
Habanero-Scala: A Hybrid
Programming model integrating

Fork-Join and Actor models

MS Thesis Defense
November 2011

Shams Imam
Rice University

Introduction

• Multi-core processors → renewed interest in
programming concurrency models

• Goal is to reduce the burden of reasoning about
and writing concurrent programs

• Some popular programming models:
– Fork/Join
– Actors
– Synchronous Message Passing
– Partitioned Global Address Space
– Software Transactional Memory

2

Thesis

A hybrid parallel programming model that
integrates the Fork/Join Model and the Actor
Model helps solve certain class of problems
more productively and efficiently than either of
the aforementioned models individually.

3

Outline

• The Fork/Join Model
• The Actor Model
• The Hybrid Model
• Applications of the Hybrid Model
• Implementation and Experimental Results

4

The Fork/Join Model (FJM)

• A special case of the Task Parallel Model
• Regained popularity due to Cilk from MIT

– spawn/sync
• At Rice, we have Habanero-Java and Habanero-C

– async/finish
– soon a Habanero-Scala release

5

The Fork/Join Model (FJM)

• Parent tasks forks child tasks
• Synchronization when tasks join into another task

6
[image source: http://www.coopsoft.com/ar/ForkJoinArticle.html]

FJM problems

• Difficult to achieve data locality
– tasks are free to access arbitrary data

• Fork and Join are not expressive enough for
general synchronization and coordination between
tasks

• Additional synchronization/coordination constructs
– Phasers
– Data Driven constructs

7

Phasers

• Support Collective and Point-to-Point
synchronization

• Pros:
– Can guarantee deadlock freedom

• Cons:
– Phaser registration limits synchronization

between arbitrary tasks
– Blocking calls do not scale in current

implementations when there are more tasks than
workers

8

Data-Driven Futures (DDFs)

• Arbitrary producer-consumer relationships
• Single assignment from producer
• Pros:

– Creation of task independent of data consumed
– Accesses to values inside the DDF are

guaranteed to be race-free and deterministic
• Cons:

– Strict ordering enforced for tasks waiting on
multiple DDFs

9

DDF – Quicksort

10
habanero-java code

Outline

• The Fork/Join Model
• The Actor Model
• The Hybrid Model
• Applications of the Hybrid Model
• Implementation and Experimental Results

11

The Actor Model

• A message-based concurrency model
• First defined in 1973 by Carl Hewitt

– Research for Artificial Intelligence on Distributed
machines

• Key concepts
– An Actor encapsulates mutable state
– Actors coordinate using asynchronous

messaging
– Non-deterministic ordering of messages

12

Actor - Lifecycle

13

• new: actor instance has been created
• started: actor can receive and process messages

sent to it
• terminated: actor will no longer process messages

sent to it

Actors

14

Actor - Interactions

15

send messages to other
actors

create new actors

Actor – PingPong Example

16
scala code

Actor – pro et contra

17

• Pros
– No data races
– Easier to achieve data locality
– Allows arbitrary coordination between actors

• Cons
– Harder to implement synchronous messaging
– Requires support for pattern matching on

messages in implementations
– Hard to implement concurrent objects since

actors serialize message processing

Outline

• The Fork/Join Model
• The Actor Model
• The Hybrid Model
• Applications of the Hybrid Model
• Implementation and Experimental Results

18

The Hybrid Model

19

• Uses the Async/Finish model (AFM)
– AFM is a generalization of the FJM

• Actors mapped onto the AFM
– Mapping needs to be seamless
– No additional constraints on actors

• Benefits
– extend actor capabilities in the hybrid model
– allow arbitrary coordination patterns between

tasks

Actors and Async/Finish Tasks

20

• Actor creation:
– synchronous operation (i.e. trivial)

• Actor termination:
– synchronous operation (i.e. trivial)
– all future send requests can be ignored

synchronously

Actors and Async/Finish Tasks...

21

• Starting an Actor:
– will determine the finish scope for the actor
– actor will start processing messages

asynchronously in this finish scope
– needs to keep the finish scope “alive” to process

any messages sent to it in the future
• use lingering task technique (in a couple of

slides)

Actors and Async/Finish Tasks...

22

• Sending messages:

• possible via lingering task technique

Lingering Tasks

23

• Provide a hook into some finish scope
• Use the lingering task to spawn new send and

message processing tasks
• One lingering task per actor

– created when the actor is started
– lingering task completes execution only when the

actor terminates
• no more child tasks spawned

Message Processing invariant

24

• lingering task provides the finish scope
• still need to enforce invariant of actor processing

only one message at a time
• one-to-one mapping between a message and a

task that processes it
• use Data-Driven Controls (DDCs)

Data-Driven Control

25

• has two fields
– a data
– an execution body

• dynamic single assignment of both fields
• task is scheduled when both data and body

available

class DataDrivenControl
data Some-Message
body Some-Runnable

Message Processing invariant...

26

• actor mailbox is a concurrent linked-list of DDCs
• DDC tasks inherit finish scope from the lingering

task

body head

message head

Actors mapped to AFM

27

• Asynchronous messaging handled
• One message processed at a time invariant

preserved
• Additional constructs used

– lingering tasks
– data-driven controls

• No extra constraints placed on the Actors
• Benefits:

– easier termination detection
– parallelize actors

Termination detection in actor programs

28

• Two existing techniques
– users explicitly manage blocking constructs
– detect quiescence

• AFM mapping makes it easy
– wrap actors in a finish scope
– finish scope is blocked under all async spawned

inside it have not terminated
• actor alive → lingering task pending
• actor terminated → lingering task complete

Hybrid Actor – PingPong

29
habanero-scala code

Parallelizing Actors

30

• Traditionally actor message processing (MP) has
been sequential

• Under the AFM, we can use of two techniques to
parallelize the MP
– Use finish construct in MP body and spawn child

tasks (asyncs)
– allow escaping asyncs inside MP body

• WAIT! What about the single message
processing invariant?

• use pause and resume

Pause and Resume an Actor

31

• paused state
– actor will no longer process messages sent to it

• new operations:
– pause(): move from started to paused state
– resume(): move from paused to started state

• pause actor before returning from MP body
• resume actor when safe to process next message

New constructs in Hybrid model

32

• Event-driven tasks in AFM
• Non-blocking receives for actors
• Stateless actors

Event-Driven Tasks

33

• Actors are AFM tasks with continuations
• Actors (tasks) can resume continuations when they

receive messages
• Tasks can coordinate by messaging each other

Hybrid – Quicksort

34
habanero-scala code

Non-blocking receives

35

• Simulates synchronous communication without
blocking

habanero-scala code

Stateless Actors

36

• Actors with no state, can actively process multiple
messages without violating actor constraints

habanero-scala code

Hybrid Model – pro et contra

37

• Pros
– easier to achieve data locality using places
– provides new coordination construct (actors) for

arbitrary computation DAGs in AFM style
– actors seamlessly interact with any of the other

AFM compliant constructs (DDF, Phaser, etc.)
• Cons

– possible data-races inside actors
– all started actors need to be explicitly terminated

Outline

• The Fork/Join Model
• The Actor Model
• The Hybrid Model
• Applications of the Hybrid Model
• Implementation and Experimental Results

38

Hybrid Model – Applications

39

• Multiple Producer-Consumer with Bounded Buffer
– producers, consumers and buffer are all actors
– producers and consumer bodies can be

parallelized
– no data-races in the buffer as only one message

processed at a time

Hybrid Model – Applications...

40

• Pipelined Parallelism
– natural fit with the AM since each stage can be

represented as an actor
– single message processing
– stages however need to ensure ordering of

messages while processing them
– introduce parallelism within the stages to reduce

effects of slowest stage of pipeline
– e.g. Sieve of Eratosthenes

Hybrid Model – Applications...

41

• Speculative Parallelization
– common while processing data structures such

as trees and graphs
– each node represented as an actor
– nodes can coordinate with other nodes for

dependences but execute in parallel when no
dependences exist

– hybrid model can be used to exploit the
parallelism inside the actors

– e.g. Online (Hierarchical) Facility Location

Outline

• The Fork/Join Model
• The Actor Model
• The Hybrid Model
• Applications of the Hybrid Model
• Implementation and Experimental Results

42

Habanero-Scala

43

• Reference implementation of the hybrid model
• Scala is the host language

– DSL features mean no new compiler required
– runs on the JVM like Habanero-Java (HJ)

• use library approach to port HJ constructs
• use Scala DSL to retain close to HJ syntax

– pattern matching constructs allows elegant
support for actors

• Supports finish, async, futures, DDF, Phasers,...

Habanero-Scala Actors

44

• heavy actors
– standard Scala actors extended to fit the hybrid

model
– no support for pause/resume
– heavy as standard Scala actors use exceptions for

control flow
• light actors

– support pause resume (thus non-blocking receives)
– use DDCs for control flow
– supports become/unbecome operations that allow

actor to change behavior

Experimental Setup

45

• Intel Xeon 2.4GHz system
• 16-core (quad-socket, quad-core per socket)
• 32 GB memory, running Red Hat Linux (RHEL 5)
• Sun Hotspot JDK 1.6
• Scala version 2.9.1.final
• latest versions of Habanero-Java and Habanero-

Scala from Rice subversion repository
• geometric mean of best eight out of ten runs in the

same JVM instance reported

Ping-Pong Benchmark

46

• measures raw message throughput
• Jetlang fastest, provides a low-level messaging API
• HS Light actor faster than standard Scala actors: no exceptions

Chameneos Benchmark

47

• measures cost of synchronization
• Jetlang again fastest
• HS Light actor faster than standard Scala actors

Quicksort Benchmark

48

• Hybrid solution fastest, up to 22% faster than pure Actor solution
• Hybrid faster than DDFs for larger arrays as evaluation from partial

results gets more profitable
• Habanero Isolation based solution does not scale

Sieve of Eratosthenes

49

• Phaser solution fastest: tuned to not create more tasks than workers
• Hybrid solution up to 10% faster than Light actor solution
• Hybrid solution faster than Jetlang solution
• Pause-Resume faster than Finish version
• Heavy actor faster than Scala version: thread binding benefits

Hierarchical Facility Location

50

• Larger alpha → more customers to process while creating children → more
benefits of parallelism from hybrid model

• Hybrid solution fastest, up to 11% faster than pure Actor solution
• Heavy actors faster than Scala actors: thread binding

Contributions

• A hybrid programming model that integrates the
Fork/Join model and the Actor model

• An implementation: Habanero-Scala
• the Actor model using data-driven constructs

in the Async/Finish model
• the hybrid programming model supporting

async/finish/… and pause/resume
• A study of application characteristics that are

amenable to being more efficiently solved using
the hybrid model compared to the FJM or AM

51

Future work

• Batch message processing, as in Jetlang, to
avoid extraneous creation of tasks

• Use the Hybrid model to port Async Finish model
constructs to a distributed memory system

52

Acknowledgments

• Vivek Sarkar
• Rest of the Thesis Committee

– Robert S. Cartwright Jr
– Swarat Chaudhuri

• Habanero Group
– Vincent Cavé
– Dragoș Sbîrlea
– Sağnak Taşırlar

53

Thank you!

54[image source: http://www.jerryzeinfeld.com/tag/question-of-the-day/]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

