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Introduction

• Multi-core processors → renewed interest in 
programming concurrency models 

• Goal is to reduce the burden of reasoning about 
and writing concurrent programs

• Some popular programming models:
– Fork/Join
– Actors
– Synchronous Message Passing
– Partitioned Global Address Space
– Software Transactional Memory
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Thesis

A hybrid parallel programming model that 
integrates the Fork/Join Model and the Actor 
Model helps solve certain class of problems 
more productively and efficiently than either of 
the aforementioned models individually.
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Outline

• The Fork/Join Model
• The Actor Model
• The Hybrid Model
• Applications of the Hybrid Model
• Implementation and Experimental Results
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The Fork/Join Model (FJM)

• A special case of the Task Parallel Model
• Regained popularity due to Cilk from MIT

– spawn/sync
• At Rice, we have Habanero-Java and Habanero-C

– async/finish
– soon a Habanero-Scala release
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The Fork/Join Model (FJM)

• Parent tasks forks child tasks
• Synchronization when tasks join into another task
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FJM problems

• Difficult to achieve data locality 
– tasks are free to access arbitrary data

• Fork and Join are not expressive enough for 
general synchronization and coordination between 
tasks

• Additional synchronization/coordination constructs
– Phasers
– Data Driven constructs
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Phasers

• Support Collective and Point-to-Point 
synchronization

• Pros:
– Can guarantee deadlock freedom

• Cons:
– Phaser registration limits synchronization 

between arbitrary tasks
– Blocking calls do not scale in current 

implementations when there are more tasks than 
workers
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Data-Driven Futures (DDFs)

• Arbitrary producer-consumer relationships
• Single assignment from producer
• Pros:

– Creation of task independent of data consumed
– Accesses to values inside the DDF are 

guaranteed to be race-free  and deterministic
• Cons:

– Strict ordering enforced for tasks waiting on 
multiple DDFs
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DDF – Quicksort
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Outline

• The Fork/Join Model
• The Actor Model
• The Hybrid Model
• Applications of the Hybrid Model
• Implementation and Experimental Results
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The Actor Model

• A message-based concurrency model
• First defined in 1973 by Carl Hewitt

– Research for Artificial Intelligence on Distributed 
machines

• Key concepts
– An Actor encapsulates mutable state
– Actors coordinate using asynchronous 

messaging
– Non-deterministic ordering of messages
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Actor - Lifecycle
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• new: actor instance has been created
• started: actor can receive and process messages 

sent to it
• terminated: actor will no longer process messages 

sent to it



Actors
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Actor - Interactions
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send messages to other 
actors

create new actors



Actor – PingPong Example
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Actor – pro et contra
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• Pros
– No data races
– Easier to achieve data locality
– Allows arbitrary coordination between actors

• Cons
– Harder to implement synchronous messaging
– Requires support for pattern matching on 

messages in implementations
– Hard to implement concurrent objects since 

actors serialize message processing



Outline

• The Fork/Join Model
• The Actor Model
• The Hybrid Model
• Applications of the Hybrid Model
• Implementation and Experimental Results
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The Hybrid Model
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• Uses the Async/Finish model (AFM)
–  AFM is a generalization of the FJM

• Actors mapped onto the AFM
– Mapping needs to be seamless
– No additional constraints on actors

• Benefits
– extend actor capabilities in the hybrid model
– allow arbitrary coordination patterns between 

tasks



Actors and Async/Finish Tasks
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• Actor creation: 
– synchronous operation (i.e. trivial)

• Actor termination: 
– synchronous operation (i.e. trivial)
– all future send requests can be ignored 

synchronously



Actors and Async/Finish Tasks...
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• Starting an Actor:
– will determine the finish scope for the actor
– actor will start processing messages 

asynchronously in this finish scope
– needs to keep the finish scope “alive” to process 

any messages sent to it in the future
• use lingering task technique (in a couple of 

slides)



Actors and Async/Finish Tasks...
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• Sending messages:

• possible via lingering task technique



Lingering Tasks
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• Provide a hook into some finish scope
• Use the lingering task to spawn new send and 

message processing tasks 
•   One lingering task per actor

– created when the actor is started
– lingering task completes execution only when the 

actor terminates
• no more child tasks spawned



Message Processing invariant
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• lingering task provides the finish scope
• still need to enforce invariant of actor processing 

only one message at a time
• one-to-one mapping between a message and a 

task that processes it
• use Data-Driven Controls (DDCs)



Data-Driven Control
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• has two fields 
– a data 
– an execution body

• dynamic single assignment of both fields
• task is scheduled when both data and body 

available

class DataDrivenControl
data Some-Message
body Some-Runnable



Message Processing invariant...
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• actor mailbox is a concurrent linked-list of DDCs
• DDC tasks inherit finish scope from the lingering 

task

body head

message head



Actors mapped to AFM
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• Asynchronous messaging handled
• One message processed at a time invariant 

preserved
• Additional constructs used

– lingering tasks
– data-driven controls

•   No extra constraints placed on the Actors
• Benefits:

– easier termination detection
– parallelize actors



Termination detection in actor programs
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• Two existing techniques
– users explicitly manage blocking constructs
– detect quiescence

• AFM mapping makes it easy
– wrap actors in a finish scope 
– finish scope is blocked under all async spawned 

inside it have not terminated
• actor alive → lingering task pending 
• actor terminated → lingering task complete



Hybrid Actor – PingPong
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Parallelizing Actors
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• Traditionally actor message processing (MP) has 
been sequential

• Under the AFM, we can use of two techniques to 
parallelize the MP
– Use finish construct in MP body and spawn child 

tasks (asyncs)
– allow escaping asyncs inside MP body

• WAIT! What about the single message 
processing invariant?

• use pause and resume



Pause and Resume an Actor
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• paused state
– actor will no longer process messages sent to it

• new operations:
– pause(): move from started to paused state
– resume(): move from paused to started state

• pause actor before returning from MP body
• resume actor when safe to process next message



New constructs in Hybrid model
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• Event-driven tasks in AFM
• Non-blocking receives for actors
• Stateless actors



Event-Driven Tasks
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• Actors are AFM tasks with continuations
• Actors (tasks) can resume continuations when they 

receive messages 
• Tasks can coordinate by messaging each other



Hybrid – Quicksort
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Non-blocking receives
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• Simulates synchronous communication without 
blocking

habanero-scala code



Stateless Actors
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• Actors with no state, can actively process multiple 
messages without violating actor constraints 

habanero-scala code



Hybrid Model – pro et contra
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• Pros
– easier to achieve data locality using places
– provides new coordination construct (actors) for 

arbitrary computation DAGs in AFM style
– actors seamlessly interact with any of the other 

AFM compliant constructs (DDF, Phaser, etc.)
• Cons

– possible data-races inside actors
– all started actors need to be explicitly terminated



Outline

• The Fork/Join Model
• The Actor Model
• The Hybrid Model
• Applications of the Hybrid Model
• Implementation and Experimental Results
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Hybrid Model – Applications
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• Multiple Producer-Consumer with Bounded Buffer
– producers, consumers and buffer are all actors
– producers and consumer bodies can be 

parallelized
– no data-races in the buffer as only one message 

processed at a time



Hybrid Model – Applications...
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• Pipelined Parallelism
– natural fit with the AM since each stage can be 

represented as an actor
– single message processing
– stages however need to ensure ordering of 

messages while processing them
– introduce parallelism within the stages to reduce 

effects of slowest stage of pipeline
– e.g. Sieve of Eratosthenes



Hybrid Model – Applications...
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• Speculative Parallelization
– common while processing data structures such 

as trees and graphs
– each node represented as an actor
– nodes can coordinate with other nodes for 

dependences but execute in parallel when no 
dependences exist

– hybrid model can be used to exploit the 
parallelism inside the actors

– e.g. Online (Hierarchical) Facility Location



Outline

• The Fork/Join Model
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Habanero-Scala
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• Reference implementation of the hybrid model
• Scala is the host language

– DSL features mean no new compiler required
– runs on the JVM like Habanero-Java (HJ)

• use library approach to port HJ constructs 
• use Scala DSL to retain close to HJ syntax

– pattern matching constructs allows elegant 
support for actors

• Supports finish, async, futures, DDF, Phasers,... 



Habanero-Scala Actors
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• heavy actors
– standard Scala actors extended to fit the hybrid 

model
– no support for pause/resume
– heavy as standard Scala actors use exceptions for 

control flow
• light actors

– support pause resume (thus non-blocking receives)
– use DDCs for control flow
– supports become/unbecome operations that allow 

actor to change behavior



Experimental Setup
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• Intel Xeon 2.4GHz system
• 16-core (quad-socket, quad-core per socket) 
• 32 GB memory, running Red Hat Linux (RHEL 5)
• Sun Hotspot JDK 1.6
• Scala version 2.9.1.final
• latest versions of Habanero-Java and Habanero-

Scala from Rice subversion repository
• geometric mean of best eight out of ten runs in the 

same JVM instance reported



Ping-Pong Benchmark
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• measures raw message throughput
• Jetlang fastest, provides a low-level messaging API
• HS Light actor faster than standard Scala actors: no exceptions



Chameneos Benchmark
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• measures cost of synchronization
• Jetlang again fastest
• HS Light actor faster than standard Scala actors



Quicksort Benchmark
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• Hybrid solution fastest, up to 22% faster than pure Actor solution
• Hybrid faster than DDFs for larger arrays as evaluation from partial 

results gets more profitable
• Habanero Isolation based solution does not scale



Sieve of Eratosthenes
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• Phaser solution fastest: tuned to not create more tasks than workers
• Hybrid solution up to 10% faster than Light actor solution
• Hybrid solution faster than Jetlang solution
• Pause-Resume faster than Finish version
• Heavy actor faster than Scala version: thread binding benefits



Hierarchical Facility Location
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• Larger alpha → more customers to process while creating children → more 
benefits of parallelism from hybrid model

• Hybrid solution fastest, up to 11% faster than pure Actor solution
• Heavy actors faster than Scala actors: thread binding



Contributions

• A hybrid programming model that integrates the 
Fork/Join model and the Actor model

• An implementation: Habanero-Scala
• the Actor model using data-driven constructs 

in the Async/Finish model
• the hybrid programming model supporting 

async/finish/… and pause/resume
• A study of application characteristics that are 

amenable to being more efficiently solved using 
the hybrid model compared to the FJM or AM
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Future work

• Batch message processing, as in Jetlang, to 
avoid extraneous creation of tasks

• Use the Hybrid model to port Async Finish model 
constructs to a distributed memory system 

52



Acknowledgments

• Vivek Sarkar 
• Rest of the Thesis Committee

– Robert S. Cartwright Jr
– Swarat Chaudhuri

• Habanero Group
– Vincent Cavé  
– Dragoș Sbîrlea
– Sağnak Taşırlar

53



Thank you!
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