Algorithm 5);

for each Fusea ∈ FuseSet do10
solve constraints on reversal and retiming from11
Algorithms 4, 5 and compute αk,∗ and ck for
statements in Fusea;
// Recursive process for next dimension12

if ∃Si ∈ Fusea : niterSi ≥ 1 then13
done := f alse;14
if Fusea is a SCC at level k then15

done := Algorithm3(Fusea, PoDG, k+1);16

if !done then17
Algorithm2(Fusea, PoDG, k+1);18

else if ∃Si ∈ Fusea : niterSi = 0 then19
compute βk+1 of stmt. in Fusea (Algo. 5);20

end21

Output: Dimensions k..m of schedules ΘSi for all
statements

as to enable loop tiling and leverage data locality of the loop
dimension at level k (line 16). This process can fail while
Algorithm 2 always succeeds (line 18). Finally, βd+1, the
statement order at the innermost loop body, is computed by
Algorithm 5 (lines 19–20).

Algorithm 3 computes the schedules at the given nest level
k as with Algorithm 2. The difference is that all statements in S
are passed to Algorithm 4 and legal αk,∗ to fuse all statements
are searched for (line 2). This process does not always succeed
because S can contain multiple SCCs. The solutions of deeper
nest levels are recursively explored (line 9); Algorithm 3
succeeds only when all solutions until the innermost dimension
are successfully found.

Algorithm 4 computes |αk,∗|, the loop permutation at level
k, for the given statements S so that Θ2k, the 2k-th row of
the schedule, is legal and as close to the best permutation
order by the DL model (Sec. III-B1) as possible. Let d denote
the number of loop iterators enclosing Si and PSi denote the
d×d permutation matrix corresponding to the most profitable
permutation order by DL model for statement Si, e.g., the
loop iterators to be located at the outermost and innermost



Algorithm 3: Affine transformation for perfect fusion
Input : S : set of statements Si,

PoDG : polyhedral dependence graph,
k : current nest level, or dimension,
niterSi : # iterators not yet scheduled in ΘSi

begin1
succeed := compute permutation and get constraints2
reversal and retiming for statements in S (Algo. 4);
if !succeed then3

return f alse;4

for each Si ∈ S do5

β
Si
k := 0; // All statements are fused at level k6

solve constraints from Algorithms 4 and compute7
reversal and retiming for statements in S;
if ∃Si ∈ S : niterSi ≥ 1 then8

done := Algorithm3(S, PoDG, k+1);9
if !done then10

return f alse;11

else if ∃Si ∈ S : niterSi = 0 then12
compute βk+1 of statements in S (Algorithm 5);13

end14
Output: Dimensions k..m of the scheduling matrices, or

return f alse if no solution is found

Algorithm 4: Affine loop permutation
Input : S : set of statements Si,

PoDG : subset PoDG w/o satisfied dependence,
k : current nest level, or dimension,
PSi : best permutation matrix of Si by DL

begin1
repeat2

hash := get next combo of row numbers for P;3
if hash = /0 then4

return f alse;5

for each Si ∈ S do6

r := hash(Si); // current row number for PSi7

for each j ∈ {1..dSi} do8

|αSi
k, j| := PSi

r, j;9

// Sign of α
Si
k, j (i.e., reversal) is unfixed10

C := /0;11
for each dependence in PoDG do12

cr := build legality constraints on reversal13
(sign of αk,∗) and retiming (ck);
C := C∩{cr};14

until solutions of αk,∗ and ck for C exist ;15
end16
Output: Loop permutation at level k and constraints C

on reversal and retiming, or return f alse if no
solution is found

are respectively given by inner products PSi
1 · ~iSi and PSi

d · ~iSi .
Let hash denote a hash table whose key is Si ∈ S and value
is r ∈ {1, · · · ,d} that points a row of PSi . At each round of
the Algorithm 4, hash is updated by a new combination of

row numbers (line 3). Note that hash has smaller values - i.e.,
points iterators to be located outer - at earlier round since the
schedules are computed from the outermost dimension. If all
combinations are tested, Algorithm 4 returns false to indicate
there is no possible solution (lines 4–5). A combination of
permutations is set to |αk,∗| for all statements based on
the P and hash (lines 6–10); the legality constraints of all
unsatisfied dependence in the PoDG for current permutations
are collected (lines 11–14). If there exist a valid retiming
and/or reversal that satisfies all constraints C (line 15), then the
current permutations |αk,∗| is legal and Algorithm 4 returns all
computed information, |αk,∗| and constraints C on the sign of
the non-null component of αk,∗ (i.e., reversal) and on ck (i.e.,
retiming).

Algorithm 5: Affine loop fusion/distribution
Input : S : set of statements Si,

SccSet : set of SCCs Scca,
PoDG : subset PoDG w/o satisfied dependence,
k : current nest level, or dimension

begin1
C := /0;2
FuseSet := /0;3
repeat4

Scca := SCC of largest dimensionality in SccSet;5
SccSet := SccSet−{Scca};6
Fusea := Scca; // set of statements to be fused7
repeat8

for each Sccb ∈ SccSet do9
if precondition(Fusea, Sccb) then10

Cl := /0;11
PoDG′ := subset of PoDG whose12
edges connect Fusea and Sccb;
for each dependence in PoDG’ do13

cr := build legality constraints14
on reversal and retiming;
Cl := Cl ∩{cr};15

if solutions for Cl exist ∧16
parallelcondition(Fusea, Sccb) then

SccSet := SccSet−{Sccb};17
Fusea := Fusea∪Sccb;18
C := C∩Cl ;19

until Fusea is unchanged during the iteration ;20
FuseSet := FuseSet ∪{Fusea};21

until SccSet = /0 ;22
compute βk of statements in S based on FuseSet23
and inter-SCC dependences;

end24
Output: βk, constraints C on reversal and retiming, and

FuseSet to keep sets of statements to be fused

After Algorithm 4 computes a permutation so that state-
ments in a SCC may be fused at level k, Algorithm 5 computes
which SCCs in SccSet are fused/distributed at level k and
implements the fusion in the schedule via the βk coefficients
for all statements in S. At each round of the Algorithm 5,
Scca, the SCC that contains a statement with the largest
dimensionality, is popped from SccSet and used as the initial
set of statements to be fused, Fusea (lines 5–7). In the manner



of a greedy algorithm, it finds the maximum set of SCCs that
can be legally and profitably fused to Fusea (lines 8–20).

For Sccb ∈ SccSet, we currently employ the following
conditions to fuse Sccb and Fusea. (1) Sccb is a direct prede-
cessor/successor of Fusea or no dependences between Fusea
and Sccb except for input dependence (legality precondition
at line 10). (2) ∃(Si,S j) ∈ Fusea×Sccb : Si and S j refer to an
array via same access function for 1 to k dimensions, - i.e.,
sub-matrices of 1 to k columns are equivalent between access
matrices f SiΘSi−1 and f S j ΘS j−1 (profitability precondition at
line 10). (3) As discussed in Sec. III-B2, fusion reduces
DL memory cost (profitability precondition at line 10). (4)
There exists a legal combination of reversal and retiming
on unsatisfied dependences of the PoDG to fuse Fusea and
Sccb. (lines 11–16). (5) The fusion does not kill outermost
parallelism, i.e., neither of Fusea nor Sccb are outermost
parallel loop ∨ the fused loop is also parallel (parallelcondition
at line 16).

Condition (2) checks whether the reuse distance between
two array accesses is constant. Condition (4) regarding paral-
lelism is evaluated based on ∆e, the dependence vectors of the
transformed code, as discussed in Sec. IV-A. After the above
greedy process, Fusea, the set of statements to be fused, is
added to FuseSet (line 21). Finally, βk for all statements in S is
computed so as to satisfy all inter-SCC dependences and fusion
grouping of FuseSet (line 23); all the computed information,
βk, constraints C on reversal and retiming, and grouping of
FuseSet are returned.

IV. AST-BASED TRANSFORMATIONS

After the above polyhedral transformation, typically the
statements with data locality are fused into the same loop nest
whose loops are legally and profitably permuted as needed.
Such a loop nest is a good target for AST-based transforma-
tions. Loop dependence information is captured in the form of
loop dependence vectors, which is the base of legality analysis
of our AST-based loop transformation stage. These can be
derived from the polyhedral framework as needed.

This section introduces an AST-based transformation
framework that applies a sequence of individual loop restruc-
turings to each loop nest. This AST-based framework can be
categorized into three stages: parallelism detection, loop tiling,
and intra-tile optimizations.

A. Detection of Parallelism

Loop level parallelism can be classified into three kinds:
doall parallelism - i.e., no dependence among loop iterations,
pipeline parallelism - i.e., all loop dependences are uniform
and convertible into wavefront doall, and reduction parallelism
- i.e., all loop carried dependences are due to commutative and
associative computations. Note that reduction parallelization is
widely supported both in research and academic compilers; we
employed a standard approach to detect reduction parallelism
based on pattern recognition of commutative and associative
computations. This section briefly introduces a simple paral-
lelism detector in the proposed framework.

Dependence vectors are a standard data dependence rep-
resentation [1] which offers sufficient accuracy for our paral-

lelism detector. While the previous affine-based transforma-
tion algorithm leveraged dependence polyhedra for model-
ing data dependences, offering the finest level of precision,
limiting our attention to dependence vectors for our AST-
based transformation framework is motivated by the lack of
requirement for AST code to have affine control. Since AST-
based transformations do not require the loops to have affine
control, they can be applied on a broader class of programs
than polyhedral transformations. Dependence vectors can be
extracted seamlessly from dependence polyhedra if the code
is affine, or be computed by other (sometimes conservative)
analysis for non-affine codes [1].

Given a loop at level k in a loop nest, the detector first
collects all dependences vectors ∆e such that its source and
target statements are included in loop and ∆e is not satisfied
by the outer loops - i.e., ∀l < k : ∆e

l = 0. Further, let ∆reduce

be the set of the dependence vectors derived from reduction
computation in loop. According to the definition of each
parallelism, the kind of parallelism for loop is determined in
the following manner.

• doall if ∀∆e : ∆e
k = 0

• pipeline if ∀∆e : ∆e
k = 0 ∨ (∆e

k ≥ 1∧∆e
k+1 ≥ 0) 1

• reduction if ∀∆e : ∆e
k = 0 ∨ (∆e

k ≥ 1∧∆e ∈ ∆reduce)

• reduction & pipeline if ∀∆e : ∆e
k = 0 ∨ (∆e

k ≥ 1∧
∆e

k+1 ≥ 0) ∨ (∆e
k ≥ 1∧∆e ∈ ∆reduce)

The second condition for pipeline parallelism intends that the
loop nest has at least two-level pipeline parallelism, i.e., nest
levels k and k + 1. The fourth condition captures the cases
where a loop has some dependence vectors to be handled as
reduction and others to be handled as pipeline parallelism.

In our approach, the loop parallelism at the outermost
possible level is always used regardless of kind - i.e., doall,
pipeline or reduction - after data locality optimizations by the
polyhedral phase. This strategy contrasts with other polyhedral
frameworks which focus on implementing outermost doall
parallelism. Figure 5 shows example output codes via those
different approaches.

• Poly+AST approach
//doall parallel
  for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
      A[i][j] = alpha * B[i][j];
//reduction parallel
  for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
      S[j] += alpha * X[i][j];
//pipeline parallel
  for (i = 0; i < N; i++)
    for (j = 1; j < N-1; j++)
      C[i][j] = 0.33 * (C[i-1][j]
            + C[i][j] + C[i+1][j]);

• doall-only approach
//doall parallel
  for (i = 0; i < N; i++)
    for (j = 0; j < N; j++)
      A[i][j] = alpha * B[i][j];
//doall parallel
  for (j = 0; j < N; j++)
    for (i = 0; i < N; i++)
      S[j] += alpha * X[i][j];
//doall parallel
  for (j = 1; j < N-1; j++)
    for (i = 0; i < N; i++)
      C[i][j] = 0.33 * (C[i-1][j]
            + C[i][j] + C[i+1][j]);

Fig. 5: Examples of parallelized outputs

The polyhedral phase in our approach selects the loop
order of i, j for all three examples because of temporal
and/or spatial data locality; the outermost doall, reduction and
pipeline parallelisms are respectively used. On the other hand,
other approaches considering only doall parallelism apply

1∆e
k+1 ≥ 0 assumes the application of skewing prior to parallelization.



loop permutation for the second and third examples so as to
implement outermost doall parallelism although such permu-
tations could affect per-thread data locality via cache/TLB and
vectorization efficiency2.

B. Loop Tiling

Loop tiling is an important transformation to enhance
temporal and spatial data reuse in memory hierarchies. In the
proposed framework, the loop nest candidate for tiling can
possibly contain dependence vectors with negative elements
and hence not be fully permutable. To increase permutability
(i.e., tilability3), our framework supports loop skewing as a
preprocessing for loop tiling so as to make all dependence
vector elements non-negative if possible. We employed a
simple loop skewing algorithm to determine skewing factors
starting from the outermost loop to innermost so that the loop
nest does not contain loop dependence vectors with negative
elements. As shown in Algorithm 1, skewing is applied prior
to parallelization phase in Sec. IV-A.

Once the code has been skewed as needed to ensure that
we have at least two loops with forward dependences only, the
code is syntactically tiled along these now-permutable loops.
We use a fixed tile size and limit to implementing a single-
level rectangular tiling. While loop tiling is a transformation
that can be easily implemented in the polyhedral model, our
experience shows that performing a simple syntactic tiling
of the loops by implementing a combination of AST-level
strip-mining and interchange may deliver a slightly simpler
loop structure than when using PoCC [18]. We observe that
numerous syntactic aspects of the tiled code generated by
PoCC can be refined thanks to the syntactic simplifications
implemented in the polyhedral code generator CLooG [25],
but we did not experiment with this tuning of CLooG.

C. Intra-tile Optimizations

While the loop structure (i.e., permutation order and fu-
sion/distribution) of tiling loops must obey the polyhedral
transformation in Sec. III-C, there is flexibility to employ addi-
tional transformations within individual tiles. For instance, the
PoCC framework may permute intra-tile loops in the generated
code using a basic inner-most loop SIMD profitability model.

In our framework, we currently support register tiling -
i.e., multi-level loop unrolling - as an intra-tile optimization.
Register tiling is an important optimization to enhance register
reuse by increasing the number of statements in the loop body.
Our experiments showed that up to 2× additional performance
improvement can be obtained by register tiling. In the current
implementation, the unrolling factor of each nest level is found
by empirical search, though this approach can be improved
by leveraging past work on selection of unroll factors. Loops
within a tile are unrolled when they are permutable and have
rectangular iteration space.

Other intra-tile optimizations such as additional permu-
tation and distribution to enhance SIMD parallelism will be
addressed in future work. Likewise, parametric loop tiling and

2Vectorization can be enhanced by the additional per-tile optimization if
loop tiling is applicable (see Sec. V).

3This paper focuses on rectangular tiling.

explorations of optimal tile sizes and unrolling factors in our
framework are subjects for future work.

• Pipeline parallel via OpenMP extension
#pragma omp parallel for nest(2)
for (i = 1; i < N-1; i++) {
  for (j = 1; j < N-1; j++) {
#pragma omp await source(i-1,j) source(i,j-1)
    C[i][j] = 0.2 * (C[i][j]
         + C[i-1][j] + C[i+1][j]
         + C[i][j-1] + C[i][j+1]);
} }
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•Wavefront doall via loop skewing
for (i = 2; i <= 2*N-4; i++) {
#pragma omp parallel for
  for (j = max(1,i-N+2); j < min(N-2,i-1); j++)
    C[i-j][j] = 0.2 * (C[i-j][j]
         + C[i-j-1][j] + C[i-j+1][j]
         + C[i-j][j-1] + C[i-j][j+1]);
// Implicit barrier
}
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Fig. 6: Pipeline parallel vs. wavefront doall

D. Runtime Support for Reduction and Pipeline Parallelism

Based on the detected parallelism per loop, additional
runtime support may be required. The OpenMP standard
already supports scalar/array reductions for FORTRAN and
scalar reductions for C language. We employ two extensions to
OpenMP: support of array reductions in C [31] and support of
cross-iteration synchronizations for pipeline parallelism [19].
The challenge for array reductions in C is the size detection
of reduction arrays, which can be analyzable based on the
array access function and domain information per statement -
i.e., the upper/lower bound of each array dimension can be
represented in a symbolic expression of global parameters.
There is a proposal to support pipeline parallelism via point-
to-point synchronizations in the OpenMP standard [19], which
we used in our framework. It is well-known fact that pipeline
parallelism has generally better scalability than wavefront doall
due to synchronization efficiency and data locality, and this is
confirmed by our experiments below.

V. EXPERIMENTAL RESULTS

A. Experimental Protocol

Machines Experimental results presented in this paper have
been obtained on two Linux-based SMP systems: a dual quad-
core 2.8GHz Intel Core i7 (Nehalem) and a quad eight-core
3.86GHz IBM Power7 (Power7). On Nehalem, all experimen-
tal variants were compiled with Intel C/C++ compiler 12.0
with options of “-fast -xHOST” for sequential run, “-fast -
xHOST -parallel” for Intel auto-parallelization, and “-fast -
xHOST -openmp” for the Pluto and poly+ast (our work) auto-
parallelizations. On Power7, all variants were compiled by
IBM XL C/C++ compiler 11.1 with options of “xlc -O5” for
sequential, “xlc r -O5 -qsmp=auto” for IBM auto-parallel, and
“xlc r -O5 -qsmp=omp” for Pluto and poly+ast.

Benchmarks We used PolyBench/C 3.2 [17] for the per-
formance evaluation. Table II shows the description of the
representative set of PolyBench/C benchmarks we evaluated
in our paper. We used the standard dataset for PolyBench
both on Nehalem and Power7 with the following exception.
For fdtd-2d, jacobi-1d-imper, jacobi-2d-imper, and seidel-2d



(benchmarks with pipeline parallelism), we used the large
dataset so as to provide sufficient parallelism.

Benchmark Description
2mm 2 Matrix Multiplications (D=A.B; E=C.D)
3mm 3 Matrix Multiplications (E=A.B; F=C.D; G=E.F)
adi Alternating Direction Implicit solver
atax Matrix Transpose and Vector Multiplication
bicg BiCG Sub Kernel of BiCGStab Linear Solver

cholesky Cholesky Decomposition
correlation Correlation Computation
covariance Covariance Computation

doitgen Multiresolution analysis kernel (MADNESS)
fdtd-2d 2-D Finite Different Time Domain Kernel

fdtd-apml FDTD using Anisotropic Perfectly Matched Layer
gemm Matrix-multiply C=alpha.A.B+beta.C
gemver Vector Multiplication and Matrix Addition

gesummv Scalar, Vector and Matrix Multiplication
jacobi-1d-imper 1-D Jacobi stencil computation
jacobi-2d-imper 2-D Jacobi stencil computation

mvt Matrix Vector Product and Transpose
seidel-2d 2-D Seidel stencil computation

symm Symmetric matrix-multiply
syr2k Symmetric rank-2k operations
syrk Symmetric rank-k operations

trisolve Triangular solver

TABLE II: Evaluated benchmarks in PolyBench

Experimental variants We implemented the polyhedral and
AST-based transformation framework as a part of the PACE
compiler framework [32]. We compared the proposed approach
with the native compilers and pocc (the Polyhedral Compiler
Collection) version 1.3, which is a flexible source-to-source
iterative and model-driven compiler, embedding many of the
state-of-the-art tools for polyhedral compilation [18].

We evaluated the following six experimental variants for
each benchmark. (1) icc-auto / xlc-auto represents the au-
tomatic parallelization by Intel / XL compiler respectively.
(2) pocc is the integrated polyhedral optimization supported
in pocc, which also enables loop tiling for locality opti-
mization. It implements the Pluto algorithm [15] using the
smart-fuse heuristic for fusion, performs tiling and coarse-
grain parallelization of tiles, possibly using a wavefront tile
schedule if no outer-tile loop is parallel in the code. (3)
pocc vect employs optimizations for efficient vectorization
after the parallelization and localization by pocc including the
application of additional loop permutation to the tiled code
so as to place a good vector loop candidate at the innermost
position in the tile. (4) iterative is the iterative compilation
approach supported in pocc; this approach explores legal
transformation space for outer-most fusion/distribution and
also support loop tiling [26]. The number of generated variants
per benchmark varies between 1 and 176, and auto-tuning has
been performed on the target machine by running all variants.
The iterative entry reports the performance achieved by the
best variant found through auto-tuning. (5) iterative vect is the
iterative approach with the complementary PoCC optimization
for SIMD vectorization. (6) poly+ast is the polyhedral and
AST-based transformation framework proposed in this paper,
implementing the optimization algorithm shown in Alg. 1.

All experimental variants support loop tiling and we used
the tile size of 32 for each tilable dimension for all benchmarks

except for fdtd-2d, jacobi-1d-imper, jacobi-2d-imper, and seidel-
2d, where 5 is used for the outer time-tile size. In addition for
all variants we applied 2-level register tiling to the tiled loops
as discussed in Section IV-C. When applicable, the innermost
and second innermost loops within tiles are unrolled by factor
of 1, 2, 4, 6 or 8; the performance numbers with the best
unrolling factors are reported in the following sections4.

B. Performance Results on Nehalem with 8 cores

The performance in GFLOP/s on Nehalem using 8 cores
are shown in Figures 7, 8, 9; we divided all benchmarks into
three figures based on the major source of parallelism5.

Figure 7 shows the performance of the benchmarks whose
major source of parallelism is doall. The experimental vari-
ants using the polyhedral model, pocc, pocc vect, iterative,
iterative vect, and poly+ast, show better performance than
icc-auto except for gesummv. For the variants of the pocc
framework, the iterative compilation approaches - i.e., iterative
and iterative vect - show equivalent or higher performance
than model-driven compilation approaches - i.e., pocc and
pocc vect; the vect optimization for efficient vectorizations
also brings additional performance improvements except for
syrk and syr2k.

On the other hand, the proposed model-driven compilation
approach, poly+ast, shows higher performance than model-
driven pocc and pocc vect and iterative compilation iterative
and iterative vect for 2mm, 3mm, doitgen, and gemm and
equivalent performance for other benchmarks. The major dif-
ference between poly+ast and pocc variants are inter-tile loop
orders. Although the pocc variants can permute loops within
a tile so as to improve the vectorization efficiency, permuting
tiling loops is impossible at this stage. On the other hand, the
polyhedral phase of poly+ast chooses the profitable loop order
based on the DL memory cost and then loop tiling and intra-tile
optimizations are applied later in the AST-based phase. As a
consequence, the transformed codes by poly+ast are amenable
to inter-tile data locality on multiple levels of cache and TLB.
This leverages the advantages of both polyhedral and AST-
based transformations in a synergistic manner.
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Fig. 7: PolyBench on 8-core Nehalem (doall parallelism is
dominant)

4Due to the huge search space of iterative approach, the auto-tuning without
register tiling was first performed and then register tiling was applied.

5There are some combinations of benchmarks and experimental variants
which could not be compiled or executed.



pipeline parallelism reduction parallelism
adi cholesky fdtd-2d jacobi-1d jacobi-2d seidel-2d trisolv atax bicg correl covar gemver mvt symm

nehalem off 2.31 8.26 15.86 10.63 12.01 11.21 3.36 2.61 2.60 12.75 12.87 3.45 2.47 7.36
nehalem on 2.70 12.87 22.30 11.66 17.81 11.36 3.48 6.65 6.91 13.68 13.74 6.57 7.28 9.01
power7 off 3.43 29.45 25.50 7.89 15.31 15.92 3.26 1.74 1.74 22.66 22.38 4.24 1.44 25.94
power7 on 6.34 29.39 26.20 17.34 16.76 15.99 4.06 8.87 8.88 11.85 11.83 17.05 8.94 14.40

TABLE III: Performance when turning off/on runtime supports for pipeline and reduction (GFLOP/s)
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Fig. 8: PolyBench on 8-core Nehalem (pipeline parallelism is
dominant)
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Fig. 9: PolyBench on 8-core Nehalem (contains reduction
parallelism)
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Fig. 10: PolyBench on 32-core Power7 (doall parallelism is
dominant)

Figure 8 shows the performance numbers of benchmarks
whose major source of parallelism is pipeline. There is an addi-
tional variant, poly+ast pipe-off, which shows the performance
using wavefront doall as with pocc variants, instead of pipeline
parallelism by runtime supports (Sec. IV-D). The variants of

0

5

10

15

20

25

30

adi cholesky fdtd-2d jacobi-1d jacobi-2d seidel-2d trisolv

G
FL

O
P/

s

xlc-auto pocc pocc vect iterative
iterative vect poly+ast pipe-off poly+ast

Fig. 11: PolyBench on 32-core Power7 (pipeline parallelism
is dominant)
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Fig. 12: PolyBench on 32-core Power7 (contains reduction
parallelism)

the pocc framework, pocc, pocc vect, iterative and iterative
vect, have similar performance except for cholesky while
poly+ast pipe-off shows higher performance for adi, cholesky,
and fdtd-2d due to better selections of transformations such
as permutation and retiming. Further, the runtime supports for
pipeline parallelism brought additional improvements for most
benchmarks. The details of performance improvement by the
pipeline and reduction runtime are summarized in Table III.

Figure 9 show the performance numbers of benchmarks
that include reduction parallelism. The variant poly+ast red-
off stands for the version that uses inner doall parallelism
instead of reduction parallelism at the outermost. Due to
the finer-grained parallelism, poly+ast red-off is slower than
the pocc variants for atax, bicg, and gemver while poly+ast
is the winner for all benchmarks. Because of the reduction
parallelism, poly+ast has larger flexibility for loop orders and
selected loop permutations with outermost parallelism and
good data locality.



C. Performance Results on Power7 with 32 cores

The performance in GFLOP/s on Power7 using 32 cores
are shown in Figures 10, 11, 12, each of which corresponds to
the benchmarks with doall, pipeline and reduction parallelism.
On Power7, poly+ast shows much higher performance than
both of iterative and model-driven approaches of pocc even
for the benchmarks without pipeline nor reduction parallelism.
This could stem largely from the large L3 cache (32MB) and
TLB (32MB) of Power7, where inter-tile loop orders can have
larger impact on the performance compared with Nehalem.
As with the results in Sec. V-B, Figures 11 and 12 show
the additional benefits for poly+ast thanks to the pipeline
and reduction runtimes. However, the reduction support did
not always bring performance improvement; poly+ast red-off
shows better performance than poly+ast for correl, covar and
covar. A challenge for efficient reduction is the aggregation
of partial results into the final result. The current runtime
only support sequential aggregation across all threads and
thereby can be scalability bottleneck for large size of arrays.
Further, this bottleneck could be more critical on Power7 with
larger number of cores than Nehalem. This issue of sequential
aggregation will be investigated in future work.

D. Performance Breakdown

Table IV show the performance breakdown of the poly+ast
approach, which shows the performance in GFLOP/s when
turning on specific functionalities in the proposed framework.
The column fuse represents the performance when only loop
fusion is turned on, fuse + pm is the performance with fusion
and permutation, tiling is the case where only loop tiling is
applied, and all is the full functionality of poly+ast. It shows
that selecting good permutation order is critical for 2mm and
2mm, while tiling brings certain performance gain even with-
out permutation/fusion. The combination of all functionality
always shows the best performance for these benchmarks.

Nehalem 8-core Power7 32-core
2mm 3mm jacobi-2d 2mm 3mm jacobi-2d

fuse 2.23 1.82 9.04 1.09 0.76 5.80
fuse+pm 7.25 6.24 9.04 19.22 16.73 5.80

tiling 10.72 8.65 7.68 10.49 8.44 5.03
all 19.09 14.14 10.92 62.63 53.57 6.98

TABLE IV: Breakdown of poly+ast approach (GFLOP/s)

VI. RELATED WORK

There is an extensive body of literature on the polyhedral
model and AST-based transformations. We focus on past
contributions that are most closely related to this paper.

AST-based transformation frameworks have a long his-
tory [1], [2]. There are a lot of pioneering works for paral-
lelizing and locality optimizing compilers in both research
and industry [3], [4], [5], [6], [7]. Loop fusion heuristics
were initially designed as locality-enhancing optimizations, in
isolation from other loop nest transformations [8], [9], [10],
[11]. These non-polyhedral approaches are restricted in their
ability to model the interplay of loop fusion with equally
important optimizations such as loop tiling. The lack of a
powerful representation for dependences and composition of

transformations also restricted the study of enabling loop
transformations to enhance the applicability of loop fusion.

Several heuristics for loop fusion combined with tiling have
been proposed [12], [13], but do not capture the interplay be-
tween loop transformations, back-end optimizations performed
by the compiler, and components of the target architecture.
Megiddo and Sarkar [10] proposed a way to perform fusion
for an existing parallel program by grouping components in a
way that parallelism is not disturbed.

Recent research on integrating fusion and tiling in a single
heuristic based on the polyhedral model led to the Pluto
framework by Bondhugula et al. [14], [15]. Pluto [28] is a
polyhedral framework for locality and parallelism optimiza-
tions, which handles the whole loop transformations by solving
ILP formulation based on dependence distances. It inherits
the flexibility of the tiling hyperplane method [33], [34] to
build complex sequences of enabling and communication-
minimizing transformations, subsuming most compositions of
loop transformations into a single optimization step. It does
identify good parallelism-locality trade-offs using a target-
independent cost model. However it suffers several key de-
ficiencies in its effort to integrate all performance objectives,
as illustrated in Sec. II and in our experiments. Pouchet et al.
used empirical search in order to find better fusion/code motion
transformations [26], [24], whose performance is reported as
pocc-iterative in our experiments. While it copes with the
fusion cost model limitations, this approach still suffers from
the data locality minimization objective inside the chosen
outer-loop fusion, and performance can be greatly improved in
numerous cases, as shown in our experiments. More recent ap-
proaches to the selection of loop fusion in the polyhedral model
have been proposed, such as a cost model for loop fusion based
on the prefetch streams (especially IBM Power chips) [35]. The
R-Stream compiler integrates a cost model for joint fusion and
parallelism [36]. It balances locality optimizations with doall
parallelism while our approach first optimizes data locality in
the polyhedral phase and doall/reduction/pipeline parallelism
is detected in the latter AST-based phase. The smartfuse fusion
heuristic of Pluto (corresponding to the pocc numbers in our
experiments) has also recently been studied and refined [37].
As with the empirical search approach [26], [24], this also
focuses on the fusion cost model while the DL-based cost
model in our approach guides fusion and permutation in an
integrated manner.

As an integration approach, the CHiLL scripting sys-
tem [38] combines polyhedral and AST transformations. Note
that CHiLL expects the user to guide transformations while
our approach is fully automated by compiler heuristics.

VII. CONCLUSION

The complexity of modern multi-core processors has sig-
nificantly increased the expectations of optimizing compilers:
to achieve good performance we expect such compilers to
perform program transformations addressing all major per-
formance anomalies, such as data locality, coarse-grain par-
allelism and also fine-grain / SIMD parallelism. Previous ap-
proaches have demonstrated the benefit of using the polyhedral
compilation framework to design an integrated optimization
problem that attempts to address all performance objectives in
a single stage.



In this paper we have shown that the performance of a
state-of-the-art integrated polyhedral approach could be vastly
improved. We have shown that a decoupled optimization
approach allowed to simplify the constraints on the polyhedral
transformation stage while using more precise cost models,
leading to simpler and more effective codes to be generated.
Furthermore, we have shown that several key transformations
such as inter-tile parallelization, when performed using a
syntactic/AST framework, significantly improved performance
over conventional polyhedral frameworks. We demonstrated
strong performance improvement over both a state-of-the-art
integrated polyhedral compiler and an iterative compilation
framework that searches across certain loop fusion structures.
Our framework achieves performance improvements of up
to 3× on PolyBench/C benchmark suite executed on Intel
Nehalem and IBM Power7 processors.
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