
RICE UNIVERSITY

Habanero-Scala: A Hybrid Programming model

integrating Fork/Join and Actor models

by

Shams Mahmood Imam

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Master of Science

Approved, Thesis Committee:

Vivek Sarkar, Chair
Professor of Computer Science
E.D. Butcher Chair in Engineering

Robert S. Cartwright Jr
Professor of Computer Science

Swarat Chaudhuri
Assistant Professor of Computer Science

Houston, Texas

December, 2011

ABSTRACT

Habanero-Scala: A Hybrid Programming model integrating Fork/Join and Actor

models

by

Shams Mahmood Imam

This study presents a hybrid concurrent programming model combining the pre-

viously developed Fork-Join model (FJM) and Actor model (AM). With the advent

of multi-core computers, there is a renewed interest in programming models that re-

duce the burden of reasoning about and writing efficient concurrent programs. The

proposed hybrid model shows how the divide-and-conquer approach of the FJM and

the no-shared mutable state and event-driven philosophy of the AM can be combined

to solve certain classes of problems more efficiently and productively than either of

the aforementioned models individually. The hybrid model adds actor creation and

coordination to into the FJM, while also enabling parallelization within actors. This

study uses the Habanero-Java and Scala programming languages as the base for the

FJM and AM respectively, and provides an implementation of the hybrid model as

an extension of the Scala language called Habanero-Scala. The hybrid model adds to

the foundations of parallel programs, and to the tools available for the programmer

to aid in productivity and performance while developing parallel software.

Acknowledgments

In the name of Allah, the Most Gracious and the Most Merciful.

I would like to express my sincere gratitude to my advisor, Vivek Sarkar, for his

constant support, enthusiasm, and immense knowledge. His guidance and encourage-

ment helped me in completing this thesis. I cannot imagine having a better advisor

and mentor.

I am also grateful to other members of my thesis committee, Robert S. Cartwright

Jr and Swarat Chaudhuri, for their patience, encouragement, and constructive feed-

back.

I would like to thank my colleagues in the Habanero Multicore research group

whose work provided a base I could build upon. In particular, I am grateful to

Vincent Cavè, Dragoş Sb̂ırlea and Sağnak Taşırlar for discussions on the Habanero

runtime, phasers and DDFs, respectively. I would also like to thank Jill Delsigne for

providing comments on early drafts of this thesis.

I thank my friends for all the support, camaraderie, and enjoyable times they

provided.

Finally, and most importantly, I would like to thank my family. My parents,

Khondker Ali Mahmood and Shamsun Nahar, have instilled an appreciation for ed-

ucation in me. It is thanks to my sister, Asma Imam, that I became interested in

Computer Science. They have helped me get through the difficult times and provided

constant emotional support. To them I dedicate this thesis.

Contents

Abstract ii

Acknowledgments iii

List of Illustrations vii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Statement . 2

1.3 Contributions . 2

1.4 Organization . 3

2 Background 4

2.1 The Task Parallel Model (TPM) . 7

2.1.1 The Fork-Join Model (FJM) 9

2.2 The Actor Model . 10

2.3 The Proposed Hybrid (Fork-Join + Actor) Model 11

3 The Fork-Join Model 12

3.0.1 Fork-Join Parallelism in Habanero-Java (HJ) 13

3.1 Lightweight Tasks, Async-Finish synchronization 13

3.2 HJ Properties . 14

3.2.1 Deadlock-Freedom and Determinism 14

3.2.2 Data Locality in HJ . 14

3.2.3 Data Races and Synchronized Access 15

3.2.4 Coordination between tasks 17

v

4 The Actor Model 26

4.1 Actors . 26

4.2 Desirable Properties . 29

4.3 Disadvantages and Drawbacks . 30

4.4 Actors in Scala . 31

5 The Hybrid Model 36

5.1 Actors and Async-Finish Tasks . 36

5.1.1 Termination detection . 39

5.2 New constructs under the hybrid model 42

5.2.1 Parallelization inside Actors 42

5.2.2 Non-blocking receive operations 45

5.2.3 Stateless Actors . 47

5.3 Desirable Properties . 48

5.4 Disadvantages or Drawbacks . 48

6 Implementation - Habanero-Scala 50

6.1 Choice of Scala . 50

6.2 Previous Async-Finish compliant constructs 51

6.2.1 async-finish . 51

6.2.2 future . 51

6.2.3 Data-driven futures . 52

6.3 Hybrid Actors . 53

6.3.1 Lingering Tasks . 53

6.3.2 Heavy Actors . 55

6.3.3 Light Actors . 56

6.3.4 Data-driven controls (DDCs) 57

6.3.5 The Mailbox: Linked List of DDCs 58

6.3.6 Supporting pause and resume with DDCs 60

vi

6.3.7 Supporting become and unbecome with DDCs 63

6.3.8 Using Light actors . 65

6.3.9 Light and Heavy actors compared 67

7 Applications 68

7.1 Multiple Producer-Consumer with Bounded Buffer 68

7.2 Pipelined Parallelism . 70

7.2.1 Filterbank . 71

7.2.2 Sieve of Eratosthenes . 73

7.3 Speculative Parallelization . 73

7.3.1 Online (Hierarchical) Facility Location 74

8 Results and Discussion 75

8.1 Experimental Setup . 75

8.2 Microbenchmarks comparing Actor frameworks 75

8.3 Application Benchmarks . 80

8.3.1 General Applications Compared 80

8.3.2 Quicksort . 82

8.3.3 Filter Bank for multirate signal processing 84

8.3.4 Online Hierarchical Facility Location 85

9 Conclusions & Future Work 86

9.1 Conclusions . 86

9.2 Future Work . 87

Bibliography 88

Illustrations

2.1 Power-density of modern processors 5

2.2 Task Parallel decomposition of a problem 8

3.1 Sample Fork-Join program . 12

3.2 HJ version of the Fork-Join program from Figure 3.1 14

3.3 HJ isolated statements at work . 16

3.4 HJ Fib using futures . 18

3.5 HJ Fib using data driven futures . 21

3.6 HJ Quicksort using data driven futures 22

3.7 HJ Quicksort allowing partial progress using DDFs 23

3.8 HJ ThreadRing using phasers . 24

4.1 Diagrammatic view of Actors . 27

4.2 During the processing of a message, actor interactions 28

4.3 Scala pattern matching example . 32

4.4 Quicksort using Scala event-based actors 34

5.1 Actor life cycle . 37

5.2 HelloWorld example with echoActor, executing in finish scope F1,

receiving messages from a different finish scope, F2. 38

5.3 Explicit actor termination detection using latches 40

5.4 Implicit actor termination detection using finish 41

viii

5.5 async-finish parallelism inside actors 43

5.6 Actor life cycle with paused state . 45

5.7 pause and resume operations inside the message processing body . . 46

5.8 Non-blocking receives using the Hybrid model 46

5.9 Stateless Actor in the Hybrid model 47

6.1 Habanero-Scala async-finish example 52

6.2 Habanero-Scala future example . 52

6.3 Habanero-Scala DDF and asyncAwait example 53

6.4 Heavy actors in HS extending standard Scala actors 56

6.5 Data-Driven Control fields . 58

6.6 Data-driven control implemented in Habanero-Scala 59

6.7 Actor mailbox using Data Driven Controls 60

6.8 DDC used as the mailbox in HS Light actors 61

6.9 Support for pause and resume in HS Light actors 63

6.10 Support for become and unbecome in HS Light actors 65

6.11 Quicksort using light actors in HS . 66

7.1 The FIR stage in the Filter Bank pipeline. In this example, the

computation of the dot product between the coefficients and a local

buffer has been parallelized to speedup this stage in the application. . 72

8.1 The PingPong benchmark exposes the throughput and latency while

delivering messages. There is no parallelism to be exploited in the

application. 76

ix

8.2 The Chameneos benchmark exposes the effects of contention on

shared resources. The Chameneos benchmark involves all chameneos

constantly sending messages to a mall actor that coordinates which

two chameneos get to meet. Adding messages into the mall actor’s

mailbox serves as a contention point. 77

8.3 The Java Grande Forum Fork-Join benchmark ported for actors.

Individual invocations were configured to run using twelve workers.

Both Jetlang versions run out of memory on larger problem sizes. . . 79

8.4 Comparison of some applications using different JVM actor

frameworks. 81

8.5 Quicksort benchmark results . 83

8.6 Filter Bank results . 84

8.7 Online Hierarchical Facility Location results 85

1

Chapter 1

Introduction

1.1 Motivation

Until recently, increases in processor clock speed have provided steady performance

improvements for programs without requiring any rewrites. This increase in processor

clock speed has reached fundamental limits with current silicon technology due to the

limitations in thermal management of the heat that needs to be dissipated away [1].

The processor industry has responded to this challenge by developing multi-core pro-

cessors. These multi-core processors continue to provide increased computational

ability but, the onus is shifted on to the software to utilize the parallelism available

on the hardware. There are no more free lunches for the software developers and this

has led to the Software Concurrency Revolution [2].

Current mainstream programming languages provide limited support for express-

ing parallelism in software [3]. Programmers, hence, need new parallel programming

models to extract performance from the hardware with ease, and reduce on them-

selves the burden of reasoning about and writing parallel programs. This has led

to a renewed interest of parallel programming models in the academic community.

Programs typically exhibit varying degrees of task, data and pipeline parallelism [4].

A handful of various programming models have been developed to handle task and

pipeline parallelism. In this thesis, we focus on two such models:

• The Fork-Join Model (FJM) which is well suited to exploit task parallelism

2

in divide-and-conquer style and loop-style programs usually written in shared

memory models,

• The Actor Model (AM) which promotes the no-shared mutable state and event-

driven philosophy.

1.2 Thesis Statement

The thesis statement is as follows:

A hybrid parallel programming model that integrates Fork-Join Model and Actor

Model helps solve certain class of problems more efficiently and productively than

either of the aforementioned models individually.

1.3 Contributions

This thesis makes the following contributions:

• A hybrid programming model that unifies the Fork-Join and Actor models.

• An implementation of the hybrid programming model in an extension of the

Scala language called Habanero-Scala.

• An efficient implementation of the Actor model using data-driven constructs

instead of using exceptions for control flow.

• A study of application characteristics that are amenable to being more efficiently

solved using the hybrid model compared to the FJM or AM.

• Experimental evaluation of performance benefits of using the hybrid model in

such applications.

3

1.4 Organization

This thesis is organized as follows:

• Chapter 2 provides some background and introduces related work in the FJM

and the AM.

• Chapter 3 describes the FJM and a variant called the Async-Finish Model

(AFM). It also analyzes the advantages and limitations of currently existing

coordination constructs in the AFM.

• Chapter 4 describes the AM and its advantages and disadvantages.

• Chapter 5 introduces the Hybrid Model and describes how the AFM and AM

can be integrated. It also covers new constructs in the hybrid model.

• Chapter 6 describes our implementation of the hybrid model in an an extension

of Scala called Habanero-Scala.

• Chapter 7 analyzes properties of applications which can benefit from the hybrid

model and also gives concrete examples.

• Chapter 8 presents the experimental results.

• Chapter 9 wraps up by summarizing the thesis and areas of future work.

4

Chapter 2

Background

In 1965, Gordon Moore predicted that the number of transistors on an integrated

circuit will double every eighteen months to two years based on his observations of

the trend between 1958 to 1965 [5]. Technology advancements meant transistors

were getting smaller in size thus allowing a larger number of them to be placed

on the circuits. The prediction popularly became known as Moore’s Law. Since

smaller transistors were accompanied by corresponding increase in processor clock

frequencies, Moore’s Law is often associated with a trend of exponential increases in

the computing performance of processors.

However, as with all exponential models this improvement in technology could not

be sustained and a limit was reached around early 2005. Mendelson [1] showed that

power constraints forced on the system implied that the frequency trend extrapolated

from Moore’s Law could not continue much longer. The power consumed by a pro-

cessor using current technologies is proportional to the cube of the clock frequency.

In addition, the close packing of the transistors meant that there was more opera-

tional heat being generated per unit area than could be dissipated often causing the

chips to overheat and malfunction. This phenomenon came to be known as the Power

Wall and led to a change in processor architectures. The Power Wall resulted in the

plateauing of processor clock frequencies and the development of multi-core proces-

sors. Multi-core processors allow Moore’s Law to continue to hold with respect to the

number of transistors, but the associated expectation of doubling in clock frequency

5

Figure 2.1 : Power-density of modern processors [1]. The figure displays that the

exponential trend cannot continue as there will be extreme power generated in the

processors which cannot realistically be dissipated. This poses limitations on the

clock frequencies and transistor density on the chips.

no longer holds.

Herb Sutter, in 2005, noted that major processor manufacturers had moved to the

development of multi-core architectures and claimed this to be a fundamental turning

point for software [2]. Software applications written in the past could no longer rely on

clock frequency improvements in hardware for continued performance improvement.

Instead, software now has to change to utilize the many cores available in processors.

The need to utilize these cores concurrently has been named as the Software Con-

currency Revolution [6]. However, mainstream programming models were inherently

sequential and were not equipped to efficiently utilize multi-core processors since the

6

available parallel programming models built on heavyweight threads offered neither

performance nor productivity. There was a need to develop new parallel programming

models for multi-core processors.

The concurrency revolution led to renewed interest in research in parallel pro-

gramming models along with the related changes in compilers, runtime systems, and

programming languages. The initial hope was to rely on implicit parallelism (also

known as automatic parallelization) allowing the compiler to exploit parallelism op-

portunities in sequential code and improve programmer productivity by allowing the

programmer to continue knowing old programming models. Proponents were encour-

aged by the success compilers had in exploiting instruction-level parallelism. However,

the success of implicit parallelism has been limited to data-parallel languages [7, 8]

and compiler techniques for parallelizing loops after performing dependence analysis

on the loop bodies and determining that a parallel transformation of the loop body

would be safe [9].

As Steffan and Mowry point out, complex access patterns in general programs

makes detecting data dependences in solution fragments a difficult problem to solve

and implicit parallelism by the compiler an unrealistic goal [10]. Mary Hall and et

al., in [11], provide a similar tone when they state that current compilers have success

stories in few areas, such as databases and computational science programs that deal

with structured data. The general case in which programs deal with unstructured

data is still in need of higher level abstractions to allow parallel programming to

become mainstream and more easily accessible to programmers.

There has also been an effort to create programming models that encourage im-

plicit parallelism by offering language constructs in specific domains. Examples in-

clude Hadoop [12] to solve problems amenable to the map-reduce paradigm, StreamIt [13]

7

for streaming applications, Matlab Parallel Computing Toolbox [14] for vector and

matrix operations, and NESL [7] for nested data parallelism. While these languages

have been successful in their targeted domains, there is a need for more generic pro-

gramming models.

With limited success attained by implicit parallelism approaches, recent research

has focused on explicit parallelism approaches where it is the programmer responsi-

bility to identify and demarcate opportunities for parallelism in code. This burdens

the programmer to worry about exploiting concurrency opportunities in her solution

in addition to the core task of solving the problem.

A host of such parallel programming models have been developed which include

the two-sided message passing model as in MPI [15], the partitioned global address

space model [16] as in Co-array Fortran [17], Chapel [18], UPC [19], and X10 [20],

the general purpose graphical processing unit [21] in CUDA [22]. This thesis focuses

on two such parallel programming models the Fork-Join Model (FJM) and the Actor

Model (AM). These models provide concurrency/parallelism abstractions to ease some

of the low-level parallelism burdens from the shoulders of programmers. Both the

FJM and AM are variants of the Task Parallel Model, which is discussed next.

2.1 The Task Parallel Model (TPM)

In the TPM, the problem to be solved is broken down into a number of lightweight

tasks. A relatively smaller number of workers (typically one per core or hardware

context) distribute these tasks among themselves and execute independent tasks in

parallel to completely solve the problem. When two tasks depend on each other due

to data dependences or shared resources, they cannot be run in parallel. The tasks

must coordinate and synchronize among themselves and execute in an agreed upon

8

sequence that satisfies all semantic dependences.

In multi-core architectures, the heart of the TPM lies in the fact that the creation

and management of individual OS-level threads to execute each task is not profitable

since tasks are usually short-lived [23]. Instead, the workers are OS-level threads

and the number of workers/threads is usually a small multiple of the number of cores

available. Progress, under normal scenarios, can continually be made towards execut-

ing the program as workers are always expected to find some task they can execute,

while other tasks wait on dependences. The TPM is one of the more promising par-

allel programming models as it is both high-level and generic [24]. This model allows

solving applications that work on both regular and irregular data since tasks can be

continually generated as the computation unfolds.

Figure 2.2 : Task Parallelism achieved by breaking down entire problem into

many sub-tasks [source: http://nurkiewicz.blogspot.com/2011/01/activiti-processes-and-

executions.html] .

9

2.1.1 The Fork-Join Model (FJM)

The FJM is a special case of the TPM. A recent popular implementation of the FJM

in a programming language was presented in Cilk developed at MIT by Blumofe,

Leiserson, and et al. [25]. In Cilk, computations are represented as directed acyclic

graphs and proceed in a fully-strict manner. A key innovation in Cilk was to present

an efficient work-stealing scheduler for these computations which tries to execute tasks

in a depth-first manner on each worker. The success of Cilk gained much attention in

the research community and led to the development of further programming languages

supporting variants of the TPM: Cilk++ [26], X10 [20], Thread Building Blocks [27],

Java Fork-Join Framework [23], OpenMP 3.0 [28] etc. At Rice University, we have

our own programming languages built on the FJM called Habanero-Java (HJ) [29]

and Habanero-C [30].

The Habanero Multicore Software Research Group at Rice University has devel-

oped the HJ language which builds on past work with the X10 project at IBM [31].

As the presence of the term Java in the name suggests, HJ is an extension of the Java

language and runs on standard Java Virtual Machines (JVMs). HJ implements a gen-

eral version of the FJM called the Async-Finish Model to support lightweight dynamic

task creation and termination [32]. Additional constructs such as Locality Control

with the place construct [33, 34], Mutual Exclusion and isolation among tasks using

the isolated construct [35, 36] and Collective and Point-to-Point synchronization

using the phasers construct [37, 38] are also supported in HJ.

10

2.2 The Actor Model

The Actor Model (AM) was first defined in 1973 by Carl Hewitt et al. during their

research on Artificial Intelligent (AI) agents [39]. It was designed to address the

problems that arise while writing distributed applications. Further work by Henry

Baker [40], Gul Agha [41], and others added to the theoretical development of the

AM.

The AM was developed due to Hewitt’s anticipation that a parallel combination

of computing machines was needed to solve the problems posed by AI researchers.

With the emergence of multicore computers, nearly three decades later, the AM has

gained renewed interest. The programming language Erlang, developed at Ericsson,

opted to implement the AM as their preferred model of concurrency [42]. Erlang

reported high scalability and an availability of 99.999%, i.e. a downtime of only 31ms

in a year, in its telecom switch application at Ericsson [43].

Coupled with the success of Erlang in production settings, the AM was cata-

pulted into the mainstream and there has been a proliferation of the development

of Actor frameworks in popular sequential languages like C/C++ (Act++ [44]),

Smalltalk (Actalk [45]), Python (Stackless Python [46], Stage [47]), Ruby (Stage [48]),

.NET (Microsoft’s Asynchronous Agents Library [49], Retlang [50]) and JVM-based

languages (Scala Actors library [51], Kilim [52], jetlang [53], ActorFoundry [54],

GPars [55]). In this thesis we focus on a modern implementation of the AM im-

plemented in the Scala programming language [56] which runs on the JVM.

11

2.3 The Proposed Hybrid (Fork-Join + Actor) Model

Although both the FJM and AM have existed as parallel programming models for

a while now, no systematic study has previously been undertaken to combine these

two models. In this thesis, we present a hybrid parallel programming model that

combines the divide-and-conquer approach of the FJM and the no-shared state and

event-driven philosophy of the AM to collectively avoid synchronization issues and

efficiently solve compute-intensive problems.

12

Chapter 3

The Fork-Join Model

In this chapter, we discuss various synchronization and coordination constructs cur-

rently supported in the Fork-Join model (FJM). As mentioned in Section 2.1.1, the

FJM is a variant of the Task Parallel model. In the FJM, a parent task can fork

multiple child tasks which can execute in parallel. In addition, these child tasks can

recursively fork even more tasks. A parent/ancestor task can selectively join on a

subset of child/descendent tasks. The task executing the join has to wait for all tasks

created in the join scope to terminate before it can proceed. This is the primary form

of synchronization among tasks in the FJM.

Figure 3.1 : Fork-Join Parallelism achieved by forking new tasks and joining

before proceeding. Note that until all forked tasks (Task A, Task B, Task

B1, and Task B2) reach the join point, Task C cannot be executed. [source:

http://www.coopsoft.com/ar/ForkJoinArticle.html].

13

3.0.1 Fork-Join Parallelism in Habanero-Java (HJ)

Habanero-Java (HJ) is a parallel programming language developed by the Habanero

Multicore Software Research Group at Rice University [29]. HJ supports Async-

Finish Model (AFM) of programming which is a variant of the FJM. HJ also supports

a handful of additional synchronization and coordination constructs between tasks

that serve as extensions to the AFM. In the rest of this chapter, we use HJ to explain

the various features of the such constructs in the context of the FJM.

3.1 Lightweight Tasks, Async-Finish synchronization

The central feature of any FJM implementation on multicore architectures is the

ability to create and manage lightweight tasks. Tasks are created at fork points. HJ

provides the async keyword to create a task. The statement async 〈stmt〉 causes the

parent task to create a new child task to execute 〈stmt〉 (logically) in parallel with

the parent task [29]. The scheduling of tasks created by asyncs on actual threads is

done by the runtime and is transparent to the user and to the tasks in the program.

The finish keyword is used to represent a join operation. The task executing

finish 〈stmt〉 has to wait for all child tasks created inside 〈stmt〉 to terminate before

it can proceed. A program is allowed to terminate when all tasks nested inside the

global finish terminate. The global finish rule ensures any executing HJ task has

a unique Immediately Enclosing Finish (IEF). Besides termination detection, the

finish statement plays an important role with regard to exception semantics. The

IEF throws a MultiException [31] formed from the collection of all exceptions thrown

by all asyncs in the IEF.

14

1 pub l i c c l a s s ForkJoinPrimer {
2 pub l i c s t a t i c void main (String args []) {
3 /∗ f i n i s h { imp l i c i t g l oba l f i n i s h wrapping main () in a HJ program ∗/
4 System . out . println (”Task O”) ; // Task−O
5 f i n i s h {
6 async { // Task−A
7 System . out . println (”Task A”) ;

8 }
9 async { // Task−B

10 System . out . println (”Task B”) ;

11 async { // Task−B1 crea ted by Task−B
12 System . out . println (”Task B1”) ;

13 }
14 async { // Task−B2 crea ted by Task−B
15 System . out . println (”Task B2”) ;

16 }
17 }
18 } // Wait f o r ta sk s A, B, B1 and B2 to f i n i s h

19 System . out . println (”Task C”) ; // Task−C
20 /∗ } end o f imp l i c i t g l oba l f i n i s h ∗/
21 // the g l oba l f i n i s h must wait f o r a l l nested ta sk s to terminate

22 // program terminate s when the g l oba l f i n i s h te rminates

23 }
24 }

Figure 3.2 : HJ version of the Fork-Join program from Figure 3.1

3.2 HJ Properties

3.2.1 Deadlock-Freedom and Determinism

Async-finish style computations usually represent directed-acyclic graphs, more specif-

ically trees, and hence have property that they are deadlock free. In addition, in the

absence of data races, these programs also have the extremely desirable property that

they are deterministic [57].

3.2.2 Data Locality in HJ

Despite its attractiveness, one of the shortcomings in the popular implementations of

the FJM is the issue of data locality. For non-trivial algorithms that are non-recursive,

15

encoding data locality implicitly by rewriting recursive versions of these algorithms is

a challenging prospect for the best of programmers [24]. There is usually no way to

pass around information to the task scheduler to influence the scheduler to schedule

tasks based on data locality. This can lead to inefficient schedules for the tasks and

hamper the performance of the application.

The concept of hierarchical places [33, 34] helps ease this data locality problem

to some extent. However, the current HJ release does not include an implementation

of hierarchical places. Part of the difficulty stems from the fact that an HJ task is

free to access all visible variable references and the runtime or hardware often has to

resort to implicit copying and syncing of data when accessed by tasks from different

places. In fact, the management of the data layout and syncing of data is an area

of active research in the PGAS programming community A programmatic construct

that ensures data locality and avoids referencing remote data would be ideal. One

approach is to use a place-based type system as in X10 [33]. Another is to use the

Actor Model (discussed in Section 4.2).

3.2.3 Data Races and Synchronized Access

Another concern with the FJM, common to most shared memory models, is the issue

of data races and the need to synchronize the accesses to shared resources/variables

between tasks. Data races are notoriously difficult to get right even by experienced

programmers. In addition to ordered synchronization constructs such as finish, HJ

also provides an isolated 〈stmt〉 construct to support weak isolation, i.e. atomicity

is guaranteed only with respect to other statements also executing inside isolated

scope.

In HJ, isolated statements are implemented by using a single lock causing all iso-

16

1 pub l i c c l a s s IsolatedPrimer {
2 pub l i c s t a t i c void main (String args []) {
3 /∗ f i n i s h { imp l i c i t g l oba l f i n i s h wrapping main () in a HJ program ∗/
4 f i n a l i n t [4] counter = new in t [4] ;

5 f i n i s h {
6 f o r (i n t n = 0 ; n < 4 ; n++) {
7 f o r (i n t i = 0 ; i < 100 ; i++) async {
8 i s o l a t e d {
9 // counter i s modi f i ed in i s o l a t i o n , no data race

10 counter [n] = counter [n] + 1 ;

11 }
12 }
13 }
14 }
15 // the statement below would in t roduce a data−race as

16 // i t i s ou t s i d e an i s o l a t e d scope

17 // counter [0] = counter [0] + 1 ;

19 f o r (i n t n = 0 ; n < 4 ; n++) {
20 assertEquals (100 , counter [n] , ”No data−race detec ted ”) ;

21 }
22 /∗ } end o f imp l i c i t g l oba l f i n i s h ∗/
23 }
24 }

Figure 3.3 : HJ isolated statements at work. Each isolated block executes sequentially

and there are no data-races. Excessive use of isolated results in loss of parallelism,

though optimistic concurrency implementations such as Delegated Isolation [36] can

exploit parallelism even when isolated is used extensively.

lated statements to be serialized. This can be a serious performance bottleneck in

applications with moderate contention [29]. There is an alternate prototype imple-

mentation of HJ isolated statements using a technique called delegated isolation [36]

which doesn’t serialize non-interfering isolated statements and results in better per-

formance and scalability.

Since HJ follows the shared memory model, it is easy for programmers to write

programs in which multiple tasks access and mutate shared variables. To avoid data

races, programmers need to resort to using synchronized accesses with finish or using

isolated fragments or using atomic variables provided by the Java standard library

17

to avoid data races. Excessive use of these constructs introduces overhead into the

runtime and can limit scalability of an application. It is desirable to have constructs

provided by the language that can ensure data-race freedom while accessing variables.

One approach, available in Deterministic Parallel Java [58], is to provide data-race

freedom using an effect system to partition the heap and ensure, at compile time, that

concurrent tasks are not involved in possible data-races. In HJ, Westbrook and et al.

are exploring the idea of Permission Regions [59] to detect data-races. Permission

Regions track read or write permissions on regions of code at runtime and report

errors when tasks executing in parallel have conflicting permissions. Yet another

approach, as present in the Actor model (discussed in Section 4.2), is to provide a

mechanism to avoid data-races by ensuring only one task is executing on data at any

point in time.

3.2.4 Coordination between tasks

While independent tasks can run in parallel, there are often dependencies between

tasks. In such scenarios coordination between tasks is required to determine when

dependent tasks can be executed. Coordination of parallel tasks is one of the major

sources of complexity in parallel programs and runtimes. In addition, this often

involves some sort of communication between the tasks and is a source of overhead

in the program.

The basic coordination mechanism between tasks in the AFM is that between a

task created via an async and its IEF. However, there may be dependences between

sibling tasks which cannot be realized by the AFM alone. HJ augments the AFM

with a handful of coordination constructs: Futures, Data Driven Futures and Phasers.

These are described in the following sections.

18

Futures

A future represents the result of an asynchronous computation and extends HJ’s

async statements to async expressions. The statement:

1 f i n a l future<T> f = async<T> expression ;

creates a new child task to evaluate expression that is ready to execute immediately.

In this case, f contains a future handle to the newly created task and the operation

f.get() can be performed to obtain the result of the future task. If the future task

has not completed as yet, the task performing the f.get() operation blocks until

the future task completes and the result of expression becomes available. One

advantage of using futures is that there can never be a data race on accesses to a

future’s return value.

1 pub l i c c l a s s FibFuturePrimer {
2 pub l i c s t a t i c Integer fib (f i n a l i n t n) {
3 i f (n < 2) {
4 r e turn n ;

5 } e l s e {
6 f i n a l future<Integer> f1 = async<Integer> fib (n−1) ;
7 f i n a l future<Integer> f2 = async<Integer> fib (n−2) ;
8 r e turn f1 . get () . intValue () + f2 . get () . intValue () ;

9 }
10 }

12 pub l i c s t a t i c void main (String args []) {
13 f i n a l i n t n = java . lang . Integer . parseInt (args [0]) ;

14 f i n a l Integer result = fib (n) ;

15 System . out . println (” f i b (” + n + ”) = ” + result) ;

16 }
17 }

Figure 3.4 : HJ Fib using futures. A relatively large value of n will cause the program

to run out of memory due to excessive creation of threads by the HJ work-sharing

runtime.

19

While futures are very simple to use, their injudicious use limits the performance

and scalability of HJ programs. This is because calls to the get() on the future

object blocks the current worker thread. In order to maintain the parallelism the

HJ work-sharing runtime responds by creating more worker threads∗. Threads are

heavyweight resources and the management of their life cycle is expensive and this

eventually hurts the program’s performance. In addition to consuming resources such

as memory, each thread requires two execution call stacks, which can be large [60].

Creating too many threads in one JVM can cause the system to run out of memory

or thrash due to excessive memory consumption.

Data-Driven Futures (DDFs)

DDFs are an extension to futures to support the dataflow model [61]. DDFs support

a single assignment property in which each DDF must have at most one producer and

any async can register on a DDF as a consumer causing the execution of the async

to be delayed until a value is available in the DDF. There are three main operations

allowed on a DDF:

• put(some-value): this non-blocking operation associates a value with the

DDF. DDFs support the single assignment property which means only a single

put() is allowed on the DDF during the execution of the program.

• await(): this is a blocking operation used by asyncs to delay their execution

until some other task has put() a value into the DDF.

∗Like other work-stealing runtimes, HJ’s work-stealing runtime currently does not support block-

ing operations such as futures

20

• get(): this is a non-blocking operation used to retrieve the value stored in the

DDF. It can legally be invoked by a task that was previously waiting on the

DDF. This guarantees that if such a task is now executing, there was already a

put() and the DDF is now associated with a value.

DDFs allow the programmer to create arbitrary task graphs as advocated in li-

braries and frameworks that support directed acyclic graph parallelism. Traditionally,

the FJM requires the parent of a task to also ensure the data consumed by the child

task is available when the child is being created. With DDFs, the creation of a task

can be independent of when the data consumed by the task is produced. Another

advantage is that accesses to values passed inside DDFs are guaranteed to be race-free

and deterministic [61].

DDFs are an important generalization over futures, since in addition to allowing

arbitrary data dependences they also allow the compiler to avoid blocking operations

while tasks wait on the results of a computation. This is possible because of the

explicit declaration of a data dependence in a DDF by an async in the await clause.

However, there are two features currently lacking in DDFs. Firstly, it is not

possible to cancel a task which is waiting on a DDF. This translates to ensuring there

is always a put() on a DDF. Cancellations need to be handled inside the waiting async

by checking the value inside the DDF and having different control paths for different

values. Secondly, and more importantly, an async waiting a chain of DDFs can only

begin executing after a put() has been invoked on all the DDFs. This can limit the

available parallelism in some applications. For example, in the quicksort example

presented in Figure 3.6 the async await(left, right) {...} requires the task to

wait until both the left and right values are available. An alternate construction of

the waiting async as in Figure 3.7 mitigates the problem but still cannot handle the

21

1 pub l i c c l a s s FibDdfPrimer {
2 pub l i c s t a t i c void fib (f i n a l i n t n , f i n a l DataDrivenFuture result) {
3 i f (n < 2) {
4 result . put (Integer . valueOf (n)) ;

5 } e l s e {
6 f i n a l DataDrivenFuture f1 = new DataDrivenFuture () ;

7 async fib (n−1, f1) ;

9 f i n a l DataDrivenFuture f2 = new DataDrivenFuture () ;

10 async fib (n−2, f2) ;

12 async await (f1 , f2) {
13 f i n a l Integer v1 = (Integer) f1 . get () ;

14 f i n a l Integer v2 = (Integer) f2 . get () ;

15 f i n a l i n t resInt = v1 . intValue () + v2 . intValue () ;

16 result . put (Integer . valueOf (resInt)) ;

17 }
18 }
19 }

21 pub l i c s t a t i c void main (String args []) {
22 f i n a l i n t n = java . lang . Integer . parseInt (args [0]) ;

23 f i n i s h {
24 f i n a l DataDrivenFuture result = new DataDrivenFuture () ;

25 fib (n , result) ;

26 async await (result) {
27 System . out . println (” f i b (” + n + ”) = ” + result . get ()) ;

28 }
29 }
30 }
31 }

Figure 3.5 : HJ Fib using DDFs. Each call to fib() produces an async task that

waits on values to be produced by its children before it computes the local result

and stores it in the result DDF. This version is more scalable compared to futures

version in Figure 3.4. It requires the programmer to change the natural flow of the

program to think in terms of continuations and the DDFs.

case where right is available before left. In addition, the problem gets harder to

manage when there are multiple DDF dependences.

22

1 pub l i c c l a s s QuicksortDdfPrimer {
2 pub l i c s t a t i c void quicksort (f i n a l i n t [] inArr , f i n a l DataDrivenFuture result←↩

) {
3 i f (inArr . length == 1) {
4 result . put (inArr) ;

5 } e l s e {
6 f i n a l i n t pivotIndex = selectPivot (inArr) ;

7 f i n a l i n t pivotValue = inArr [pivotIndex] ;

9 f i n a l i n t [] lessThanArr = getLessThan (inArr , pivotValue) ;

10 f i n a l DataDrivenFuture left = new DataDrivenFuture () ;

11 async quicksort (lessThanArr , left) ;

13 f i n a l i n t [] moreThanArr = getMoreThan (inArr , pivotValue) ;

14 f i n a l DataDrivenFuture right = new DataDrivenFuture () ;

15 async quicksort (moreThanArr , right) ;

17 f i n a l i n t [] center = getEqualsTo (inArr , pivotValue) ;

18 async await (left , right) {
19 f i n a l i n t [] sorted = merge (left . get () , center , right . get ()) ;

20 result . put (sorted) ;

21 }
22 }
23 }

25 pub l i c s t a t i c void main (String args []) {
26 f i n a l i n t [] input = generateInput () ;

27 f i n a l DataDrivenFuture result = new DataDrivenFuture () ;

28 quicksort (input , result) ;

29 async await (result) {
30 System . out . println (” qu i ck so r t (” + toString (input) + ”) = ” + toString (←↩

result . get ())) ;

31 }
32 }
33 }

Figure 3.6 : HJ Quicksort using DDFs. The async needs to wait on both left and

right before it can make progress. In some cases it would be better to allow partial

execution of the waiting async based on which result is available.

Phasers

Phasers are one of the more mature coordination constructs in HJ. They unify collec-

tive and point-to-point synchronization for phased computations. Details of phasers

and their corresponding HJ syntax can be found in [29]. Phasers provide the ex-

23

1 pub l i c c l a s s QuicksortDdfPrimer {
2 pub l i c void quicksort (f i n a l i n t [] inArr , f i n a l DataDrivenFuture result) {
3 . . .

4 async await (left) {
5 f i n a l i n t [] partial = merge (left . get () , center) ;

6 async await (right) {
7 f i n a l i n t [] sorted = merge (partial , right . get ()) ;

8 result . put (sorted) ;

9 }
10 }
11 . . .

12 }

14 }

Figure 3.7 : HJ Quicksort allowing partial progress using DDFs. Partial progress can

be made when value from left is available, however the still cannot handle the case

when the value from right would be present before left.

tremely desirable property of deadlock freedom [37] when programmers use only the

next statements in their programs.

In programs where tasks are involved with multiple point-to-point coordinations,

explicit use of signals/waits on multiple phasers are required. Figure 3.8 shows an

example of using phasers where the programmer has to explicitly manage the calls

to doWait() and signal() in the ThreadRing benchmark. In these situations, some

effort is required on the part of the programmer to carefully reason about the sequence

of such calls to ensure correctness and deadlock freedom. Multiple producer-consumer

coordination pattern is one scenario where careful management of phasers is required.

Writing such code can prove to be quite cumbersome, especially if the producers join

dynamically and produce arbitrary number of items.

In HJ, there is also an implementation limitation of phasers. There is a perfor-

mance penalty when the number of tasks being generated in the program are larger

than the number of available workers. This is because calls to phaser.doWait()

24

1 pub l i c c l a s s PhaserBasedThreadRingApp {

3 pub l i c s t a t i c void main (String args []) {
4 f i n a l i n t totalNumTasks = Integer . parseInt (args [0]) ;

5 f i n a l i n t hopsPerTask = Integer . parseInt (args [1]) ;

7 f i n i s h {

9 f i n a l phaser [] phasers = new phaser [totalNumTasks] ;

10 f o r (i n t i = 0 ; i < totalNumTasks ; i++) {
11 phasers [i] = new phaser (phaserMode . SIG_WAIT) ;

12 }

14 f o r (i n t id = 0 ; id < totalNumTasks ; id++) {
15 f i n a l i n t taskId = id ;

17 f i n a l phaser selfPhaser = phasers [id] ;

18 f i n a l phaser nextPhaser = phasers [(id + 1) % totalNumTasks] ;

19 async phased (

20 selfPhaser<phaserMode . WAIT>,

21 nextPhaser<phaserMode . SIG>) {
22 f o r (i n t hop = 0 ; hop < hopsPerTask ; hop++) {
23 i f (taskId != 0 | | hop != 0) {
24 selfPhaser . doWait () ;

25 }

27 // cur rent async now has the token

28 System . out . println (”Task−” + taskId + ” has the token . ”) ;

30 i f (hop + 1 != hopsPerTask | | taskId + 1 != totalNumTasks) {
31 nextPhaser . s i g n a l () ;

32 }
33 }
34 }
35 }
36 }
37 }
38 }

Figure 3.8 : HJ ThreadRing using phasers. Tasks are connected in a ring and phasers

make it simple to coordinate the passing of the token around the ring. The program-

mer has to carefully reason about the conditional clauses and the placement of the

calls to doWait() and signal().

(either explicit or implicit via the user of a next statement in a task registered on

a phaser in wait mode) are blocking. As with futures, the HJ work-sharing runtime

25

has to compensate blocked threads by creating new threads and runs into similar

limitations. Support for phasers in the HJ work-stealing runtime is still a subject for

future work.

In summary, the coordination constructs provided in HJ are extremely powerful

but suffer from certain limitations. A coordination construct that can mitigate/solve

some of these limitations will be a welcome addition to the HJ language. In Chapter 4

the Actor model is introduced and its applicability into some of these scenarios is

assessed. In Chapter 5 the hybrid model and its semantics are explained.

26

Chapter 4

The Actor Model

The Actor Model (AM) was first defined in 1973 by Carl Hewitt et al. during their

research on Artificial Intelligent (AI) agents [39]. It was designed to address the prob-

lems of distributed programs. Further work from Henry Baker [40] and Gul Agha [41]

resulted in completing the theoretical development of the AM. The AM is primarily

a message-based concurrency model. The key mantra is to encapsulate mutable state

and use asynchronous messaging to coordinate activities between actors. An actor is

the central entity in the AM that defines how computation proceeds.

4.1 Actors

An actor is defined as an object that has the capability to process incoming messages.

Usually the actor has a mailbox, as shown in Figure 4.1, to store its incoming mes-

sages. Other actors act as producers for messages that go into the mailbox. An actor

also maintains local state which is initialized during creation. Henceforth, the actor

is only allowed to update its local state using data (usually immutable) from the mes-

sages it receives and intermediate results it computes while processing the message.

The actor is restricted to process at most one message at a time. This allows actors to

avoid data races and to avoid the need for synchronization as there is no other actor

contending for access to its local data. There is no restriction on the order in which

the actor decides to process incoming messages. As an actor processes a message, it is

27

Figure 4.1 : Actors store incoming messages in a mailbox, maintain a local state

which is not directly exposed to other actors, and process at most one message at a

time.

allowed to change its behavior that affects how it processes the subsequent messages.

An actor interacts with other actors in two ways as shown in Figure 4.2. Firstly,

it can send and receive messages to and from other actors. The sending and receiving

of messages is done asynchronously, i.e. the sending actor can deliver a message

without waiting for the receiving actor to be ready to process the message. An

actor learns about the existence of other actors by either receiving their addresses in

incoming messages or during creation. This brings us to the second manner of actor

interaction: an actor can create new actors. This new actor can have its local state

initialized with information from the parent actor. It is important to note that the

network of actors an actor knows about can grow dynamically thus allowing formation

of arbitrary connection graphs among actors and a wide range of communication and

coordination patterns between them. In summary, while processing a message an

actor may perform a finite combination of the following steps:

28

Figure 4.2 : During the processing of a message, actor interactions include exchanging

messages with other actors and creating new actors.

1. Send a message to another actor whose address is known;

2. Create a new actor providing all the parameters required for initialization;

3. Become an actor, which specifies the replacement behavior to use while pro-

cessing the subsequent messages [62].

Actors in the AM are required to have the following properties [63]:

1. State Encapsulation: An actor cannot directly access the internal state of an-

other actor. An actor may affect the state of another actor only by sending the

second actor a message. There is no shared state between actors;

2. Fair Scheduling: The Actor model assumes a notion of fairness: a message

is eventually delivered to and processed by its destination actor, unless the

29

destination actor is permanently disabled. Another notion of fairness states

that no actor can be permanently starved;

3. Location Transparency: The actors an actor knows could be on the same core,

on the same CPU, or on a different node in a network. Because one actor does

not know the address space of another actor, a desirable consequence of location

transparency is state encapsulation;

4. Mobility: It is the ability of a computation performed by an actor to move across

different nodes. Because actors provide modularity of control and encapsulation,

mobility is quite natural to the Actor model. At the system level, mobility is

important for load balancing, fault-tolerance and reconfiguration [63].

4.2 Desirable Properties

As mentioned earlier, message passing between actors is performed asynchronously

and the data inside the message is preferred to be immutable. When the data in the

message is mutable, a copy of the message is made at the receiver’s mailbox. This

ensures there is no data sharing and modification made to the data by the receiver

does not introduce side-effects or data races that affect the sender.

The encapsulation of local data also means that other actors cannot directly mod-

ify the state of an actor. The only way an actor conveys its internal state to other

actors is explicitly via responses to request messages, this is the behavior of the actor

visible to other actors externally. Thus, benefits similar to encapsulation in object-

oriented programming is obtained and modularity is encouraged. The encapsulation

of local state also helps in preventing data races, because only the actor can modify

its local state.

30

Since the same actor works only on local data, the AM does not suffer from the

kind of data locality issues present in the FJM. However, location of the actual actors

can still have an impact on performance; for example, it will be beneficial to have

frequently communicating actors reside close to each other.

Due to the asynchronous mode of communication, lack of restriction on the order

of processing messages, and absence of synchronization via encapsulation of local

data, actors expose inherent concurrency and can work in parallel with other actors.

The ability to reduce conflicts over shared data access by encapsulating local data

is promising. The absence of data races encourages scalability. In addition, the lack

of synchronization constructs in actors makes the user’s code easier to reason about,

maintain and refactor.

4.3 Disadvantages and Drawbacks

The AM cannot guarantee deadlock freedom. Two actors can deadlock, each simply

waiting on a message from the other. In addition, since the order of processing

messages is inherently non-deterministic it can be hard to reproduce such deadlock

scenarios. In practice, it can also be hard to ensure the fair scheduling property

since an actor can take an arbitrarily long time to process a message. This scenario

also presents itself in the FJM, but it is not an issue since fairness is not a required

property. However, implementations of the AM often choose not to guarantee fairness

in scheduling.

The notion of synchronous replies, also known as the receive operations, where

an actor sends another actor a message and stalls further processing of messages

until it receives a reply to its message is relatively hard to implement. To avoid

complications in processing of existing messages, often this behavior is implemented

31

using some notion of blocking and can limit scalability. Another option is to use

pattern matching on the set of pending messages to implement receive and this

can be expensive to implement due to increase in time while searching for the next

message to process from the mailbox.

The AM is not a silver bullet, not all programming problems are best solved by the

actor model. Actors perform poorly when there is a need for synchronous messaging.

An actor will block if it is waiting on a reply from another actor. In the FJM, a parent

task can avoid blocking by handing-off control to the new helper task to continue

doing its work. Additionally, since message processing is serialized in actors, they

cannot be used to simulate concurrent data structures. For example, actors cannot

be used to support concurrent reads since the semantics of the AM require processing

of one message at a time. As such, all read requests on a concurrent data structure

represented via actors will be serialized.

4.4 Actors in Scala

Scala has been developed, since 2001, in the programming methods laboratory at

EPFL [56]. Scala unifies object-oriented and functional programming paradigms into

a statically typed programming language. Like HJ, Scala code compiles into Java

bytecode that can then be run on the JVM. Two key features present in Scala are the

support for functions as first-class values and pattern-matching over algebraic data

types (see Figure 4.3). These features allow Scala to support an AM implementation

as a library.

Actors are the primary concurrency model supported by Scala. The Scala Actor

library is based on Erlang’s actor concurrency model. Erlang actors rely on creation

of lightweight processes and assign each process to an Actor. Since the JVM isn’t

32

1 ob j e c t PatternMatchingApp {
2 de f main (args : Array [String]) : Unit = {
3 va l x : Any = 2.0

4 x match {
5 case i : Int => println (”Found in t : ” + i)

6 case d : Double => println (”Found double : ” + d)

7 case s : String => println (”Found St r ing : ” + s)

8 }
9 // p r i n t s ”Found double : 2 .0”

10 }
11 }

Figure 4.3 : An example of pattern matching in Scala. x is defined to be of type Any

which is the root of the Scala class hierarchy. Then x is pattern matched for various

cases to perform specific actions. Pattern matching can be considered as a gener-

alization of if-else or switch statements in Java. Pattern matching is implemented

using partial functions in Scala where each case statement is converted into a partial

function. Each partial function is queried for a match before the body of the function

is applied on the argument, in this case x

stackless and the creation of individual threads per actor is expensive, the Scala actor

library does not follow the exact Erlang style of having one process per actor.

Instead, Scala actors come in two major flavors: thread-based and event-based

[64, 51]. The thread-based actor mimics Erlang’s actor style by assigning a thread to

each actor. Java threads are substantially heavier than a lightweight Erlang process

limiting the number of thread-based actors one can create in Scala as compared to

Erlang. Event-based actors are comparatively lightweight and allow multiple actors

to run on a thread. For apparent reasons, the event-based actors are more scalable.

Event-based actors preserve the continuation while invoking blocking procedures such

as synchronous send-and-receive. This is achieved by throwing control exceptions that

are caught and handled by the actor runtime. The actor runtime then resumes the

continuation when an event triggering the completion of the blocking operation is

received. This is usually much cheaper than suspending a thread and hence more

33

scalable. The exact Scala construct used to implement event-based actors is react

which accepts a partial function as input to determine how to process messages. Since

messages represent to a static type, the pattern matching feature from Scala is used

to simplify the syntax of event-processing.

Figure 4.4 shows an example of quicksort implemented using the Scala actor li-

brary. Since actors process messages individually and there is no predetermined order

of message receipts, actors can be used to avoid the waiting problem DDFs face as

explained in Figure 3.6. While using DDFs, the continuation task has to wait for

both the left and right sub-computations to complete. There is no way to optimally

handle results from one of the sub-computations that completes earlier. Since actors

naturally promote continuation based programming, this case can easily be handled

and partial results continually evaluated and stored.

There are a few of drawbacks of the Scala actor library. First, there is the problem

of isolation. Messages in Scala are allowed to contain reference variables and they are

not actually copied as part of an optimization technique. This means that messages

can refer to shared variables and actors can end up introducing data races. It is left

to the programmer to write code responsibly that ensures such data sharing is not

introduced while passing messages. Scala provides case classes to help in this regard.

Case classes make excellent messages since they are immutable and provide compiler-

generated support to help with pattern matching. Despite the opportunity presented

by the pattern matching construct, the Scala Actors library does not directly support

the become operation. To support the become operation, the user can explicitly write

code manipulating pattern expressions and local state.

Scala Actors allow executing code independent of receiving messages by placing

the code in the act method. This is a violation of the AM, since actors in the AM

34

1 c l a s s QuicksortActor (parent : Actor ,

2 positionRelativeToParent : Position) extends Actor {

4 pr i va t e va l selfActor = th i s

5 var result : ListBuffer [Int] = nu l l

6 pr i va t e var numFragments = 0

8 de f notifyParentAndTerminate () {
9 parent ! Result (result , positionRelativeToParent)

10 exit ()

11 }

13 ove r r i d e de f act () = {
14 loop { r e a c t {
15 case Sort (data) =>

16 va l dataLength : Int = data . length

17 i f (dataLength < QuicksortConfig . CUTOFF) {
18 result = quicksortSeq (data)

19 notifyParentAndTerminate ()

20 } e l s e {
21 va l pivot = data (dataLength / 2)

23 va l leftActor = new QuicksortActor (selfActor , PositionLeft) . start ()

24 leftActor ! Sort (data . filter (pivot >))

26 va l rightActor = new QuicksortActor (selfActor , PositionRight) . start←↩
()

27 rightActor ! Sort (data . filter (pivot <))

29 result = data . filter (pivot ==)

30 numFragments += 1

31 }
32 case Result (data , position) =>

33 i f (position eq PositionLeft) { result = data ++ result }
34 e l s e i f (position eq PositionRight) { result = result ++ data }
35 numFragments += 1

36 i f (numFragments == 3) { notifyParentAndTerminate () }
37 } } } }

Figure 4.4 : Quicksort using Scala event-based actors. The loop and react constructs

ensure the actor can repeatedly process messages sent to the actor. The user has to

explicitly invoke exit() to notify the runtime that the actor has completed processing

and is ready to terminate. react accepts a partial function as an argument that

defines the body of the actor and how to process each message. Note the absence of

any synchronization constructs in the actor’s member variables and execution body

inside react.

35

are passive entities and can only execute code in response to receiving messages.

The next couple of drawbacks relate to performance penalties introduced by the

implementation. Each case statement is interpreted by Scala as a partial function.

Partial functions can be relatively slow to compute and to execute when compared

to direct dynamic casts. More importantly, event-based actors use exceptions to

maintain control flow and manage the execution of continuations. This again is slower

than a corresponding runtime that avoids the use of exceptions in the management

of the actor behavior.

36

Chapter 5

The Hybrid Model

Although both the AFM and AM have existed as independent parallel programming

models for a while now, we are unaware of previous efforts to systematically combine

these two models. In this thesis, we integrate the AFM and the AM so as to get the

benefits of actor coordination construct in the AFM and also of parallelizing message-

processing within actors. Integrating actors and tasks requires understanding how the

actor life cycle interacts with task creation and termination events. In addition, the

integration should be seamless and not enforce additional restrictions on either model.

5.1 Actors and Async-Finish Tasks

Integrating actors and tasks requires understanding how the actor life cycle interacts

with task creation and termination events. It is helpful to understand the actor life

cycle and the actions the actor performs in these states. The transitions between the

actor states are shown in Figure 5.1. During its life cycle an actor is in one of the

following states:

• new - An instance of the actor has been created, however the actor is not yet

ready to receive or process messages. An actor instance is created by a new

operation.

• started - The actor has been started using the start operation. It can now re-

ceive asynchronous messages and process them one at a time. While processing

37

a message, the actor should continually receive any messages sent to it without

blocking the sender.

• terminated - The actor has been terminated and will not process any messages

in its mailbox or new messages sent to it henceforth. Termination is signaled by

the actor itself while the processing of some message using the exit operation.

Figure 5.1 : Actors have a simple life cycle. The most interesting state is started

which is where the actor is receiving and processing messages.

The creation of an actor is a simple operation and can be performed synchronously

inside the task executing the action. Similarly, terminating the actor is a synchronous

operation which can be effected by an actor on itself while it is processing a message.

Assuming the message processing is happening in the current task, this can be done

synchronously too. Once an actor enters the terminated state, it avoids processing any

messages sent to it without blocking the sender (since such messages are effectively

no-ops). Since tasks always execute inside an enclosing finish scope (as mentioned

in Section 3.1), both these operations are easily mapped to the AFM. The more

interesting case is handling the actions of the actor while it is active in the started

state and processing messages.

We now discuss the actions to be performed after the actor has started and is

receiving and processing messages. By definition, actors are required to send and

38

1 ob j e c t HelloWorldApp extends HabaneroApp {
2 va l echoActor = new EchoActor ()

3 async {
4 f i n i s h { // F1 , IEF f o r echoActor

5 . . .

6 echoActor . start () ; // s im i l a r to an async

7 . . .

8 }
9 println (”EchoActor terminated ”) ;

10 }
11 async {
12 f i n i s h { // F2

13 . . .

14 // task T1

15 echoActor ! ” He l lo ”

16 echoActor ! ”World”

17 echoActor ! EchoActor . STOP_MSG

18 . . .

19 }
20 println (”Done sending messages ”)

21 } } }

Figure 5.2 : HelloWorld example with echoActor, executing in finish scope F1,

receiving messages from a different finish scope, F2.

receive messages asynchronously. This translates to creation of a new task that pro-

cesses the message and runs in parallel with the task that initiated the send of the

message. Under normal async-finish semantics, this means that both these tasks

share the same IEF. Now, consider the case where an actor is receiving messages

from a task/actor executing in a different IEF, as shown in Figure 5.2. Under nor-

39

mal async-finish semantics, when T1 sends a message to echoActor it creates a

new task, say T2. This causes F2 to unnecessarily (and incorrectly) block until T2

completes. Since the message will end up in echoActor’s mailbox, the processing of

the message is done by echoActor and semantically T2 should have F1 as its IEF as

opposed to F2. Hence, when T1 sends a message to echoActor, the new asynchronous

task must be spawned in the finish scope of echoActor. In the hybrid model, this

generalizes to all asynchronous tasks spawned to send and process a message inherit-

ing the IEF of the recipient actor. Note that this ability to attach a different finish

scope while spawning a task is a feature of the hybrid model which is unavailable in

the general AFM. The use of newly spawned tasks to send messages is also facilitated

by the fact that no message-ordering restrictions apply in the AM and these spawned

tasks can thus be executed in any order. In addition, since the new task inherits

the finish scope of the recipient actor, it allows the sender to be any arbitrary task

executing under the hybrid model.

5.1.1 Termination detection

Mapping the entire life cycle of actors into the AFM provides a clean and transparent

mechanism to detect the termination of actors. Some actor implementations on the

JVM (e.g., Scala Actors library [51], Kilim [52], jetlang [53]) require the user to write

explicit code to detect whether an actor has terminated before proceeding with the

rest of the code in the control flow. A common pattern is to explicitly use countdown

latches and wait on the latch until the count reaches zero. In programs written using

the AFM, a similar effect is achieved by joining tasks inside their finish scope with-

out the programmer having to worry about low-level synchronization constructs such

as latches. Consequently, mapping actors to a finish scope provides a transparent

40

mechanism to detect actor termination and relieves the user from writing boiler plate

code.

1 ob j e c t ScalaActorPingPong {
2 de f run (numMsgs : Int , verbose : Boolean) : Unit = {

4 va l l a t ch = new CountDownLatch (1)

6 va l pong = new Pong (verbose)

7 va l ping = new Ping (numMsgs , pong , verbose , l a t ch)

8 ping . start

9 pong . start

10 ping ! Start

12 l a t ch . await ()

13 println (” ping has terminated , p r i n t handle r e s u l t s ”)

14 }
15 }
16 c l a s s Ping (count : Int , pong : Actor , verbose : Boolean , l a t ch : CountDownLatch) ←↩

extends Actor {
17 de f act () {
18 loop {
19 react {
20 case Start =>

21 // handle s t a r t message

22 case SendPing =>

23 // handle ping message

24 case Pong =>

25 i f (pingsLeft > 0)

26 self ! SendPing

27 e l s e {
28 pong ! Stop

29 l a t ch . countDown ()

30 exit (' stop)
31 } } } } }

Figure 5.3 : Explicit actor termination detection using latches. Note the explicit

management of the count while creating the latch as well as the need to call both

latch.countDown and actor.exit while terminating the actor. In addition, the

latch has to be explicitly passed around to the relevant actors.

For example, the Scala version of actors (Figure 5.3) needs to maintain a latch and

pass it around to the different actors, while the main thread waits on the latch. In

addition, actors need additional logic to decrement the count on the latch. In contrast,

41

1 ob j e c t HabaneroActorPingPong {
2 de f run (numMsgs : Int , verbose : Boolean) : Unit = {

4 va l pong = new Pong (verbose)

5 pong . start

7 va l ping = new Ping (numMsgs , pong , verbose)

9 f i n i s h {
10 ping . start

11 ping ! Start

12 }
13 println (” ping has terminated , p r i n t handle r e s u l t s ”)

14 } }
15 c l a s s Ping (count : Int , pong : Actor , verbose : Boolean) extends Actor {
16 ove r r i d e de f behavior () = {
17 case Start =>

18 // handle s t a r t message

19 case SendPing =>

20 // handle ping message

21 case Pong =>

22 i f (pingsLeft > 0)

23 self ! SendPing

24 e l s e {
25 pong ! Stop

26 exit (' stop)
27 }
28 } }

Figure 5.4 : Implicit actor termination detection using finish. Terminating the

actor using the call to exit notifies the IEF that the actor has terminated and the

statements following the finish are free to proceed (when all other spawned tasks

inside the finish scope have also completed). The actor no longer worries about the

cross-cutting concern of invoking methods on a latch for example.

actors in the hybrid model (Figure 5.4) benefit from the finish construct. Figure 5.4

shows a simple PingPong example using the hybrid actors and the finish construct

to detect termination easily. Terminating the actor using the call to exit notifies the

IEF that the actor has terminated and the statements following the finish are free to

proceed (when all other spawned tasks inside the finish scope have also completed).

The actor no longer worries about the cross-cutting concern of invoking methods on

42

a latch.

5.2 New constructs under the hybrid model

With the hybrid model in place, there are a number of constructs that can now be

supported in the AFM. The key to each of these constructs is being able to reason

about the enclosing finish under which the actors execute. Some of these constructs

are presented below.

5.2.1 Parallelization inside Actors

There is internal concurrency in an actor in that it can be processing a message,

receiving messages from other actors and sending messages to other actors at the same

time. However, the requirement that the actor must process at most one message at a

time is often misunderstood to mean that the processing must be done via sequential

execution. In fact, there can be parallelism exposed even during message processing

as long as the invariant of processing at most one message at a time is maintained.

A major contribution of this thesis is that integrating the AFM and the AM allows

us to use async-finish constructs inside the message-processing code to expose this

parallelism. There are two main ways in which this is achieved, discussed below:

• Using finish constructs during message processing

• Allowing escaping async tasks

Both these techniques are discussed in the following subsections:

43

Using finish constructs during message processing

The traditional actor model already ensures that the actor processes one message at

a time. Since no additional restrictions are placed on the message-processing body

(MPB), we can achieve parallelism by creating new async-finish constructs inside

the MPB. We spawn new tasks to achieve the parallelism at the cost of blocking

the original message processing task at the new finish. Since the main message

processing task only returns after all spawned tasks have completed, the invariant

that only one message is processed at a time is maintained. Figure 5.5 shows an

example code snippet that achieves this. Note that there is no restriction on the

AFM compliant constructs used inside the newly constructed finish. As such all

the coordination constructs explained in Section 3.2.4 can also be used.

1 c l a s s ParallelizedProcessingActor () extends HybridActor {
2 ove r r i d e de f behavior () = {
3 case msg : SomeMessage =>

4 // pr ep roce s s the message

5 f i n i s h { // f i n i s h to ensure a l l spawned ta sk s complete

6 async {
7 // do some pro c e s s i ng in p a r a l l e l

8 }
9 async {

10 // do some more p ro c e s s i ng in p a r a l l e l

11 }
12 }
13 // po s tp roc e s s the message a f t e r spawned ta sk s i n s i d e f i n i s h complete

14 . . .

15 } }

Figure 5.5 : An actor exploiting the async-finish parallelism inside actors message

processing body. The nested finish ensures no spawned tasks escape away causing

the actor to process multiple messages at a time.

44

Allowing escaping async tasks

Requiring all spawned asyncs inside the MPB are captured is too strict. This restric-

tion can be relaxed based on the observation that the at most one message processing

rule is required to ensure there are no internal state changes of an actor being effected

by two or more message processing tasks of the same actor. As long as this rule is

obeyed, escaping asyncs (tasks) can be allowed inside the MPB.

We can achieve this invariant by introducing a paused state in the actor life cycle

(Figure 5.6) and by adding two new operations: pause and resume. In the paused

state, the actor is not processing any messages from its mailbox. The actor is simply

idle as in the new state; however, the actor can continue receiving messages from

other actors. The actor will resume processing its messages, at most one at a time,

when it returns to the started state. The pause operation takes the actor from a

started state to a paused state while the resume operation achieves the reverse. The

actor is also allowed to terminate from the paused state using the exit operation.

The pause and resume operations are similar to the wait and notify operations

in Java threads for coordination. Similar to the restriction that thread coordination

operations can only be executed by the thread owning the monitor, pause and resume

operations on an actor can only be executed in tasks spawned within an actor either

explicitly by the user or implicitly by the runtime to process messages (e.g., the MPB

task). However, unlike the thread coordination operations neither the pause nor the

resume operations are blocking, they only affect the internal state of the actor that

coordinates when messages are processed from the actor’s mailbox.

With the two new operations, we can now allow spawned tasks to escape the main

message processing task. These spawned tasks are safe to run in parallel with the

next message processing task of the same actor as long as they are not concurrently

45

Figure 5.6 : Actor life cycle from Figure 5.1 extended with a paused state. The actor

can now continually switch between a started and paused state.

affecting the internal state of the actor. The actor can be suspended in a paused state

while these spawned tasks are executing and can be signaled to resume processing

messages once the spawned tasks determine they will no longer be modifying the

internal state of the actor and hence not violating the one message processing rule.

Figure 5.7 shows an example where the pause and resume operations are used to

achieve parallelism inside the MPB.

5.2.2 Non-blocking receive operations

As mentioned in Section 4.3, implementing the synchronous receive operation often

involves blocking and can limit scalability in virtual machines that do not allow

explicit call stack management and continuations. For example, the implementation

of receive in the Scala actor library involves blocking the currently executing thread

and degrades performance. The alternate approach requires use of exceptions to

unwind the stack and maintain control flow, as in Scala’s react construct, and is also

relatively expensive.

With the support for pause and resume, the receive operation can now be im-

46

1 c l a s s ParallelizedWithEscapingAsyncsActor () extends HybridActor {
2 ove r r i d e de f behavior () = {
3 case msg : SomeMessage =>

4 // pr ep roce s s the message

5 async {
6 // do some pro c e s s i ng in p a r a l l e l

7 }
8 pause // to prevent the ac to r from proc e s s i ng the next message

9 // note that pause/resume i s not b lock ing

10 async {
11 // do some more p ro c e s s i ng in p a r a l l e l

12 // i t i s now s a f e f o r the ac to r to resume pro c e s s i ng other messages

13 resume

14 // some more p ro c e s s i ng

15 }
16 . . .

17 } }

Figure 5.7 : An actor exploiting parallelism via asyncs while avoiding an enclosing

finish. The asyncs escape the message processing body, but the pause and resume

operations are used to control processing of subsequent messages by the actor.

1 c l a s s ActorSimulatingReceive () extends HybridActor {
2 ove r r i d e de f behavior () = {
3 case msg : SomeMessage =>

4 . . .

5 va l theDdf = ddf [ValueType] ()

6 anotherActor ! new Message (theDdf)

7 pause () // temporar i ly d i s ab l e f u r t h e r message p ro c e s s i ng

8 asyncAwait (theDdf) {
9 va l responseVal = theDdf . get ()

10 // proce s s the cur rent message

11 . . .

12 resume () // enable f u r t h e r message p ro c e s s i ng

13 }
14 // re turn in paused s t a t e

15 } }

Figure 5.8 : An actor in the hybrid model that uses DDFs to simulate the receive

operation without blocking. The actor that processes the message needs to perform

a put of a value on the DDF to trigger the waiting async (in asyncAwait). When

the async is triggered, the actor processes the value in the DDF and performs the

resume operation to continue processing subsequent messages.

47

plemented in the unified model without blocking threads or using exceptions. This

requires support of the DDF coordination construct presented in Section 3.2.4. DDFs

allow the execution of the async to be delayed until a value is available in the DDF.

A DDF can be passed along to the actor which fills the result on the DDF when it

is ready. Meanwhile the actor that sent the DDF can pause and create an async

which waits for the DDF to be filled with a value and can resume itself. Figure 5.8

shows an example of a non-blocking receive implementation. This presents an in-

stance of actors coordinating with each other without explicit message-passing and

thus violates the pure AM. Non-blocking receives present an excellent case in which

constructs from the two different models, AFM and AM, can work together to ease

the implementation of other nontrivial constructs.

5.2.3 Stateless Actors

1 c l a s s StatelessActor () extends HybridActor {
2 ove r r i d e de f behavior () = {
3 case msg : SomeMessage =>

4 async {
5 // proce s s the cur rent message

6 }
7 i f (enoughMessagesProcessed) {
8 exit ()

9 }
10 // re turn immediately to be ready to proce s s the next message

11 }
12 }

Figure 5.9 : A simple stateless actor created using the hybrid model. The message

processing body spawns a new task to process the current message and returns imme-

diately to process the next message. Because the async tasks are allowed to escape,

the actor may be processing multiple messages simultaneously.

The GPars [55] project, implemented in Groovy, provides an actor library inspired

48

by the Scala implementation. GPars also has a notion of stateless actors which do

not keep track of what messages have arrived previously. In effect, these actors are

allowed to process multiple messages simultaneously since they maintain no internal

state. As mentioned in Section 5.2.1 it is easy to create such actors in the hybrid

model. There is no need to use the pause operation and the escaping async tasks

can process multiple messages to the same actor in parallel.

5.3 Desirable Properties

Actors in the hybrid model continue to encapsulate their local state and process one

message at a time. Thus the benefits of modularity are still preserved. Similarly, the

data locality properties of the AM continue to hold. Actors also introduce a means of

a new coordination construct in the AFM in addition to the existing constructs such

as futures, DDFs, and phasers. With actors inside the AFM, it is now possible to

create arbitrary computation DAGs impossible in the pure AFM. Since actors have

been integrated into the AFM, actors can co-exist with any of the other constructs

in the AFM, and they can be arbitrarily nested. The implementation of the receive

operation using DDFs (mentioned in Section 5.2.2) is an example of this.

5.4 Disadvantages or Drawbacks

Unfortunately, the ability to spawn new tasks inside the actor’s MPB creates the

potential to introduce data races, since multiple tasks can be working on the actor’s

local data. In fact, data races are also possible in AM implementations which do not

guarantee data isolation. We plan on extending the Dynamic Program Structure Tree

(DPST) based data race detection algorithm [65] for the AFM to the unified model

for data race detection.

49

Introducing the pause and resume operations also increases the possibility of

reaching deadlocks. If an actor is never resumed after it has been paused, the actor

will never terminate and hence the IEF will block indefinitely. Like the AM, under

the unified model it is required that every actor terminate, e.g., by a call to exit.

Terminating actors explicitly is required so that the IEF for an actor does not block

indefinitely.

50

Chapter 6

Implementation - Habanero-Scala

Habanero-Scala (HS) [66] is an extension of the Scala language [56] with AFM compli-

ant constructs present including (but not limited to) async, finish, futures, DDFs,

and phasers. In HS, AFM constructs were added as a library and an existing actor

implementation (standard Scala actors) extended to support the hybrid model. We

refer to these hybrid actors as heavy actors. Heavy actors provide support for a sub-

set of the operations presented in the hybrid model, excluding the pause and resume

operations. In addition, HS provides its own implementation of hybrid actors, called

light actors, that supports the full complement of operations including the pause and

resume operations.

6.1 Choice of Scala

Scala, developed since 2001 in the programming methods laboratory at EPFL [56],

unifies object-oriented and functional programming paradigms into a statically typed

programming language. Scala as a language provides powerful abstractions to express

various programming constructs. It has a relatively lenient constraint on the naming

of methods, which coupled with its expressiveness make it extremely easy to create

domain-specific languages (DSLs). This allows for easy transition of Habanero-Java

(HJ) constructs into Scala without the need to build a front-end compiler. Most

of the HJ work-sharing runtime can be reused in HS since both HJ and Scala run

51

on the Java Virtual Machine. However, the most important reason to choose Scala

is its support for pattern matching. Pattern matching is an elegant way for writing

actor code since the message processing body needs to pattern match on the messages

received by the actor.

6.2 Previous Async-Finish compliant constructs

HS provides a variety of constructs also present in HJ which have already been dis-

cussed in Chapter 3. The following subsections introduce the syntax for relevant

constructs (async-finish, futures, and data-driven futures) via code snippets in

HS. A comprehensive explanation for all supported constructs along with examples

is available at the HS homepage [67].

6.2.1 async-finish

1 c l a s s ForkJoinPrimer extends HabaneroApp {
2 println (”Task O”) ; // Task−O
3 f i n i s h {
4 async { // Task−A
5 println (”Task A”) ;

6 }
7 async { // Task−B
8 println (”Task B”) ;

9 async { // Task−B1 crea ted by Task−B
10 println (”Task B1”) ;

11 }
12 async { // Task−B2 crea ted by Task−B
13 println (”Task B2”) ;

14 }
15 }
16 } // Wait f o r ta sk s A, B, B1 and B2 to f i n i s h

17 println (”Task C”) ; // Task−C
18 }

6.2.2 future

1 ob j e c t FibFutureApp extends HabaneroApp {

52

Figure 6.1 : Habanero-Scala version of the Fork-Join program from Figure 3.1. Note

the similarity with the corresponding HJ program from Figure 3.2. The syntax of the

code is unchanged due to the DSL support in Scala.

3 println (” f i b (10) = ” + fib (10))

5 de f fib (n : Int) : Int = {
6 i f (n < 2) {
7 r e turn n

8 } e l s e {
9 va l x : HjFuture [Int] = asyncFuture {

10 fib (n − 1) ;

11 } ;
12 va l y : HjFuture [Int] = asyncFuture {
13 fib (n − 2) ;

14 } ;

16 r e turn x . get () + y . get () ;

17 }
18 }
19 }

Figure 6.2 : Habanero-Scala future example. A future represents the result of an

asynchronous computation and extends HS’s async statements to async expressions.

Calls to get() are blocking operations if the task that computes the value of the

future has not executed yet.

6.2.3 Data-driven futures

1 ob j e c t FibDdfApp extends HabaneroApp {

3 va l res = ddf [Int] ()

4 fib (N , res)

5 asyncAwait (res) {
6 va l fibResult = res . get ()

7 println (” f i b (” + N + ”) = ” + fibResult)

8 }

10 de f fib (n : Int , v : HjDataDrivenFuture [Int]) : Unit = {
11 i f (n <= CUTOFF) {
12 v . put (seqFib (n))

53

13 } e l s e {
14 va l res1 = ddf [Int] () ;

15 async {
16 fib (n − 1 , res1) ;

17 } ;
18 va l res2 = ddf [Int] () ;

19 async {
20 fib (n − 2 , res2) ;

21 } ;

23 asyncAwait (res1 , res2) {
24 v . put (res1 . get () + res2 . get ())

25 }
26 }
27 }
28 }

Figure 6.3 : Habanero-Scala DDF and asyncAwait example. DDF are a generaliza-

tion of futures and avoid blocking calls to get() since an asyncAwait only executes

when data is available (i.e. put() has been called on the DDFs.

6.3 Hybrid Actors

Scala actors allow execution of logic independent of message processing similar to an

async in HS. This is a violation of the pure AM since actors are supposed to trigger

executions only when they receive messages. In HS, with the support for async such

use of actors is redundant. HS supports two implementations of actors, both these

implementations support the hybrid model. The two implementations are referred to

as the heavy and light actors. Both these actor implementations rely on the use of

lingering tasks to fit the actors into the AFM.

6.3.1 Lingering Tasks

Section 5.1 explained how to map actors to tasks. There starting an actor was likened

to a long-running asynchronous task processing one message at a time. However, such

54

a long-running task would waste resources as it would be involved in some sort of busy

waiting mode until a message arrives. The purpose of this long-running task is to

attach the actor’s message-processing body (MPB) to an immediately enclosing finish

(IEF); a more efficient technique is to use a lingering task.

A lingering task is a task with an empty body that attaches itself to an IEF like

a normal asynchronous task spawned inside a finish scope. Thus, the finish scope

is aware of the existence of this task and will block until the task is scheduled and

executed. However, the lingering task does not make itself available for scheduling

immediately (unlike normal asynchronous tasks) and thus forces the IEF to block

under the constraints of the AFM∗. At some later point in time, the lingering task

will be scheduled and executed, allowing the finish scope to complete execution and

move ahead.

The lingering task provides a hook into its finish scope that may be used to spawn

more tasks. All these spawned tasks execute under the same IEF as the lingering

task. When a hybrid actor is started, a lingering task is created by the runtime and

stored in the actor. This allows the actor to continue spawning subsequent tasks

under the same IEF when it asynchronously processes messages sent to it. When the

actor terminates, the runtime schedules the lingering task for execution. Once the

lingering task has been scheduled, the actor stops creating any further asynchronous

tasks realizing that the IEF may no longer be available to spawn tasks. This is

consistent with the notion that termination of an actor is a stable property, and the

actor is not allowed to process messages once it terminates.

∗A finish scope can only complete after all its transitively spawned tasks have completed.

55

6.3.2 Heavy Actors

The first form of hybrid actors supported by HS is an extension of the standard

Scala actors. These are called heavy actors since their implementation involves more

overhead than the light actors presented in Section 6.3.3. The standard Scala actor

model is inspired from the actor implementation in Erlang and supports two types of

actors: thread-based actors (TBAs) and event-based actors (EBAs) [51]. However, to

support operations like receive (called react for EBAs) and avoid blocking, EBAs

throw exceptions to roll back the call stack and allow the underlying thread to service

other EBAs. The need to throw and then ultimately catch these exceptions, even

without the overhead of building the stack trace, is relatively expensive compared to

an implementation that does not rely on the use of exceptions for control flow. Hence

support for the standard scala actors in HS is called heavy as compared to the light

actors which do not rely on exceptions for control flow.

Actors are defined as a trait in the standard Scala library. In Scala, a trait is a set

of method and field definitions that can be mixed into other classes. Traits are often

introduced as Java interfaces with the ability to support default implementations.

The heavy actor in HS is implemented as a trait that extends the Actor trait (see

Figure 6.4). In fact, migrating to these hybrid actors in a Scala program that uses

actors from the standard library is easy and it involves two steps:

• changing the import statements in the user code,

• renaming references to Actor with HabaneroActor

HS heavy actors do not support the pause and resume operations explained in Sec-

tion 5.2.1. They however, support all the other AFM compliant constructs inside

the message processing body including finish, async, futures, etc. HS heavy ac-

56

1 t r a i t HabaneroActor extends Actor {

3 pr i va t e va l habaneroExecutorService = . . .

4 ove r r i d e de f scheduler = habaneroExecutorService

6 pr i va t e var lingeringActivity : HabaneroActivity = nu l l

8 ove r r i d e de f start () = {
9 // r e g i s t e r a pseudo a c t i v i t y to cause the IEF to wait on t h i s ac to r

10 lingeringActivity = . . .

11 // de l e ga t e to the parent implementation

12 super . start ()

13 }

15 ove r r i d e de f exit () : Nothing = {
16 // schedu le t h i s a c t i v i t y a l l ow ing the IEF to terminate

17 scheduleLingeringActivity (lingeringActivity)

18 // de l e ga t e to the parent implementation

19 super . exit ()

20 }
21 . . .

22 }

Figure 6.4 : Heavy actors in HS extending the standard Scala actors trait. The start

and exit events are used to maintain some book-keeping for the heavy actors and

interact with the Habanero runtime to schedule and execute tasks. The lingering

activity is explained in Section 6.3.1.

tors still need to rely on exceptions for control flow and explicit management of the

actor continuations, both implemented in the standard actors, and are hence more

expensive to operate than the corresponding light actors.

6.3.3 Light Actors

Light actors are a complete implementation of actors in the hybrid model. With the

support for asyncs in HS, there is no need to allow execution of logic independent of

message processing that is available in standard scala and heavy actors. Light actors

57

are started using a call to start() and the MPB triggered only on the messages they

receive. Light actors do not need to use exceptions to manage the control flow and

execute more efficiently compared to the corresponding heavy actors. The continua-

tions are stored via the state of member variables and an explicit partial function that

defines the behavior of the actor, i.e. the steps to execute while processing a message.

The mailbox supports a push-based implementation where asyncs are created with-

out the runtime having to poll (i.e. pull -based) the actor’s mailbox to decide when

to launch an async to process messages. The implementation of light actors relies on

the use of data-driven controls to implement the mailbox.

6.3.4 Data-driven controls (DDCs)

A Data-Driven Control (DDC) lazily binds a value and a block of code called the

execution body (EB) (Figure 6.5). When both these are available a task that executes

the EB using the value is scheduled. Both the value and the EB follow the dynamic

single assignment property ensuring data-race freedom. Until both fields are available,

the scheduler is unaware of the existence of the task. Figures 6.6 shows a simplified

implementation of a DDC excluding synchronization constructs. The DDC may be

implemented using an asynchronous or a synchronous scheduler. Light actors use

both forms of DDCs: asynchronous execution of the task by involving the Habanero

scheduler and synchronous execution of the EB.

DDCs differ from Taşırlar’s data-driven futures (DDFs) [61] in that only a single

task may be associated with a value at a time. DDFs apply the dynamic single

assignment property only to the value and allow multiple tasks to be waiting for the

value. In addition, the scheduler is made aware of the existence of these data-driven

tasks (DDTs) and causes the finish scopes of the tasks to block until the DDTs

58

Figure 6.5 : Data-Driven Control has two fields. The fields are assigned only once,

once both fields are assigned the body is scheduled.

are scheduled. In contrast, with DDCs the scheduler is unaware of the existence

of the task until it is scheduled at which point, it will go ahead to schedule and

execute the task. This may lead to issues with the finish scope of the activity in

the asynchronous scheduler, but we will see below that coupling the DDC with the

lifespan of the lingering task avoids this.

6.3.5 The Mailbox: Linked List of DDCs

The mailbox for the light actors is implemented as a linked list of DDCs (Figure 6.7).

As messages are sent to the actor, the chain of DDCs are built. The linked list is

concurrent and multiple messages can be sent to an actor simultaneously. Light actors

support both ordered and unordered adding of messages into the mailbox. When the

ordered mode is used, it guarantees that order of the messages sent from the same

actor will be preserved in the mailbox. No guarantee is provided for the order of

messages in the mailbox for messages sent from different actors. Figure 6.8 highlights

the implementation of the send() operation used to send messages to a light actor

in HS.

Once the actor has started (via the call to start()), it proceeds to traverse the

head of the mailbox one at a time lazily attaching the task to execute with the value

59

1 pr i va t e ab s t r a c t c l a s s AbstractDataDrivenControl {

3 pr i va t e var linkedValue : Any = nu l l

4 pr i va t e var linkedActivity : Runnable = nu l l

6 de f getValue () : Any = {
7 i f (linkedValue == nu l l) {
8 throw new IllegalStateException (” va lue i s nu l l ”)

9 }
10 r e turn linkedValue

11 }

13 de f putValue (value : Any) : Unit = {
14 i f (value == nu l l) {
15 throw new IllegalOperationException (”attempted put o f nu l l va lue ”)

16 }
17 synchronized {
18 i f (linkedValue == nu l l) {
19 linkedValue = value

20 i f (linkedActivity != nu l l) {
21 s chedu l eAc t i v i t y (linkedActivity)

22 }
23 } e l s e { /∗ handle e r r o r s c ena r i o ∗/ }
24 }
25 }

27 de f registerActivity (activity : Runnable) : Unit = {
28 synchronized {
29 linkedActivity = activity

30 i f (linkedValue != nu l l) {
31 s chedu l eAc t i v i t y (linkedActivity)

32 } e l s e { /∗ handle e r r o r s c ena r i o ∗/ }
33 }
34 }

36 de f s chedu l eAc t i v i t y (activity : Runnable) : Unit

37 }

Figure 6.6 : Data-driven control implemented in Habanero-Scala. The synchronized

blocks ensure the single assignment of the value and the activity and avoids data races

while trying to schedule the activity. The scheduleActivity() method is abstract

to allow different implementations of scheduling the activity to be implemented.

of the DDC, i.e. the message. The DDCs support asynchronous scheduling of the

tasks using the Habanero scheduler. The lingering activity is used to gain access to

the finish scope under which the DDC task needs to be scheduled. When the DDC

60

Figure 6.7 : The Actor mailbox is represented as a linked-list of DDCs. The message

head determines where the next message is stored while the body head determines

which message is being processed currently.

task is ultimately scheduled and executed, the head of the mailbox is moved ahead

and the next DDC processed. If the actor was terminated via a call to exit() in the

DDC task, the actor stops processing messages. No more DDC tasks are scheduled

and the lingering task is resumed and the hook on the enclosing finish scope from

the lingering task released. Since at any time, only one DDC is actively executed the

guarantee that only one message is processed at a time is provided. There is no need

for an explicit flag or state to track and schedule the next message processing task.

6.3.6 Supporting pause and resume with DDCs

Light actors support the pause and resume operations explained in Section 5.2.1 using

synchronous DDCs. A call to pause() creates a new DDC. The message processing

body (actOn() in Figure 6.9) checks for the presence of the DDC to determine if

the actor is in a paused state. If so it creates a continuation to process subsequent

messages and registers the activity with the DDC. When resume() is called, the state

of the actor is reset and the DDC is provided a value to trigger the execution of the

61

1 t r a i t HabaneroReactor extends OutputChannel [Any] {

3 pr i va t e var currentDdc = new LinkedDdcWrapper ()

4 pr i va t e var hasExited = f a l s e

6 de f useOrderedSend = . . .

8 de f send (msg : Any) : Unit = {
9 i f (hasExited) {

10 r e turn // ac to r has ex i ted , synchronous ly i gno re messages

11 }
12 i f (useOrderedSend) {
13 processMessage (msg)

14 } e l s e {
15 asyncSend (msg)

16 }
17 }

19 de f asyncSend (msg : Any) : Unit = {
20 va l runnableBlock : Runnable = new Runnable {
21 de f run = { processMessage (msg) }
22 }
23 va l newActivity = createHabaneroActivity (lingeringActivity , runnableBlock)

24 HabaneroReactor . executor . execute (newActivity)

25 }

27 protec ted de f processMessage (msg : Any) : Unit = {
28 i f (hasExited) {
29 r e turn // ac to r has ex i ted , i gno re messages

30 }
31 synchronized {
32 va l oldDdc = currentDdc // update the cur rent ddc

33 va l newDdc = oldDdc . nextNode

34 currentDdc = newDdc

35 oldDdc . value . putValue (msg) // put the message in to the ddc

36 }
37 }
38 . . .

39 }

Figure 6.8 : DDC used as the mailbox in HS Light actors.

continuation.

1 t r a i t HabaneroReactor extends OutputChannel [Any] {

3 pr i va t e var resumeDdc : SynchronousDataDrivenControl = nu l l

4 . . .

5 pr i va t e de f actOn (msgDdcWrapper : LinkedDdcWrapper) : Unit = {
6 va l msgDdc : HabaneroDataDrivenControl = msgDdcWrapper . value

62

7 . . .

8 // cont inue f u r t h e r p ro c e s s i ng i f a c to r has not ex i t ed

9 i f (! hasExited) {
10 va l tempResumeDdc = resumeDdc

11 i f (tempResumeDdc == nu l l) {
12 // ac to r i s ac t ive , asynchronous ly act on the next message

13 actOn (msgDdcWrapper . nextNode)

14 } e l s e {
15 // ac to r i s paused , wait f o r i t to resume be f o r e p ro c e s s i ng the ←↩

next message

16 prepareForResume (tempResumeDdc , msgDdcWrapper . nextNode)

17 }
18 }
19 . . .

20 }

22 pr i va t e de f prepareForResume (resumeOnDdc : SynchronousDataDrivenControl ,

23 actOnDdc : LinkedDdcWrapper) : Unit = {
24 va l runnableBlock : Runnable = new Runnable {
25 de f run = { actOn (actOnDdc) }
26 }
27 // de lay execut ion o f actOn () un t i l a c to r i s resumed

28 resumeOnDdc . r e g i s t e rA c t i v i t y (runnableBlock)

29 }

31 /∗∗
32 ∗ This method i s not thread sa f e , should only be c a l l e d in thread−s a f e ←↩

manner to avoid data ra c e s

33 ∗/
34 protec ted de f pause () : Unit = {
35 i f (resumeDdc == nu l l) {
36 resumeDdc = new SynchronousDataDrivenControl ()

37 }
38 }

40 /∗∗
41 ∗ resume a paused acto r .

42 ∗/
43 protec ted de f resume () : Unit = {
44 i f (resumeDdc != nu l l) {
45 va l tempDdc = resumeDdc

46 resumeDdc = nu l l

47 tempDdc . putValue (t rue) // dummy true value to t r i g g e r the a c t i v i t y

48 } e l s e { /∗ e r r o r : c a l l e d resume with nothing to resume ∗/ }
49 }
50 . . .

51 }

63

Figure 6.9 : Support for pause and resume in HS Light actors using synchronous

DDCs.

6.3.7 Supporting become and unbecome with DDCs

As mentioned in Section 4.1, the become primitive specifies the behavior that will

be used by the actor to process the next message allowing the actor to dynamically

change its behavior at runtime. If no replacement behavior is specified, the current

behavior will be used to process the next message. In the pure AM, actors are

functional and the become operation provides the ability for the actor to maintain

local state by creating a new actor and becoming this new actor. In Scala, the same

effect can be achieved by having dynamic pattern matching constructs which work in

conjunction with mutable member variables.

Light actors support the become and unbecome operation to allow the actor to

change its behavior as it processes messages. In addition, the light actor is required

to define the behavior() operation that provides a default behavior to use while

processing messages. All these behaviors are presented as partial functions which

Scala provides native support for. The behavior history is maintained in a stack and

the old behavior can be retrieved by an unbecome operation. The support for become

and unbecome is an improvement over the standard Scala actors in which the user

has to rely on manipulation of local state or explicit management of behaviors to

simulate the same operations. If at any point, the current behavior cannot process a

message (i.e. the partial function is not defined for the message), that actor terminates

and throws an exception. This is unlike the standard Scala actor behavior where

messages are retained in the hope that they will be processed later. The thrown

64

exception is caught by the Habanero runtime and associated with an instance of

MultipleExceptions thrown from the finish scope.

1 t r a i t HabaneroReactor extends OutputChannel [Any] {
2 pr i va t e va l behaviorHistory = new Stack [PartialFunction [Any , Unit]]

4 de f become (newBehavior : PartialFunction [Any , Unit]) : Unit = {
5 behaviorHistory . push (newBehavior)

6 }

8 de f unbecome () : Unit = {
9 i f (behaviorHistory . isEmpty) {

10 throw new RuntimeException (”Actor behavior h i s t o r y i s empty ! ”)

11 }
12 behaviorHistory . pop ()

13 }

15 /∗∗
16 ∗ abs t r a c t method which must be de f ined to a l low the

17 ∗ acto r to have custom behav ior s . User w i l l u sua l l y implement

18 ∗ t h i s with a p a r t i a l f unc t i on . This supports dynamic behavior changes .

19 ∗/
20 de f behavior () : PartialFunction [Any , Unit]

22 pr i va t e de f actOn (msgDdcWrapper : LinkedDdcWrapper) : Unit = {
23 va l msgDdc : HabaneroDataDrivenControl = msgDdcWrapper . value

24 va l runnableBlock : Runnable = new Runnable {
25 de f run : Unit = {
26 // act on the message

27 va l theMsg = msgDdc . getValue ()

29 . . .

30 // a l low the ac to r to dynamical ly change i t s behavior

31 va l curBehavior = i f (behaviorHistory . isEmpty) {
32 behavior ()

33 } e l s e {
34 behaviorHistory . head

35 }
36 . . .

37 }
38 }
39 // c r e a t e awai t ing a c t i v i t y that w i l l be scheduled when a message

40 // i s put on the cur rent ddc

41 va l newActivity : Runnable = createActivity (lingeringActivity , runnableBlock←↩
)

42 msgDdc . registerActivity (newActivity)

43 }
44 . . .

45 }

65

Figure 6.10 : Support for become and unbecome in HS Light actors. A stack is used to

store the partial functions that represent the history of behaviors used by the actor.

6.3.8 Using Light actors

Light actors are Scala objects that are created by instantiating subclasses of the

edu.rice.habanero.actor.HabaneroReactor trait. Subclasses need to provide an

implementation of the behavior method which defines the default message pro-

cessing behavior of the actor. Inside this behavior, the actor can make calls to

exit(), pause(), resume(), become(...), and unbecome() to trigger the various

state changes in the hybrid model. In addition, the behavior can include calls to

other Habanero parallel constructs like finish, async, future, data-driven futures,

etc. Figure 6.11 shows a simple example of using light actors to solve quicksort in the

hybrid model.

1 ob j e c t HybridActorQuicksortApp {
2 de f run (input : ListBuffer [Int]) : ListBuffer [Int] = {
3 va l rootActor = new QuicksortActor (nu l l , PositionInitial)

4 f i n i s h {
5 rootActor . s t a r t ()

6 rootActor ! Sort (input)

7 }
8 rootActor . result

9 }
10 }
11 c l a s s QuicksortActor (parent : QuicksortActor , positionRelativeToParent : Position←↩

) extends HabaneroReactor {

13 pr i va t e va l selfActor = th i s

14 var result : ListBuffer [Int] = nu l l

15 pr i va t e var numFragments = 0

17 de f notifyParentAndTerminate () = {
18 i f (parent ne nu l l) {
19 parent ! Result (result , positionRelativeToParent)

20 }
21 e x i t ()

22 }

66

24 ove r r i d e de f behavior () = {
25 case Sort (data) =>

26 va l dataLength : Int = data . length

27 i f (dataLength < QuicksortConfig . CUTOFF) {
28 result = quicksortSeq (data)

29 notifyParentAndTerminate ()

30 } e l s e {
31 va l pivot = data (dataLength / 2)

32 async {
33 va l leftUnsorted = filterLessThan (data , pivot)

34 i f (! leftUnsorted . isEmpty) {
35 va l leftActor = new QuicksortActor (selfActor , PositionLeft)

36 leftActor . s t a r t ()

37 leftActor ! Sort (leftUnsorted)

38 } e l s e {
39 selfActor ! Result (leftUnsorted , PositionLeft)

40 }
41 }
42 async {
43 va l rightUnsorted = filterGreaterThan (data , pivot)

44 i f (! rightUnsorted . isEmpty) {
45 va l rightActor = new QuicksortActor (selfActor , PositionRight)

46 rightActor . s t a r t ()

47 rightActor ! Sort (rightUnsorted)

48 } e l s e {
49 selfActor ! Result (rightUnsorted , PositionRight)

50 }
51 }
52 result = filterEqualsTo (data , pivot)

53 numFragments += 1

54 }
55 case Result (data , position) =>

56 i f (! data . isEmpty) {
57 i f (position eq PositionLeft) {
58 result = data ++ result

59 } e l s e i f (position eq PositionRight) {
60 result = result ++ data

61 }
62 }
63 numFragments += 1

64 i f (numFragments == 3) {
65 notifyParentAndTerminate ()

66 }
67 }
68 }

Figure 6.11 : Quicksort using light actors in HS. This version introduces parallelism

inside the actor message processing body by creating escaping asyncs. Note the use

of finish construct to detect actor termination.

67

6.3.9 Light and Heavy actors compared

Heavy actors are instances of the edu.rice.habanero.actor.HabaneroActor trait

and inherit all the abilities of standard Scala actors which include support for nested

receive and react. However, heavy actors do not support pause and resume. Light

actors do not directly support nesting of receive and react, but can simulate the

behavior using pause, resume and DDTs. Such an implementation in light actors has

the added benefit that there is no blocking of threads. Another feature left out of light

actors is the ability to link actors which cause a group of actors to be notified when

an actor terminates. This is available in the standard Scala actors as a convenience

and an influence from the Erlang actors. The same behavior is achieved by passing

exit messages in the pure AM and hybrid model and has been left out of the light

actor implementation. The hybrid actors can be enclosed inside finish scopes and

there is no need to maintain explicit latches to detect termination. Finally, the two

actor implementations in HS can seamlessly interact with each other since they are

scheduled and run under the same runtime and scheduler.

68

Chapter 7

Applications

The hybrid model allows problems to be solved not only using either approach in-

dividually but also mixing both models. The Async-Finish Model (AFM) is very

useful in decomposing a problem into independent sub-tasks whose results are then

combined to produce the end result. However, if coordination is required between

these subtasks extensions are required to the AFM. The Actor Model (AM) is useful

to implement asynchronous event-based problems where individual actors coordinate

with each other using messages as events. In the AM, simulating non-blocking syn-

chronous replies requires some amount of effort mainly due to lack of a guarantee of

when a given message will be processed. Similarly, achieving global consensus among

a group of actors is a non-trivial task. Such patterns are simpler to realize in the

AFM, for example by using finish to wrap asyncs or by using phasers [37] as com-

munication barriers. Some applications that exhibit patterns that prove to be a good

fit for the hybrid model are presented in the following sections.

7.1 Multiple Producer-Consumer with Bounded Buffer

One of the most common synchronization problems is multiple producers and con-

sumers with a bounded buffer [68]. In this problem, producer tasks produce items

that are stored into the buffer, while consumer tasks removes these items from the

buffer and process them. Synchronization is needed to guarantee that

69

• producer tasks do not insert items into the buffer when the buffer is full,

• consumers do not try to remove items from an empty buffer, and

• each item is consumed and processed by exactly one consumer.

Often, it is possible to parallelize the production or consumption of an individual

item. The AFM is often a good fit for this. However, coordination and synchro-

nization is required when either the producer or consumer interacts with the buffer.

Traditionally, a host of synchronization constructs like semaphores, monitors or locks

are used to handle the synchronization. The issue with implementations of these

primitives is that they are (thread) blocking and can lead to performance bottlenecks

on most parallel runtime implementations.

In contrast, in the AM, the producer, consumer and the buffer can be modeled

as actors. The producer and consumers send messages to the buffer actor which

coordinates the transfer of items between the producers and consumers. Producers

notify the buffer when they are ready to produce items. When the buffer has enough

space it signals (via messages) the producer to produce an item. The producer sends

the newly produced item to the buffer. If the buffer is full, the buffer actor waits

until a consumer consumes an item from the buffer before signaling the producer to

produce the next item. Consumers notify the buffer when they are ready to consume

an item. If there is an item in the buffer, the item is handed off to the consumer, else

the buffer caches the consumer and waits for an item to be produced by a producer.

The messages sent to the buffer (and the other actors involved, i.e. the producers

and consumers) are processed one at a time and there are no data races. In addition,

none of the operations mentioned above involve actively blocking threads as actors

store their own continuations and can resume whenever they receive messages. In

70

addition, the processing logic of actually producing or consuming the items can be

parallelized using the AFM. Hence, the entire problem can be solved effectively using

the hybrid model.

7.2 Pipelined Parallelism

Pipelining is used for repetitive tasks where each task can be broken down into in-

dependent sub-tasks (also called stages) which must be performed sequentially, one

after the other [69]. Each stage partially processes data and then forwards the par-

tially processed result to the next stage in the pipeline for further processing. This

pattern works best if the operations performed by the various stages of the pipeline

are balanced, i.e. take comparable time. If the stages in the pipeline vary widely in

computational effort, the slowest stage creates a bottleneck for the aggregate through-

put.

The pipeline pattern is a natural fit with the AM since each stage can be repre-

sented as an actor. The single message processing rule ensures that each stage/actor

processes one message at a time before handing off to the next actor in the pipeline.

The stages however need to ensure ordering of messages while processing them. In

Habanero-Scala, this ordering support is provided by default for messages from the

same actor to another light actor. However, the amount of concurrency (hence par-

allelism) in a full pipeline is limited by the number of stages. One way to increase

the available parallelism, apart from creating more stages, is to introduce parallelism

within the stages. This can be achieved by using the hybrid model. Increasing the

parallelism may also help in speeding up the slowest stage in the pipeline.

71

7.2.1 Filterbank

Filter Bank has been ported from the StreamIt [13] set of benchmarks. It is used

to perform multirate signal processing and consists of multiple pipeline branches.

On each branch the pipeline involves multiple stages including multiple delay stages,

multiple FIR filter stages, and sampling. Since Filter Bank represents a pipeline, it

can easily be implemented using actors. The FIR filter stage is stateful, appears early

in the pipeline, and is a bottleneck in the pipeline. The FIR stage limits the pipeline

rate, the performance can be improved by speeding up this stage by parallelizing it.

We can do so in the hybrid model by partitioning the computation of the dot product

using asyncs (line 24 in the example). Each async computes the dot product of a

partition before writing back the result into its assigned DDF (line 30). The async

at line 33 awaits on the results to be available before computing the final result and

propagating the value to the next stage in pipeline. All the spawned asyncs between

line 22 and line 38 join to their IEF, the finish at line 21. This ensures the FIR

stage does not start processing the next message until it has completed processing the

current message and has propagated values to the next stage in the pipeline. While

such parallelism in the FIR stage could be simulated in the AM, it requires distributing

the logic among multiple actors and significantly complicates the code as the actor

representing the FIR stage needs to maintain additional state to track the arrival

of partial results and maintain the order of values it passes along the pipeline (the

AM does not guarantee the order in which messages will be serviced). In addition,

there will be overhead associated with the data copying required to send the data

fragments to the helper actors. Comparatively, the use of asyncs and finish avoids

such drawbacks making the code easier to maintain and helping with productivity.

1 ob j e c t FilterBankApp extends HabaneroApp {

72

2 f i n i s h {
3 . . .

4 va l sampler = . . .

5 va l fir = new FirFilter (. . . , sampler) . start ()

6 . . .

7 } }
8 c l a s s FirFilter (. . . , nextStage : HybridActor [Any])

9 extends HybridActor [FirMessage] {
10 . . .

11 de f behavior () = {
12 case FirItemMessage (value , coeffs) =>

13 buffer (dataIndex) = value

14 dataIndex = (dataIndex + 1) % bufferSize

15 va l numHelpers = . . . // number o f he lpe r ta sk s

16 // a l l o c a t e the DDFs to use

17 va l stores = Array . tabulate (numHelpers) {
18 index => ddf [Double] ()

19 }

21 f i n i s h {
22 // compute the sum us ing div ide−and−conquer
23 (0 until numHelpers) f o r each { helperId =>

24 async {
25 va l (start , end) = . . .

26 var sum : Double = 0.0

27 start until end f o r each { index =>

28 sum += buffer (index) ∗ coeffs (index)

29 }
30 stores (helperId) . put (sum)

31 } }
32 // wait f o r the p a r t i a l r e s u l t s

33 asyncAwait (stores) {
34 // propagate the sum down the p i p e l i n e

35 va l sum = stores . foldLeft (0 . 0) {
36 (acc , loopDdf) => acc + loopDdf . get ()

37 }
38 nextStage . send (DataItemMessage (sum))

39 }
40 }
41 case . . . => . . .

42 } }

Figure 7.1 : The FIR stage in the Filter Bank pipeline. In this example, the computa-

tion of the dot product between the coefficients and a local buffer has been parallelized

to speedup this stage in the application.

73

7.2.2 Sieve of Eratosthenes

One algorithm that can be solved elegantly using a dynamic pipeline is the Sieve of

Eratosthenes [70]. The algorithm incrementally builds knowledge of primes. Each

new candidate is sequentially tested against the known local primes. If none of these

local primes divide the candidate, the candidate is deemed to be prime and added

to the list of local primes. The next candidate is then tested using the same policy.

Using this approach, it is easy to build a pipelined version where a fixed number

of local primes are buffered in each stage. Every time the buffer overflows, a new

stage is created and linked to the pipeline thus growing the pipeline dynamically. A

degenerate case would be to store just one prime in the buffer and create as many

stages as known primes. However, there is overhead in filling and draining items in

the pipeline for each stage and thus a buffered solution with multiple primes per stage

performs better. It is possible to further expose the parallelism in the algorithm by

performing the local prime checks in parallel using parallelization inside the stages

thus bringing the hybrid model into the picture.

7.3 Speculative Parallelization

Speculative parallelization is a technique used to extract parallelism from sequential

programs. The idea is to optimistically execute some fragments of code in parallel

assuming that no dependences exist. The parallel tasks synchronize when necessary

to ensure that no sequential semantics are violated [71]. Speculative parallelization is

particularly common while processing data structures such as trees and graphs, where

opportunities for deterministic parallelism are highly limited. The AM can be used to

parallelize such applications by having each node represented as an actor. The actors

74

can coordinate with their parent and sibling nodes for dependences but execute in

parallel when no dependences exist. With actors in place, the hybrid model can be

used to exploit the parallelism inside the actors.

7.3.1 Online (Hierarchical) Facility Location

The goal of a Facility Location algorithm is to decide when and where to open facilities

in order to minimize the associated cost of opening a facility and the (transporta-

tion) cost of servicing customers. In the online version, the locations of customers are

not known beforehand and the algorithm needs to make these decisions on-the-fly.

One solution to this problem is the Online Hierarchical Facility Location [72]. The

algorithm exposes a hierarchical tree structure (quadrants in the algorithm) while

performing the computation. The location of the customer initially flows down the

tree, but then need to flow back up the tree at certain decision points. When these

values flow back up the tree, they may change how the subsequent values flow down

the tree. In the algorithm, each node maintains a list of customers it plans to service.

At decision points, it needs to process this list and partition them to form new child

nodes. In addition, the decision to create child nodes needs to be propagated up the

tree and to selected siblings. Thus the tree grows dynamically and new communica-

tion patterns may develop between nodes. A parallel version of this algorithm can be

mapped to the hybrid model where each node is treated as an actor and the async-

finish parallelism can be used to exploit the data parallelism while partitioning the

customers to prepare the child nodes.

75

Chapter 8

Results and Discussion

8.1 Experimental Setup

The benchmarks were run on a 12-core (two hex-cores) 2.8 GHz Intel Westmere

SMP node with 48 GB of RAM per node (4 GB per core), running Red Hat Linux

(RHEL 6.0). Each core had a 32 kB L1 cache and a 256 kB L2 cache. The software

stack includes a Java Hotspot JDK 1.7, Habanero-Scala 0.1.3, and Scala 2.9.1-1. Each

benchmark used the same JVM configuration flags (-Xmx8192m -XX:MaxPermSize=256m

-XX:+UseParallelGC -XX:+UseParallelOldGC -XX:-UseGCOverheadLimit) and was run

for ten iterations in ten separate JVM invocations, the arithmetic mean of thirty ex-

ecution times (last three from each invocation) are reported. This method is inspired

from [73] and the last three execution times are used to approximate the steady state

behavior. In the bar charts, the error bars represent one standard deviation. All

actor implementations of a benchmark use the same algorithm and mostly involved

renaming the parent class of the actors (in the Scala and Habanero-Scala versions)

to switch from one implementation to the other.

8.2 Microbenchmarks comparing Actor frameworks

The first benchmark (Figure 8.1) is the PingPong benchmark in which two processes

send each other messages back and forth. The benchmark was configured to run

using two workers since there are two concurrent actors. This benchmark tests the

76

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

140

Number of pings (in millions)

A
ve

ra
g
e

E
x
ec

u
ti

on
T

im
e

(i
n

se
cs

)

Jetlang Kilim Akka

Standard Scala HS heavy HS light

Figure 8.1 : The PingPong benchmark exposes the throughput and latency while

delivering messages. There is no parallelism to be exploited in the application.

overheads in the message delivery implementation for actors. The original version

of the code was obtained from [74] and ported to use each of the different actor

frameworks. Scala actors and HS heavy actors have the same underlying messaging

implementation but use different schedulers. The HS heavy actors benefit from the

thread binding support in the Habanero runtime. HS light actors perform better

than Scala and HS heavy actors because it avoids the use of exceptions to maintain

control flow (as discussed in Section 6.3.2). Kilim, Jetlang, Akka and light actors

benefit from avoiding generating exceptions to maintain control flow. In general,

77

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

Number of meetings (in millions)

A
ve

ra
g
e

E
x
ec

u
ti

on
T

im
e

(i
n

se
cs

)

Jetlang Kilim Akka

Standard Scala heavy HS light

Figure 8.2 : The Chameneos benchmark exposes the effects of contention on shared

resources. The Chameneos benchmark involves all chameneos constantly sending

messages to a mall actor that coordinates which two chameneos get to meet. Adding

messages into the mall actor’s mailbox serves as a contention point.

the Akka and light actor versions benefit from the use of fork-join schedulers as

opposed to threadpool schedulers available in standard implementations of Kilim and

Jetlang actors. Jetlang’s version is much slower as the Scala implementation pays

the overhead for pattern matching twice as opposed to once in Kilim, Akka and light

actors.

The Chameneos benchmark, shown in Figure 8.2, tests the effects of contention

78

on shared resources (the mailbox implementation) while processing messages. The

Scala implementation was obtained from the public Scala SVN repository [75]. The

other actor versions were obtained in a manner similar to the PingPong benchmark.

The benchmark was run with 500 chameneos (actors) constantly arriving at a mall

(another actor) and it was configured to run using twelve workers. The mailbox im-

plementation of the mall serves as a point for contention. In this benchmark, the

benefits of thread binding are neutralized since the contention on the mailbox is the

dominating factor and since both the Scala and HS heavy actors share the same im-

plementation they show similar performance. Kilim, Jetlang, Akka and light actors

benefit from batch-processing messages inside tasks and from avoiding generating ex-

ceptions to maintain control flow. The light actor implementations that uses DDCs

(Section 6.3.4) outperforms the simple linked list implementation in other actor im-

plementations. Jetlang, which uses iterative batch-processing of messages sent to

the mall, is in general slightly faster than the light actor implementation which uses

recursive batch processing of messages.

The Java Grande Forum Fork-Join benchmark [76], shown in Figure 8.3, mea-

sures the time taken to create and destroy actor instances. Each actor does a minimal

amount of work processing one message before it terminates. The Akka implementa-

tion is noticeably slower while the Jetlang implementation quickly runs out of memory

as it uses an ArrayList to maintain the work queue. The heavy actor implementation

again benefits from thread binding support compared to standard Scala actors. The

light actor implementation which uses lightweight async tasks to implement actors

performs best.

79

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

Number of tasks forked (in millions)

A
ve

ra
ge

E
x
ec

u
ti

on
T

im
e

(i
n

se
cs

)

Jetlang Kilim Akka

Standard Scala HS heavy HS light

Figure 8.3 : The Java Grande Forum Fork-Join benchmark ported for actors. Indi-

vidual invocations were configured to run using twelve workers. Both Jetlang versions

run out of memory on larger problem sizes.

80

8.3 Application Benchmarks

In this section, we compare the performance of the actor frameworks on applications

displaying different parallel patterns. We also analyze the benefits of parallelizing the

actor message processing in the hybrid model in some applications. Each application

benchmark was run with the schedulers set up to use 12 worker threads.

8.3.1 General Applications Compared

Figure 8.4 displays results of running different applications using the different actor

frameworks. The first two applications, Sudoku Constraint Satisfaction (Sudoku-CS)

and Pi Precision (PiPrec), represent master-worker style actor programs where the

master incrementally discovers work to be done and allocates work fragments to the

workers. Workers only have at most one message pending in their mailbox and there is

no scope for batch processing messages. The master is the central bottleneck in such

applications and all frameworks perform similarly. The next application, All-Pairs

Shortest Path (APSP), represents a phased computation where all actor effectively

join on a barrier in each iteration of the outermost loop in Floyd-Warshall’s algorithm

before proceeding to the next iteration. In each iteration the slowest actor dominates

the computation and as a result we see similar execution times for all the frameworks.

The next three applications have relatively larger memory footprints and we see

the benefits of thread binding as well as efficient implementation for throughput.

HS heavy is faster than standard Scala actors. Similarly the light and Akka actors

outperform the other actor frameworks. The actor implementation of Successive

Over-Relaxation (SOR) represents a 4-point stencil computation and was ported from

SOTER [77]. The next two applications, Concurrent Sorted Linked-List (CSLL)

and Prime Sieve (PSieve), use a pipeline pattern to expose some parallelism. CSLL

81

0 5 10 15 20 25 30 35 40 45

P
S

ie
ve

C
S

L
L

S
O

R
A

P
S

P
P

iP
re

c
S

u
d

ok
u

-C
S

14.55

2.83

4.46

19.46

31.19

3.31

23.26

10.22

17.93

19.32

31.97

3.31

35.18

31.73

44.42

19.55

31.91

3.27

16.35

3.65

5.51

20.94

31.55

3.4

27.45

23.71

12.61

19.6

31.93

3.25

33.37

23.09

13.56

19.65

31.75

3.26

Average Execution Time (in secs)

Jetlang Kilim Akka Standard Scala HS heavy HS light

• Sudoku-CS: Sudoku Constraint Satisfaction

• PiPrec: Pi Precision

• APSP: All-Pairs Shortest Path (Floyd-Warshall)

• SOR: Successive Over Relaxation

• CSLL: Concurrent Sorted Linked List

• PSieve: Prime Sieve

Figure 8.4 : Comparison of some applications using different JVM actor frameworks.

82

measures the performance of adding elements, removing elements, and performing

collective operations on a linked-list. The implementation maintains a list of helper

actors with each actor responsible for handling request for a given value range for

individual element operations. Collective operations, such as length or sum, are

implemented using a pipeline starting from the head of the list of the helper actors and

only the tail actor returning a response to the requester. There are multiple request

actors requesting various operations on the linked-list and non-conflicting requests

are processed in parallel. The PSieve application represents a dynamic pipeline in

which a fixed number of local primes are buffered in each stage. Every time the buffer

overflows, a new stage is created and linked to the pipeline, thus growing the pipeline

dynamically. There is overhead in filling and draining items in the pipeline for each

stage and thus a buffered solution with multiple primes per stage performs better.

In summary, the geometric means of the execution times in seconds for the different

actor frameworks in sorted order are as follows: HS light (8.47), Akka (9.51), HS heavy

(14.35), Kilim (15.99), Jetlang (16.64), and standard Scala (21.59). The HS light is

more than 10% faster than Akka and more than 33% faster than the other actor

frameworks while using sequential message processing in actors.

8.3.2 Quicksort

Quicksort lends itself to divide-and-conquer strategy and is a good fit for the AFM,

however it exposes some amount of non-determinism in availability of partial results

which cannot entirely be captured by the AFM. Figure 8.5 compares the hybrid ac-

tor implementations in HS with previously existing async-finish extensions such

as DDFs. Pure actor implementations in HS involve sequential message-processing.

The light actor implementation is faster than the DDF-based implementation as it can

83

0 2 4 6 8 10 12 14 16 18

1
1

m
il

li
on

12.25

13.6

14.27

16.67

16.06

14.91

14.31

13.69

13.92

Jetlang Kilim Akka

Standard Scala HS DDFs HS heavy (sequential)

HS heavy (parallel) HS light (sequential) HS light (parallel)

Figure 8.5 : Results of the Quicksort benchmark on input of length 11 million.

make progress computing the partial result from fragments. In the hybrid model, par-

allelization inside the actor is achieved by performing the left and right splits around

the partition in parallel for arrays with sizes larger than a configured threshold. The

parallelized hybrid actor implementations perform better than the implementation

that use sequential message processing by around 10% and 14% for light and heavy

actors, respectively. The HS light (parallel) actor is the best-performing and is around

10% faster than other actor implementations and more than 23% faster than DDF

implementation.

84

−5 0 5 10 15 20 25 30 35 40 45 50 55

F
il

te
r

B
an

k

17.24

25.15

29.08

32.41

27.61

43.54

26.22

Average Execution Time (in secs)

Jetlang Kilim Akka

Standard Scala HS heavy Sequential HS light Sequential

HS light Parallel

Figure 8.6 : Filter Bank benchmark results configured to use three branches.

8.3.3 Filter Bank for multirate signal processing

Filter Bank has been ported from the StreamIt [13] set of benchmarks and has been

described in Section 7.2.1. The FIR filter stage is stateful, appears early in the

pipeline, and is a bottleneck in the pipeline. Parallelizing the computation of the

weighted sum to pass down the pipeline in this FIR stage shortens the critical length

of the pipeline and helps speed up the application. Figure 8.6 compares the per-

formance of the actor implementations of the Filter Bank benchmark with a hybrid

implementation which parallelizes the FIR stage. The HS light parallel version is at

least 30% faster than the other actor implementations which use sequential message

processing.

85

−10 0 10 20 30 40 50 60 70 80 90 100 110 120 130

F
a
ci

li
ty

L
o
ca

ti
on

11.42

15.72

50.14

98.42

31.62

114.5

85.35

Average Execution Time (in secs)

Jetlang Kilim Akka

Standard Scala HS heavy Sequential HS light Sequential

HS light Parallel

Figure 8.7 : Online Hierarchical Facility Location benchmark results. Results dis-

played for 6 million customers and an alpha value of 5.

8.3.4 Online Hierarchical Facility Location

Figure 8.7 compares the performance of the actor implementations of the Facility

Location benchmark (described in Section 7.3.1) with a hybrid implementation. In

Online Hierarchical Facility Location, parallelism from the hybrid model is used when

a quadrant (actor) splits and creates its four children. The split happens based on

a threshold determined by the value of alpha, which is an input to the program. A

smaller value of alpha means there are larger number of splits and the tree is deeper.

The performance of the HS light with parallelized splits is better than the HS light

actor implementation by about 27% and is comfortably better than Jetlang, Kilim,

Akka, and Scala.

86

Chapter 9

Conclusions & Future Work

9.1 Conclusions

With the advent of the multi-core era there is a renewed interest in developing new

programming models for parallelism. This thesis focuses on a hybrid model that

combines two such programming models: the Async-Finish model (AFM) and the

Actor model (AM). To the best of our knowledge, this is the first such study to

systematically combine these two models.

In this thesis, we presented the case for integrating actors in the AFM as the

hybrid model. The hybrid model allows for parallelism inside actors while providing

a useful coordination construct between tasks in the AFM. The hybrid model makes

termination detection easier in actor programs. It also allows arbitrary coordination

patterns, in arguably a more productive manner than other extensions such as phasers

and data-driven futures, among tasks in the AFM. The hybrid model allows for easier

implementation of certain constructs, for example the normally blocking receive can

be implemented in a non-blocking manner in the hybrid model.

The thesis also presents an implementation of this hybrid model called Habanero-

Scala (HS), which is an extension of the Scala programming language. HS provides

a faster actor implementation than the the standard Scala actor library and many

other actor implementations on the JVM. HS also served as a tool to run experi-

ments to verify the claims of the hybrid model. The thesis also presented properties

87

of applications that can benefit from the hybrid model and experimental results cor-

roborate the claim that hybrid solutions to certain problems are more efficient than

exclusively using the AFM or AM. The hybrid model thus adds to the tools available

for the programmer to aid in productivity and performance while developing parallel

software.

9.2 Future Work

The hybrid model suffers from the possibility of data races when the message pro-

cessing inside actors is parallelized. In fact, data races can also exist in many actor

implementations on the JVM as they do not enforce data isolation. Data race de-

tection in the hybrid actors is an interesting area for future research and we plan to

extend the DPST-based data race detection algorithm [65] for data race detection in

the unified model.

88

Bibliography

[1] A. Mendelson, “How many cores is too many cores?.” 3rd HiPEAC Industrial

Workshop, Haifa, Israel, April 2007.

[2] H. Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency

in Software,” Dr. Dobb’s Journal, vol. 30, March 2005.

[3] J. L. Manferdelli, “The Many-Core Inflection Point for Mass Market Com-

puter Systems.” http://www.ctwatch.org/quarterly/articles/2007/02/

the-many-core-inflection-point-for-mass-market-computer-systems/.

[4] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting Coarse-Grained Task,

Data, and Pipeline Parallelism in Stream Programs,” SIGOPS Oper. Syst. Rev.,

vol. 40, pp. 151–162, October 2006.

[5] G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Proceed-

ings of the IEEE, vol. 86, pp. 82–85, January 1998.

[6] H. Sutter and J. Larus, “Software and the Concurrency Revolution,” Queue,

vol. 3, pp. 54–62, September 2005.

[7] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha, “Im-

plementation of a Portable Nested Data-Parallel Language,” Journal of Parallel

and Distributed Computing, vol. 21, pp. 102–111, 1994.

http://www.ctwatch.org/quarterly/articles/2007/02/the-many-core-inflection-point-for-mass-market-computer-systems/
http://www.ctwatch.org/quarterly/articles/2007/02/the-many-core-inflection-point-for-mass-market-computer-systems/

89

[8] Ghuloum, Anwar and Sharp, Amanda and Clemons, Noah and Du Toit, Stefanus

and Malladi, Rama and Gangadhar, Mukesh and McCool, Michael and Pabst,

Hans, “Array Building Blocks: A Flexible Parallel Programming Model for Mul-

ticore and Many-Core Architectures.” http://drdobbs.com/cpp/227300084.

[9] Wikipedia, The Free Encyclopedia, “Automatic Parallelization.” http://en.

wikipedia.org/wiki/Automatic_parallelization, 2011. [Online; accessed

27-March-2011].

[10] J. G. Steffan and T. C. Mowry, “The Potential for Using Thread-Level Data

Speculation to Facilitate Automatic Parallelization,” in Proceedings of the Fourth

International Symposium on High-Performance Computer Architecture, (Las Ve-

gas, Nevada), February 1998.

[11] M. Hall, D. Padua, and K. Pingali, “Compiler research: The Next 50 Years,”

Communications of the ACM, vol. 52, pp. 60–67, February 2009.

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large

Clusters,” Commun. ACM, vol. 51, pp. 107–113, January 2008.

[13] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “StreamIt: A Language for

Streaming Applications,” in Computational Complexity, pp. 179–196, 2002.

[14] Mathworks, “Matlab Parallel Computing Toolbox.” http://www.mathworks.

com/products/parallel-computing/.

[15] Message Passing Interface Forum, “MPI: A Message-Passing Interface Stan-

dard,” 1994.

http://drdobbs.com/cpp/227300084
http://en.wikipedia.org/wiki/Automatic_parallelization
http://en.wikipedia.org/wiki/Automatic_parallelization
http://www.mathworks.com/products/parallel-computing/
http://www.mathworks.com/products/parallel-computing/

90

[16] Wikipedia, The Free Encyclopedia, “Partitioned Global Address Space.” http:

//en.wikipedia.org/wiki/Partitioned_global_address_space, 2010. [On-

line; accessed 2-August-2010].

[17] R. W. Numrich and J. Reid, “Co-array Fortran for parallel programming,” SIG-

PLAN Fortran Forum, vol. 17, pp. 1–31, August 1998.

[18] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel Programmability and

the Chapel Language,” International Journal of High Performance Computing

Applications, vol. 21, no. 3, pp. 291–312, 2007.

[19] UPC Consortium, “UPC Language Specification (V 1.2).” http://upc.gwu.

edu/docs/upc_specs_1.2.pdf.

[20] K. Ebcioglu, V. Saraswat, and V. Sarkar, “X10: An Experimental Language

for High Productivity Programming of Scalable Systems,” In Proceedings of

the Second Workshop on Productivity and Performance in High-End Comput-

ing (PPHEC-05), January 2005.

[21] Wikipedia, The Free Encyclopedia, “GPGPU: General-purpose computing on

graphics processing units.” http://en.wikipedia.org/wiki/GPGPU, 2010. [On-

line; accessed 2-August-2010].

[22] Corporation, Nvidia, “NVIDIA CUDA Programming Guide 2.0.” http://www.

nvidia.com/cuda.

[23] D. Lea, “A Java Fork/Join Framework,” in Java Grande, pp. 36–43, 2000.

[24] P. Kambadur, A. Gupta, A. Ghoting, H. Avron, and A. Lumsdaine, “PFunc:

Modern Task Parallelism For Modern High Performance Computing,” in Pro-

http://en.wikipedia.org/wiki/Partitioned_global_address_space
http://en.wikipedia.org/wiki/Partitioned_global_address_space
http://upc.gwu.edu/docs/upc_specs_1.2.pdf
http://upc.gwu.edu/docs/upc_specs_1.2.pdf
http://en.wikipedia.org/wiki/GPGPU
http://www.nvidia.com/cuda
http://www.nvidia.com/cuda

91

ceedings of the Conference on High Performance Computing Networking, Storage

and Analysis, SC ’09, (New York, NY, USA), pp. 43:1–43:11, ACM, 2009.

[25] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,

and Y. Zhou, “Cilk: An Efficient Multithreaded Runtime System,” SIGPLAN

Not., vol. 30, pp. 207–216, August 1995.

[26] C. E. Leiserson, “The Cilk++ Concurrency Platform,” in Proceedings of the

46th Annual Design Automation Conference, DAC ’09, (New York, NY, USA),

pp. 522–527, ACM, 2009.

[27] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-Core

Processor Parallelism. O’Reilly, 2007.

[28] OpenMP Architecture Review Board, “OpenMP Application Program Inter-

face,” Review Literature And Arts Of The Americas, vol. 1, no. May, pp. 1997–

2008, 2008.

[29] V. Cavè, J. Zhao, Y. Guo, and V. Sarkar, “Habanero-Java: the New Adventures

of Old X10,” 9th International Conference on the Principles and Practice of

Programming in Java (PPPJ), August 2011.

[30] Budimlic̀, Zoran and Yan, Yonghong and Cavè, Vincent and Sarkar,

Vivek, “Habanero-C Project.” https://wiki.rice.edu/confluence/display/

HABANERO/Habanero-C.

[31] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. von Praun, and V. Sarkar, “X10: An Object-Oriented Approach to Non-

uniform Cluster Computing,” SIGPLAN Not., vol. 40, pp. 519–538, Oct. 2005.

https://wiki.rice.edu/confluence/display/HABANERO/Habanero-C
https://wiki.rice.edu/confluence/display/HABANERO/Habanero-C

92

[32] R. Barik, Z. Budimlic̀, V. Cavè, S. Chatterjee, Y. Guo, D. Peixotto, R. Raman,

J. Shirako, S. Taşırlar, Y. Yan, Y. Zhao, and V. Sarkar, “The Habanero Multicore

Software Research Project,” in Proceeding of the 24th ACM SIGPLAN conference

companion on Object oriented programming systems languages and applications,

OOPSLA ’09, (New York, NY, USA), pp. 735–736, ACM, 2009.

[33] S. Chandra, V. Saraswat, V. Sarkar, and R. Bodik, “Type Inference for Locality

Analysis of Distributed Data Structures,” in Proceedings of the 13th ACM SIG-

PLAN Symposium on Principles and practice of parallel programming, PPoPP

’08, (New York, NY, USA), pp. 11–22, ACM, 2008.

[34] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar, “Hierarchical Place Trees : A Portable

Abstraction for Task Parallelism and Data Movement,” 22nd International

Workshop on Languages and Compilers for Parallel Computing, 2009.

[35] R. Barik and V. Sarkar, “Interprocedural Load Elimination for Dynamic Opti-

mization of Parallel Programs,” in Proceedings of the 2009 18th International

Conference on Parallel Architectures and Compilation Techniques, (Washington,

DC, USA), pp. 41–52, IEEE Computer Society, 2009.

[36] R. Lublinerman, J. Zhao, Z. Budimlic̀, S. Chaudhuri, and V. Sarkar, “Delegated

Isolation,” in Proceedings of OOPSLA 2011, October 2011.

[37] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer, “Phasers: a Unified

Deadlock-Free Construct for Collective and Point-to-Point Synchronization,” in

Proceedings of the 22nd annual international conference on Supercomputing, ICS

’08, (New York, NY, USA), pp. 277–288, ACM, 2008.

93

[38] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer, “Phaser Accumulators:

a New Reduction Construct for Dynamic Parallelism,” Computer, 2009.

[39] C. Hewitt, P. Bishop, and R. Steiger, “Artificial Intelligence A Universal Modular

ACTOR Formalism for Artificial Intelligence.” Proceedings of the 3rd Interna-

tional Joint Conference on Artificial Intelligence, Stanford, CA, August 1973.

[40] Hewitt, Carl and Baker, Henry G., “ACTORS AND CONTINUOUS FUNC-

TIONALS,” tech. rep., Massachusetts Institute of Technology, Cambridge, MA,

USA, February 1978.

[41] G. Agha, Actors: a model of concurrent computation in distributed systems.

Cambridge, MA, USA: MIT Press, 1986.

[42] R. Virding, C. Wikström, M. Williams, and J. Armstrong, Concurrent program-

ming in ERLANG (2nd ed.). Hertfordshire, UK, UK: Prentice Hall International

(UK) Ltd., 1996.

[43] J. Armstrong, “Concurrency Oriented Programming in Erlang,” Challenge,

November 2002.

[44] D. Kafura, “ACT++: Building a Concurrent C++ with Actors,” J. Object Ori-

ented Program, vol. 3, pp. 25–37, April 1990.

[45] J.-P. Briot, Actalk: A Testbed for Classifying and Designing Actor Languages in

the Smalltalk-80 Environment, pp. 109–129. Cambridge University Press, 1989.

[46] C. Tismer, “Continuations and Stackless Python,” in Proceedings of the 8th

International Python Conference, 2000.

94

[47] J. Ayres and S. Eisenbach, “Stage: Python with Actors,” in Proceedings of the

2009 ICSE Workshop on Multicore Software Engineering, IWMSE ’09, (Wash-

ington, DC, USA), pp. 25–32, IEEE Computer Society, 2009.

[48] J. Sillito, “Stage: Exploring Erlang Style Concurrency in Ruby,” in Proceedings

of the 1st international workshop on Multicore software engineering, IWMSE ’08,

(New York, NY, USA), pp. 33–40, ACM, 2008.

[49] Microsoft Corporation, “Asynchronous Agents Library.” http://msdn.

microsoft.com/en-us/library/dd492627.aspx.

[50] Rettig, Mike, “retlang: Message based concurrency in .NET.” http://code.

google.com/p/retlang/.

[51] P. Haller and M. Odersky, “Actors That Unify Threads and Events,” In 9th Inter-

national Conference on Coordination Models and Languages, vol. 4467, pp. 171–

190, 2007.

[52] S. Srinivasan and A. Mycroft, “Kilim: Isolation-Typed Actors for Java (A Mil-

lion Actors, Safe Zero-Copy Communication),” European Conference on Object

Oriented Programming ECOOP 2008, vol. 5142/2008, pp. 104–128, 2008.

[53] Rettig, Mike, “jetlang: Message based concurrency for Java.” http://code.

google.com/p/jetlang/.

[54] M. Astley, “The Actor Foundry: A Java-based Actor Programming Environ-

ment,” 1998.

[55] The GPars team, “The GPars Project - Reference Documentation.” http://

www.gpars.org/guide/guide/. [Online; accessed 22-October-2011].

http://msdn.microsoft.com/en-us/library/dd492627.aspx
http://msdn.microsoft.com/en-us/library/dd492627.aspx
http://code.google.com/p/retlang/
http://code.google.com/p/retlang/
http://code.google.com/p/jetlang/
http://code.google.com/p/jetlang/
http://www.gpars.org/guide/guide/
http://www.gpars.org/guide/guide/

95

[56] M. Odersky, P. Altherr, V. Cremet, I. Dragos, G. Dubochet, B. Emir,

S. Mcdirmid, S. Micheloud, N. Mihaylov, M. Schinz, and et al., “An Overview

of the Scala Programming Language Second Edition,” System, no. Section 2,

pp. 15–30, 2006.

[57] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Efficient Data Race

Detection for Async-Finish Parallelism,” in Proceedings of the First international

conference on Runtime verification, RV’10, (Berlin, Heidelberg), pp. 368–383,

Springer-Verlag, 2010.

[58] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir, “Parallel Programming

Must Be Deterministic by Default,” in Proceedings of the First USENIX confer-

ence on Hot topics in parallelism, HotPar’09, (Berkeley, CA, USA), pp. 4–4,

USENIX Association, 2009.

[59] E. Westbrook, J. Zhao, Z. Budimlic̀, and V. Sarkar, “Permission Regions for

Race-Free Parallelism,” in Proceedings of the 2nd International Conference on

Runtime Verification (RV), 2011.

[60] B. Goetz, “Thread pools and work queues.” http://www.ibm.com/

developerworks/library/j-jtp0730/index.html, July 2002.

[61] S. Taşırlar and V. Sarkar, “Data-Driven Tasks and their Implementation,” in

Proceedings of the International Conference on Parallel Processing (ICPP) 2011,

September 2011.

[62] N. Raja and R. K. Shyamasundar, “Actors as a Coordinating Model of Com-

putation,” in Proceedings of the Second International Andrei Ershov Memorial

http://www.ibm.com/developerworks/library/j-jtp0730/index.html
http://www.ibm.com/developerworks/library/j-jtp0730/index.html

96

Conference on Perspectives of System Informatics, (London, UK), pp. 191–202,

Springer-Verlag, 1996.

[63] R. K. Karmani, A. Shali, and G. Agha, “Actor frameworks for the JVM platform:

a comparative analysis,” in Proceedings of the 7th International Conference on

Principles and Practice of Programming in Java, PPPJ ’09, (New York, NY,

USA), pp. 11–20, ACM, 2009.

[64] P. Haller and M. Odersky, “Event-Based Programming Without Inversion of

Control,” in In Proc. Joint Modular Languages Conference (2006), Springer

LNCS, vol. 4228 of Lecture Notes in Computer Science, pp. 4–22, Springer Berlin

/ Heidelberg, 2006.

[65] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Scalable and Precise

Dynamic Data Race Detection for Structured Parallelism,” in PLDI, 2012.

[66] Imam, Shams and Sarkar, Vivek, “Habanero-Scala: Async-Finish Programming

in Scala,” in The Third Scala Workshop (Scala Days 2012), April 2012.

[67] Habanero Research Group, “Habanero-Scala.” http://habanero-scala.rice.

edu/.

[68] Wikipedia, The Free Encyclopedia, “Producer-consumer problem.” http://en.

wikipedia.org/wiki/Producer-consumer_problem.

[69] Sanders, Beverly A. and Massingill, Berna L. and Mattson, Timothy G.,

“The Pipeline Pattern.” http://www.informit.com/articles/article.aspx?

p=366887&seqNum=8.

http://habanero-scala.rice.edu/
http://habanero-scala.rice.edu/
http://en.wikipedia.org/wiki/Producer-consumer_problem
http://en.wikipedia.org/wiki/Producer-consumer_problem
http://www.informit.com/articles/article.aspx?p=366887&seqNum=8
http://www.informit.com/articles/article.aspx?p=366887&seqNum=8

97

[70] Wikipedia, The Free Encyclopedia, “Sieve of Eratosthenes.” http://en.

wikipedia.org/wiki/Sieve_of_Eratosthenes.

[71] Llanos, Diego R., “Speculative parallelization of sequential algorithms.” http:

//www.infor.uva.es/~diego/speculative.html.

[72] A. Anagnostopoulos, R. Bent, E. Upfal, and P. V. Hentenryck, “A simple and

deterministic competitive algorithm for online facility location,” Inf. Comput.,

vol. 194, pp. 175–202, November 2004.

[73] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically Rigorous Java Perfor-

mance Evaluation,” in Proceedings of the 22nd annual ACM SIGPLAN confer-

ence on Object-oriented programming systems and applications, OOPSLA ’07,

(New York, NY, USA), pp. 57–76, ACM, 2007.

[74] The Scala Programming Language, “pingpong.scala.” http://www.

scala-lang.org/node/54.

[75] Haller, Philipp, “chameneos-redux.scala — FishEye: browsing scala-svn.”

https://codereview.scala-lang.org/fisheye/browse/scala-svn/scala/

branches/translucent/docs/examples/actors/chameneos-redux.scala?

hb=true, 2011.

[76] EPCC, “The Java Grande Forum Multi-threaded Benchmarks.”

[77] UIUC, “SOTER project.”

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://www.infor.uva.es/~diego/speculative.html
http://www.infor.uva.es/~diego/speculative.html
http://www.scala-lang.org/node/54
http://www.scala-lang.org/node/54
https://codereview.scala-lang.org/fisheye/browse/scala-svn/scala/branches/translucent/docs/examples/actors/chameneos-redux.scala?hb=true
https://codereview.scala-lang.org/fisheye/browse/scala-svn/scala/branches/translucent/docs/examples/actors/chameneos-redux.scala?hb=true
https://codereview.scala-lang.org/fisheye/browse/scala-svn/scala/branches/translucent/docs/examples/actors/chameneos-redux.scala?hb=true

	Abstract
	Acknowledgments
	List of Illustrations
	Introduction
	Motivation
	Thesis Statement
	Contributions
	Organization

	Background
	The Task Parallel Model (TPM)
	The Fork-Join Model (FJM)

	The Actor Model
	The Proposed Hybrid (Fork-Join + Actor) Model

	The Fork-Join Model
	Fork-Join Parallelism in Habanero-Java (HJ)
	Lightweight Tasks, Async-Finish synchronization
	HJ Properties
	Deadlock-Freedom and Determinism
	Data Locality in HJ
	Data Races and Synchronized Access
	Coordination between tasks

	The Actor Model
	Actors
	Desirable Properties
	Disadvantages and Drawbacks
	Actors in Scala

	The Hybrid Model
	Actors and Async-Finish Tasks
	Termination detection

	New constructs under the hybrid model
	Parallelization inside Actors
	Non-blocking receive operations
	Stateless Actors

	Desirable Properties
	Disadvantages or Drawbacks

	Implementation - Habanero-Scala
	Choice of Scala
	Previous Async-Finish compliant constructs
	async-finish
	future
	Data-driven futures

	Hybrid Actors
	Lingering Tasks
	Heavy Actors
	Light Actors
	Data-driven controls (DDCs)
	The Mailbox: Linked List of DDCs
	Supporting pause and resume with DDCs
	Supporting become and unbecome with DDCs
	Using Light actors
	Light and Heavy actors compared

	Applications
	Multiple Producer-Consumer with Bounded Buffer
	Pipelined Parallelism
	Filterbank
	Sieve of Eratosthenes

	Speculative Parallelization
	Online (Hierarchical) Facility Location

	Results and Discussion
	Experimental Setup
	Microbenchmarks comparing Actor frameworks
	Application Benchmarks
	General Applications Compared
	Quicksort
	Filter Bank for multirate signal processing
	Online Hierarchical Facility Location

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography

