


ABSTRACT

Exploring Tradeoffs in Parallel Implementations of Futures in C++

by

Jonathan Sharman

As the degree of hardware concurrency continues to rise, multi-core program-

ming becomes increasingly important for the development of high-performance code.

Parallel futures are a safe, maintainable, and portable mechanism for expressing par-

allelism in modern C++, but the efficiency of the futures library implementation is

critical for its usefulness in high-performance computing. In this work we introduce

the Fibertures library and accompanying compiler support, as an alternate implemen-

tation for parallel futures in C++. We measure the performance of Fibertures against

standard C++ and other runtime libraries. We find that a combination of compiler

transformations and a runtime library, as exemplified by Fibertures, promises to be

an effective means of implementing C++ futures.
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Chapter 1

Introduction

1.1 Motivation

As processor clock speeds have plateaued, designers of high-performance hardware

have compensated by increasing the number of hardware threads per machine. Uti-

lization of multi-core parallel programming techniques is thus increasingly essential to

producing performant code. The C++ programming language aims to provide high-

level language and library features to facilitate writing portable, efficient code. To

achieve these goals, C++ needs a standard way to express parallelism. In the C++11

language standard [3], the standards comittee adopted async tasks and futures as the

primary tool for expressing high-level multi-core parallelism in C++. The choice of

futures as the basic construct for parallelism has several advantages over lower-level

constructs such as threads and locks.

First, future synchronization operations cannot introduce data races on future ob-

jects, making it easier to guarantee data-race freedom with futures relative to other

parallel programming models. It is still possible to introduce a data race by reading

and writing to a shared memory location from within the body of a function passed

to std::async(). However, as long as the programmer only spawns parallel tasks via

std::async() (as opposed to, for example, std::thread) and only communicates

between parallel tasks using std::future objects, data-race freedom is guaranteed.

Furthermore, deadlock freedom is also guaranteed when there are no races on refer-
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ences to future objects [4].

Futures support a composable, functional style of parallel programming that is

easy to reason about and maintain. In particular, futures are excellent for encod-

ing task and data dependences that can be expressed using directed acyclic graphs.

C++ is one of the oldest mainstream languages for object-oriented programming, and

futures are also well suited for OOP, due to their encapsulation of async tasks and

synchronization into objects.

The parallel programming model of asyncs and futures is also general enough to

act as a basis for other high-level parallel constructs. This implies that no expressive

power is lost in the choice of asyncs and futures over threads.

A quality parallel futures library in C++ would provide all these benefits to safety,

maintainability, and programmability while ensuring performance through low over-

head and good scalability, compared to more manual, lower-level parallel models.

Unfortunately, we find that C++11’s <future> library does not as yet meet this per-

formance criterion. A solution that improves <future>’s performance while maintain-

ing compatibility with existing standard C++ code would be enormously beneficial

to the development of parallel applications in C++.

1.2 Thesis Statement

A combination of compile-time and run-time approaches is the most effective means

of implementing parallel futures in C++.

1.3 Contributions

This thesis makes the following contributions:
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1. An implementation of parallel futures in C++ called Fibertures, utilizing a

custom LLVM-based compiler and a fibers-based lightweight threading library.

2. A set of source-to-source compiler transformations to facilitate migration from

standard C++ futures alone to Fibertures.

3. A quantitative comparison of several implementations of parallel futures in C++

to study their tradeoffs.
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Chapter 2

Background

In this chapter we present background information on parallel futures and their cur-

rent status in C++, including the Standard Template Library (STL) and third-party

libraries for C++.

2.1 Async and Future in the C++ Standard Template Li-

brary

The <future> header contains several basic tools for creating parallel tasks and syn-

chronizing on them, including std::promise, std::async(), and std::future. In

this section we will describe each of these components in more detail, explain their

application to writing portable parallel C++ programs, and highlight some efficiency

concerns with using the types and functions in the <future> header in programs that

create large numbers of parallel tasks.

2.1.1 Basic Types

The std::promise<T> class template serves as a container for an object of a type T

to be placed into the promise at a later time. Calling get future() on a promise

returns a corresponding std::future<T>, which references the promise’s contained

value. Calling set value() on a promise sets its internal T value and notifies the

corresponding future that the value is now available. Calling set value() more than
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once on the same promise object is an error and throws an exception.

The std::future<T> class template represents the result of a future computa-

tion. As stated above, a future holds a reference to the shared state of a promise

object. The user may retrieve a future’s value using its get() method, which blocks

the current thread of execution until the future’s value is available, i.e. until the

corresponding promise has been set with set value(), and returns the value using a

move operation. The user may also wait for the value to become available without ac-

tually retrieving it using one of the methods wait(), wait for(), or wait until().

Calling get() on a future more than once results in an exception; this behavior pre-

vents unknowingly reading a moved-from value. When the user needs to retrieve the

future’s value more than once, he or she may obtain a std::shared future using

std::future<T>::share(). Shared futures do not move the value upon retrieval.

Figure 2.1 exemplifies the basic functionality of std::promise and std::future.

In line 1, we default-construct a promise object that holds an int value. In line 2, we

obtain the future object corresponding to the promise. Uncommenting the statement

on line 3 would result in a deadlock because int future would block waiting for

a promise that would never be satisfied. On line 4 we call set value(14) on the

promise object, storing 14 within the state shared by int promise and int future,

thus satisfying the future. Now we can call get() on the future to obtain the value

14 from it.

The std::async<T>() function template is used to invoke a callback function

asynchronously. It takes a callable object (a function pointer, pointer to member

function, function object, or lambda) and a variadic list of arguments and returns

a future object containing the future result of invoking the callable object on the

given arguments. Internally, std::async() creates a std::promise object to store



6

Figure 2.1 : Example of using promises and futures in C++. Uncommenting line 3

would result in a deadlock.

1 std::promise <int > int_promise;

2 std::future <int > int_future = int_promise.get_future ();

3 // int_future.get();

4 int_promise.set_value (14);

5 std::cout << int_future.get() << ’\n’;

the result of calling the passed callable object. An implementation may choose to

use a std::packaged::task<T> (described below) instead of separate promise and

function objects; the semantics are equivalent.

Figure 2.2 demonstrates the use of async tasks to compute multiple values in

parallel. Line 3 creates an async task using a function pointer, while line 4 creates

an async task using a lambda. Both spawn a new task to execute their respective

functions with the passed arguments, each returning a future containing the result

of its call. The choice between function pointer and stateless lambda is largely a

matter of preference; the performance should be equivalent. Line 7 blocks first on

square future and then on cube future, completing only when both tasks have

finished.

The user may also specify a launch policy using std::launch::async,

std::launch::deferred, or std::launch::async | std::launch::deferred as

the first argument, before the callback function. If the user passes

std::launch::async, the task is executed as though using a std::thread, which

in all major implementations (e.g. GCC, Clang, Microsoft C/C++) executes

on an ordinary operating system-level thread. Note that the requirements for

std::thread are usually fewer than for system-level threads, e.g., Pthreads; how-
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Figure 2.2 : Async task example that computes 32 + 23.

1 int square(int n) { return n * n; }

2 int main() {

3 std::future <int > square_future = std:: async(square , 3);

4 std::future <int > cube_future = std:: async ([]( int n) {

5 return n * n * n;

6 }, 2);

7 std::cout square_future.get() + cube_future.get();

8 }

ever, each std::thread does require initialization of thread-local variables. If the

user passes std::launch::deferred, then the task is invoked the first time its re-

sult is requested via a synchronization operation such as std::future<T>::get() or

std::future<T>::wait(). This launch mode is useful for supporting lazy evalua-

tion. If the user passes the bitwise disjunction of the two options, then it is left to the

implementation to choose which mode to use. Specifying no launch policy results in

implementation-defined behavior. In practice, implementations default to parallel ex-

ecution for all calls except those explicitly specifying only std::launch::deferred.

For the purpose of this paper, we are only concerned with async calls using the

std::launch::async policy, explicitly or implicitly.

The <future> header also contains the std::packaged task<T> class template.

A packaged task acts like a combination of a std::function and std::promise. A

user may create a packaged task from a callable object, obtain a std::future from

the task containing the future value of invoking the callable object, and manually

invoke the packaged task at a later time, possibly asynchronously.

Figure 2.3 demonstrates the use of packaged tasks and std::thread to achieve

the same result as in Figure 2.2. Lines 3 and 4 create packaged tasks from a function
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Figure 2.3 : Packaged task example that computes 32 + 23.

1 int square(int n) { return n * n; }

2 int main() {

3 std:: packaged_task <int()> square_task{square };

4 std:: packaged_task <int()> cube_task {[]( int n) {

5 return n * n * n;

6 }};

7 std::future <int > square_future = square_task.get_future ();

8 std::future <int > cube_future = cube_task.get_future ();

9 std:: thread {[&] {

10 square_task (3);

11 }}. detach ();

12 std:: thread {[&] {

13 cube_task (2);

14 }}. detach ();

15 std::cout << square_future.get() + cube_future.get();

16 }

pointer and lambda respectively. Lines 7 and 8 obtain futures from the packaged tasks.

Unlike before, to execute the packaged tasks asynchronously, we must manually spawn

them on separate threads, as in lines 9-14. Note that we may detach the threads since

std::future provides the necessary synchronization. Finally, we get the futures,

blocking until both threads have finished and the future results are available.

As the preceding example shows, packaged tasks can be used to achieve simi-

lar behavior to that of the async function. However, they have the disadvantage of

introducing additional names into the local scope and require more lines of code.

Therefore, std::async() is a better choice when the user does not require the flexi-

bility of packaged tasks.
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2.1.2 Pitfalls

While convenient for the programmer, there are several important drawbacks to using

the standard parallel future facilities in C++. The first is that the overhead of spawn-

ing new threads and context-switching between them is relatively high, in both run

time and memory usage. On a given platform, there are typically ways to reduce the

overhead of thread creation somewhat, but these are inherently non-portable. When

using the tools in <future> to create large numbers of tasks, thread creation overhead

can dominate the computation and, in extreme cases, even exhaust virtual memory

and crash the program. Especially in applications with unstructured workloads, it is

often helpful to create a significantly larger number of async tasks than the number

of available cores. This improves load balancing among the cores since one that runs

out of work can switch to a new task rather than wait idly, but it also exacerbates

the thread creation and context-switch overheads. See Section 3.7 for an empirical

analysis of the cost of task creation using <future>.

A second pitfall is that std::future synchronization operations block the current

thread of execution while waiting for data. This can result in poor utilization of

available hardware threads. Ideally, a thread executing a task that is waiting for

data should switch to another task that is ready to run, but this is not possible using

std::async() and std::future.

Finally, a call to std::async() executes sequentially when the user does not store

the returned future. This is a consequence of the blocking nature of std::future

synchronization in combination with the the fact that std::future synchronizes in

its destructor. If the user does not store the resulting future, then the return value

of the call to std::async() is a temporary object, and its destructor is called at the

end of the statement.
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Figure 2.4 : Sequential std::async() call due to destructor of temporary object.

1 {

2 auto start = steady_clock ::now();

3 std:: async ([] { // Return value not stored.

4 std:: this_thread :: sleep_for(seconds {1});

5 });

6 auto end = steady_clock ::now();

7 auto elapsed = duration_cast <milliseconds >(end - start);

8 std::cout << elapsed.count() << " ms\n"; // Prints ~1000 ms.

9 }

10 {

11 auto start = steady_clock ::now();

12 std::future <void > f = std:: async ([] { // Return value stored in f.

13 std:: this_thread :: sleep_for(seconds {1});

14 });

15 auto end = steady_clock ::now();

16 auto elapsed = duration_cast <milliseconds >(end - start);

17 std::cout << elapsed.count() << " ms\n"; // Prints ~0 ms.

18 }

Figure 2.4 demonstrates this surprising behavior. The program contains two async

tasks, each of which sleeps for one second. In the first call to std::async(), the result

of the call is discarded after statement execution because it is not bound to a variable.

The elapsed time shows that this task executes sequentially (though still in a separate

thread), taking approximately 1,000 ms from before the call to after. In the second

call, the result is assigned to a local std::future variable f. Since f remains in

scope until the end of main, its destructor is not invoked at the end of the statement,

and the calling thread continues almost immediately, resulting in an elapsed time of

approximately 0 ms, as expected when spawning an asynchronous task.

As the example shows, this problem can be overcome by always storing the

resulting future. However, it is easy to forget to do so when the future is not
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otherwise required, and this behavior can be a subtle source of performance bugs.

There is a proposal [5] to the C++ standard to change the behavior of std::future

and std::shared future such that neither blocks in the destructor. It would add

std::waiting future and std::shared waiting future, which behave as the cur-

rent blocking versions, and change std::async() to return std::waiting future.

The user could convert a blocking future to a non-blocking future by calling detach().

However, this proposal has not yet been accepted, and furthermore, a user may still

introduce a performance bug by forgetting to detach a waiting future.

2.2 Async Tasks and Futures in HClib

HClib is a high-level, lightweight, task-based programming model for intra-node par-

allelism in C and C++, developed in the Habanero Extreme Scale Software Research

Group at Rice University [6]. The HClib runtime uses a cooperative work-stealing

strategy, implemented using Boost Context [7]. Its API includes a variety of par-

allel constructs, including async tasks with futures. HClib futures behave similarly

to std::shared future in that they permit multiple get() operations by default.

Figure 2.5 shows a complete HClib program that prints the 11th Fibonacci number,

computed recursively in parallel, with no cutoff. The program is very similar to the

corresponding STL-only program. The first difference is the use of hclib::future t

instead of std::future and hclib::async future instead of std::async() (lines

3, 6). The second difference is that calls to HClib functions must occur within an

hclib::launch() dynamic scope, as shown in lines 12-14. The hclib::launch() call

handles runtime initialization and finalization, automatically allocating and deallo-

cating worker threads and ensuring any outstanding parallel computations have com-

pleted after the call returns. Finally HClib supports integration of task parallelism
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Figure 2.5 : Parallel recursive Fibonacci function using HClib.

1 uint64_t fibonacci(uint64_t n) {

2 if (n < 2) return n;

3 hclib::future_t <uint64_t > n1 = hclib :: async_future ([=] {

4 return fibonacci(n - 1);

5 });

6 hclib::future_t <uint64_t > n2 = hclib :: async_future ([=] {

7 return fibonacci(n - 2);

8 });

9 return n1.get() + n2.get();

10 }

11 int main(int argc , char* argv []) {

12 hclib:: launch ([]() {

13 std::cout << fib (10) << ’\n’;

14 };

15 }

with multiple distributed runtimes, including MPI, UPC++, and OpenSHMEM.

In addition to C++11-style futures synchronized with put() and get() opera-

tions, HClib provides data-driven futures (DDFs) and data-driven tasks (DDTs) [8].

DDTs differ from std::async() in that they are registered with one or more futures

and execute when some subset of those futures (e.g., all or any) are ready, rather than

blocking the current thread while waiting for the necessary data. Though they use

a different syntax and are explicitly non-blocking, DDFs are conceptually similar to

callback chaining, which the STL does not support as of C++17 but does support in

the Concurrency TS, using std::future::then, std::when all, and std::when any

[9].
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2.3 Async Tasks and Futures in HPX

HPX (High Performance ParalleX) is a distributed and intra-node parallel library

and runtime system for C++, developed by the STE||AR Group [10]. HPX is distin-

guished by its high degree of conformance to the C++ language and Boost library.

HPX defines hpx::future, hpx::async(), and related functions, which closely con-

form to the corresponding types and functions in <future>, with some extensions

such as continuation chaining and locality awareness. It is therefore relatively easy to

translate existing modern parallel C++ code written only with the STL to use HPX

as the runtime instead.

Figure 2.6, adapted from [11], shows the single-node HPX equivalent to the pro-

gram in Figure 2.5. HPX is locality-aware, and therefore, unlike in the corresponding

standard C++ program, the user must pass action and locality arguments to the

async calls. Actions are the means HPX uses to transfer work between localities.

The HPX PLAIN ACTION macro on line 2 handles the boilerplate code for defining an

action, in this case fibonacci action. Since this is not a distributed program, this

program uses the current locality (determined by a call to hpx::find here on line

5) for the asynchronous calls on lines 8 and 10.

Note also that HPX programs require initialization and finalization of the HPX

runtime, via calls to hpx::init() and hpx::finalize(), as opposed to the im-

plicit specification of initialization and finalization calls in HClib’s hclib::launch()

method. The init() function processes command-line parameters recognized by

the HPX runtime and invokes the user-defined hpx main() function, while the

finalize() function handles shut-down. When using HPX for distributed program-

ming, hpx::finalize() gracefully terminates all other localities.
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Figure 2.6 : Parallel recursive Fibonacci function using HPX V1.0.

1 boost:: uint64_t fibonacci(boost :: uint64_t n);

2 HPX_PLAIN_ACTION(fibonacci , fibonacci_action);

3 boost:: uint64_t fibonacci(boost :: uint64_t n) {

4 if (n < 2) return n;

5 hpx:: naming :: id_type const locality_id = hpx:: find_here ();

6 fibonacci_action fib;

7 hpx:: unique_future <boost::uint64_t > n1 =

8 hpx:: async(fib , locality_id , n - 1);

9 hpx:: unique_future <boost::uint64_t > n2 =

10 hpx:: async(fib , locality_id , n - 2);

11 return n1.get() + n2.get();

12 }

13 int hpx_main () {

14 {

15 fibonacci_action fib;

16 std::cout << fib(hpx:: find_here (), 10);

17 }

18 return hpx:: finalize ();

19 }

20 int main(int argc , char* argv []) {

21 return hpx::init(argc , argv);

22 }
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Chapter 3

Our Approach: Compiler Transformations and

Fibertures Runtime

3.1 Problem Statement

Despite the fact that performance is one of the the primary goals of the C++ lan-

guage, standard C++ parallel futures are inefficient. Due in part to the requirements

the C++ standard imposes on the behavior of std::async(), vendors currently im-

plement async and future using Pthreads or a comparable operating system-level

threading construct. However, Pthreads scale poorly when used to implement fu-

tures. For common use cases of futures, involving the creation of many tasks, some of

which may be short-running, Pthreads require too much time and memory to create

and too much time to context switch. Our goal is to utilize the programmability

and portability of std::future while enabling scalable parallel performance. Sev-

eral groups have written custom implementations of C++ futures, using a variety of

compiler- and library-based approaches. We have implemented futures on top of the

libfib [12][13] runtime library, a lightweight threading library supported by a custom

compiler, along with a set of source-to-source transformations, allowing existing C++

code to leverage the efficiency of fibers. In this work, we compare these various ap-

proaches to C++ futures in terms of programmability, portability, and performance.
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3.2 Compiler Transformations and Run-time Library

Our approach utilizes the Swapstack LLVM compiler primitive and fiber library de-

scribed in [12] to enable the creation of lightweight tasks instead of heavyweight

threads.

3.2.1 Swapstack Primitive

Swapstack is a calling convention used for switching between continuations. A call to

a function marked with the Swapstack attribute not only yields control to the invoked

continuation but also swaps its stack for the current stack, saving the address where

execution should continue when the calling continuation resumes. There are three

performance advantages to this approach to context switching [12]:

1. Swapstack does not use callee-save registers, so the LLVM compiler only saves

live registers, avoiding saving registers that are not live.

2. The context switch is implemented using the existing LLVM call/return mech-

anism, allowing the unmodified optimizer to work on Swapstack functions.

3. An arbitrary number of parameters may be passed via registers, allowing very

efficient communication between continuations.

The original implementation of Swapstack is a modification of Clang/LLVM 3.0.

For use in this work, we have ported Swapstack to Clang/LLVM 3.7. This port

supports only a single argument, via a register. Support for additional arguments

may be added later.
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3.3 libfib

libfib is a cooperative work-stealing runtime scheduler for C++ built using Swapstack

to provide the necessary support for rapid context-switching, suspension of execution,

and resumption of suspended fibers. It provides utilities for spawning new lightweight

fibers and for yielding a fiber’s worker thread for another fiber to use. The spawn

operation takes a function pointer and allocates a new stack on which to execute that

function using a new fiber. The yield operation allows a fiber to suspend its execution

and place itself back on the running queue and invoke another fiber on the running

queue while it waits for its data to become ready.

Because of the advantages of Swapstack, the spawn and yield operations can be

orders of magnitude faster than thread creation and context-switching at the OS level,

allowing for the creation of thousands or even millions of fibers [12]. Since the worker

threads can always pick up more work (if available) when a fiber suspends itself, the

threads never need to block while waiting for pending results.

Use of libfib is straightforward. The user initializes the libfib runtime us-

ing a call to the static function worker::spawn workers(nworkers), which al-

locates nworkers worker threads to handle execution of fibers. The user can

execute a task on a new fiber spawned from the current worker thread using

worker::current().new fiber(func, arg), where func and arg are the task func-

tion and argument, respectively. Finally, the user can await the completion of all

outstanding fibers by calling worker::await completion(), if the program’s syn-

chronization does not otherwise guarantee fiber completion.
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3.4 Our Extension to libfib: Fibertures

libfib is a useful tool for creating large numbers of lightweight tasks. However, it only

supports thread-like fibers; i.e., fibers cannot return a value asynchronously with a

future, so communication between fibers requires manual synchronization. This has

all the safety and programmability downsides of using STL threads and locks.

We have developed an extension to libfib called Fibertures, which adds the ability

to create async tasks that return std::futures, just like the STL’s std::async(),

except that internally, it spawns a lightweight fiber instead of a heavyweight OS-level

thread.

Note that for the sake of clarity and brevity, we do not list the full template pa-

rameter types in the code listings in this section. Instead, we use function t and

result t to represent a passed function’s decayed type and return type, respectively,

and args t to represent the variadic types of passed arguments. Furthermore, we do

not show template specializations for functions returning void since these specializa-

tions are structurally very similar to the unspecialized code shown.

First we define a utility type called fibertures::Task to encapsulate a callback

function along with a promise object to store the future result of invoking the callback.

The definition of the Task type is shown in Figure 3.1. The fibertures::Task

constructor takes a function and variadic argument list, binds them, and stores the

result for later execution.

Next, to support the creation of future-based lightweight tasks, we define a new

async task creation function: fibertures::async(). This function utilizes libfib to

spawn tasks on fibers instead of OS-level threads. We will use this function in our

source transformations as a replacement for std::async(). Figure 3.2 shows the

definition of fibertures::async().
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Figure 3.1 : Fibertures Task type.

1 // in namespace fibertures

2 struct Task

3 {

4 // The callback function.

5 std::function <result_t ()> f;

6

7 // The promise used to create and set the future.

8 std::promise <result_t > p;

9

10 // Constructor.

11 Task(std::function <function_t >&& f, args_t ... args)

12 : f{std::bind(f, args ...)}

13 {}

14 };

We now summarize our approach for using fibers to implement async tasks.

Because libfib only supports a limited number of parameters for tasks spawned

on fibers (just one, in our port), and because it does not support lamb-

das with captures, we cannot simply forward the function and its parameters

to worker::current()::new fiber. Instead, we store the callback in a new

fibertures::Task, converting its address to an integer type and passing the task

address into a lambda inside fibertures::async(). Because this lambda is capture-

less, it is implicitly convertible to void (*)(std::size t), which is the type we need

for a fiber callback. When the fiber callback begins executing, it converts the task

address back into a task pointer, invokes the original callback, and resolves the future

with its return value.

The extra indirection of passing a task object to the new fiber rather than passing

the user’s callback directly introduces a small amount of additional overhead. There
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Figure 3.2 : Definition of fibertures::async() as a replacement for std::async().

1 // in namespace fibertures

2 std::future <result_t > async(function_t && f, args_t ... args)

3 {

4 // Create a new task to hold f and its promise.

5 auto task = new Task{move(f), forward <args_t >(args)...};

6 std:: size_t task_address = reinterpret_cast <std::size_t >(task);

7

8 auto fiber_lambda = []( std:: size_t task_address) {

9 // Restore the task pointer from the address argument.

10 auto task = reinterpret_cast <Task <function_t , args_t >*>

11 (task_address);

12

13 // Invoke the callback and store its return value.

14 auto value = task ->f();

15

16 // Set the promise value , readying futures awaiting this value.

17 task ->p.set_value(value);

18

19 // Done with the task; delete it.

20 delete task;

21 };

22

23 // Retrieve the future from the promise.

24 auto future_result = task ->p.get_future ();

25

26 // Spawn a fiber to invoke the callback and set

27 // the promise ’s value.

28 worker :: current ().new_fiber(fiber_lambda , task_address);

29

30 // Return the future result.

31 return future_result;

32 }
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is thus some opportunity for future work to optimize the case where the callback

function does not capture and has sufficiently few parameters that they can fit into

the available registers for a fiber.

3.5 Source-to-source Transformations

In addition to Fibertures, we have implemented a set of source-to-source transforma-

tions designed to simplify the use of Fibertures in standard C++ programs.

3.5.1 Run-time Library Inclusion and Initialization

First we include the header "fibertures.h" in each source file that contains any calls

to the parallel overloads of std::async(). This allows subsequent transformation

steps to use features of the Fibertures library. Next we add a call to the libfib

function worker::spawn workers(nworkers), where nworkers is the desired number

of worker threads, at the top of the main() function. The choice for the value of

nworkers could be determined automatically based on hardware concurrency or set

by the user via an environment variable, as in other multithreaded runtimes including

OpenMP.

3.5.2 Asynchronous Call Transformations

We transform calls to the asynchronous overload of std::async() to calls to

fibertures::async(). The fibertures::async() function takes a Callable ob-

ject with a variadic argument list and returns a std::future, just as std::async()

does. However, unlike std::async(), fibertures::async() does not have an over-

load that takes a std::launch object as the first argument because it always executes

the function on a new fiber, which is analogous to calling std::async() using the
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std::launch::async flag. In other words, fibertures::async() does not support

the synchronous deferred evaluation launch policy.

The behavior of std::async() when a launch policy argument is not present

or when both the std::launch::async and std::launch::deferred flags are set

is implementation-defined. For simplicity, we will treat all std::async() calls that

do not specify std::launch::deferred explicitly and exclusively as asynchronous

calls and transform them accordingly. With this assumption, the transformation for

a call to std::async() consists of replacing occurrences of asynchronous calls to

std::async() with calls to fibertures::async() and removing the launch policy

argument if present. There are three forms such a call to std::async() can take,

and each maps to the same transformed call, as shown in Figure 3.3.

3.5.3 Synchronization Transformations

Spawning fibers instead of threads addresses the scalability issue with std::async();

however, it does not address the problem of blocking synchronization operations. To

prevent these operations from blocking the worker thread, it is necessary to transform

every call to one of the four standard wait or get operations to a non-blocking form.

Our transformations introduce while-loops utilizing the yield operation to suspend

the execution of the current fiber as long as the future object is not yet ready. Recall

that each call to worker::yield also resumes a fiber waiting on the running queue so

that no worker thread is ever blocked while awaiting future data, unless there are no

more pending tasks to be executed. The synchronization transformations are given

in Figures 3.4, 3.5, 3.6, and 3.7.

We want worker threads to perform useful work if there is any available, rather

than stay in the yield-loop waiting for a future to become unblocked. The original
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Figure 3.3 : Asynchronous call transformations.

(a) Source code. Each of these three variants is a valid candidate for transformation.

1 std::future <T> fut = std:: async(f, arg1 , arg2 , ...);

1 std::future <T> fut = std:: async

2 ( std:: launch ::async

3 , f

4 , arg1 , arg2 , ...

5 );

1 std::future <T> fut = std:: async

2 ( std:: launch ::async | std:: launch :: deferred

3 , f

4 , arg1 , arg2 , ...

5 );

(b) Transformed code.

1 std::future <T> fut = fibertures :: async(f, arg1 , arg2 , ...);
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Figure 3.4 : get() transformation.

(a) Source code.

1 T val = fut.get();

(b) Transformed code.

1 while (fut.wait_for(std:: chrono :: seconds (0))

2 != std:: future_status :: ready) {

3 worker :: current ().yield();

4 }

5 T val = fut.get();

implementation of libfib prioritizes doing local work before stealing work from other

worker threads. This scheduling algorithm has the side effect that a worker thread

that has generated a yield-loop never steals because the yield-looping task remains in

its local run queue. To mitigate this problem, we modified the libfib scheduler loop

to prioritize stealing work. Under this new scheme, when a task is blocked awaiting

availability of a future value, the worker thread executing that task steals from another

worker’s run queue. This reduces the expected overall amount of time workers spend

repeatedly checking whether futures are ready and improves load balancing. There are

more advanced strategies for handling blocking synchronization operations without

using a yield-loop. We discuss some of these alternatives in Section 6.2.

In cases where the return value of get(), wait for(), or wait until() is not

used, the assignment in the transformed code may simply be omitted. Cases where

the return value is used as a temporary object in an expression, e.g. if (fut.get()

== 0) { ... }, the transformed code may need to introduce new local variables to

store the temporary results. In these cases, we must employ the techniques described
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Figure 3.5 : wait() transformation.

(a) Source code.

1 fut.wait();

(b) Transformed code.

1 while (fut.wait_for(std:: chrono :: seconds (0))

2 != std:: future_status :: ready) {

3 worker :: current ().yield();

4 }

Figure 3.6 : wait for() transformation.

(a) Source code.

1 future_status status = fut.wait_for(duration);

(b) Transformed code.

1 future_status status = future_status ::ready;

2 {

3 auto start = std:: chrono :: high_resolution_clock ::now();

4 while (fut.wait_for(std:: chrono :: seconds (0))

5 != std:: future_status :: ready) {

6 auto elapsed_time = std:: chrono :: high_resolution_clock ::now() -

↪→ start;

7 if (elapsed_time > duration) {

8 status = future_status :: timeout;

9 break;

10 }

11 worker :: current ().yield();

12 }

13 }
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Figure 3.7 : wait until() transformation.

(a) Source code.

1 future_status status = fut.wait_until(time_point);

(b) Transformed code.

1 std:: future_status status = std:: future_status :: ready;

2 while (fut.wait_for(std:: chrono :: seconds (0))

3 != std:: future_status :: ready) {

4 if (time_point :: clock::now() >= time_point) {

5 status = future_status :: timeout;

6 break;

7 }

8 worker :: current ().yield();

9 }

in [14] to hoist the statement out of the expression while preserving the semantics of

the original program.

3.6 Transformation Example

The example in Figure 3.8 demonstrates the complete set of transformations needed

for a simple program using std::async() and std::future. The source trans-

formation adds an include directive to support the use of the fiber library and

fibertures::async() and adds a statement at the start of main() to spawn worker

threads (line 6). It also replaces the call to std::async() with fibertures::async()

(line 8). Finally, it eliminates the blocking wait operation using a while-loop that

yields the current fiber if the future’s value is not yet available (lines 10-13).

The transformed code is valid standard C++ with the exception of the fiber
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Figure 3.8 : Complete STL-to-Fibertures source transformation.

(a) Source program.

1 #include <future >

2 int f(); // Some lengthy or I/O-based computation

3 int main() {

4 // Spawn a new OS -level thread to compute f().

5 std::future <int > fut = std:: async(std:: launch ::async , f);

6 // Wait for the thread spawned with async to finish.

7 fut.wait();

8 return 0;

9 }

(b) Transformed program.

1 #include <future >

2 #include "fibertures.h"

3 int f(); // Some lengthy or I/O-based computation

4 int main() {

5 // Spawn 8 worker threads.

6 worker :: spawn_workers (8);

7 // Spawn a new fiber to compute f().

8 std::future <int > fut = fibertures :: async(f);

9 // Wait for the fiber spawned with fibertures :: async to finish.

10 while (fut.wait_for(std:: chrono :: seconds (0))

11 != std:: future_status :: ready) {

12 worker :: current ().yield();

13 }

14 return 0;

15 }
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Figure 3.9 : Thread-creation micro-benchmark.

1 constexpr int nthreads = 100000;

2 for (int i = 0; i < nthreads; ++i) {

3 std:: thread {[] {}}. detach ();

4 }

library itself, which requires a modified LLVM compiler that supports the Swapstack

primitive.

3.7 Micro-benchmark Results

Here we compare the performance of libfib or Fibertures against the STL <future>

library using two micro-benchmarks. The task-creation micro-benchmark measures

the cost of creating a task in each system. The Fibonacci benchmark measures overall

performance when the number of tasks is very high and the amount of work very low.

We performed these tests on the Intel Ivy Bridge architecture, with 8 GB of memory

and an Itel Core i7-3770K processor, which has four cores and eight hardware threads.

3.7.1 Fiber Creation Overhead

Figure 3.9 is a micro-benchmark for measuring the cost of std::thread creation. It

spawns and detaches a large number of threads using std::thread that do nothing

and then computes the average time of creation. Figure 3.10 performs a similar

computation for fiber creation using libfib with 2-16 worker threads.

Figure 3.11 gives the timing results for std::thread and libfib fibers. The cost

of fiber creation in libfib increases with the number of worker threads. The results

show that thread creation is around an order of magnitude slower than fiber creation,
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Figure 3.10 : Fiber-creation micro-benchmark.

1 constexpr size_t stacksize = 8;

2 constexpr int nthreads = 100000;

3 for (int i = 0; i < nthreads; ++i) {

4 worker :: current ().new_fiber ([]( long long) {}, 0, stacksize);

5 }

Figure 3.11 : Task creation time for STL threads and libfib fibers.

Task Type Mean Task Creation Time (ns)

STL thread 3,230

libfib fiber

2 threads 185

4 threads 262

8 threads 332

16 threads 655
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highlighting the benefit of fibers when spawning large numbers of tasks with light

work.

3.7.2 Parallel Recursive Fibonacci Function

The naive parallel implementation of the Fibonacci function, using recursive calls with

no depth cutoff, creates an extremely large number of asynchronous tasks, each of

which do very little work. While this is not a practical algorithm, the stress it places

on the runtime system’s task creation and context switching mechanisms makes it a

good tool for examining the overhead of those mechanisms. Therefore, we have imple-

mented the Fibonacci function using both std::async() and fibertures::async().

Figure 3.12 shows the run time of each implementation for N = 9 to 29∗. The STL-

only version fails after N = 15 due to excessive creation of Pthreads, surpassing the

system limit. The Fibertures version fails after N = 29, due to stack overflow. This

micro-benchmark demonstrates that for problems requiring a large number of async

tasks, Fibertures has the potential to outperform the STL both in run time and in the

problem size it is able to compute without running into system resource limitations.

∗N = 9 is the smallest input for which the time is non-zero for both systems.
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Chapter 4

Case Studies

In this chapter, we evaluate the performance of Fibertures relative to other futures

libraries through two case studies: local sequence alignment and the fast multipole

method. These benchmarks provide some insight into the comparative performance

of these libraries in practical applications.

4.1 Local Sequence Alignment using Smith-Waterman

The Smith-Waterman algorithm for local sequence alignment identifies the maximally

homologous subsequences between two input gene sequences [15]. The algorithm first

constructs an integral scoring matrix in which every cell is a function of its left, upper-

left, and upper neighbors, with the exception of the left-most and upper-most border

cells, which are initialized to zero. The algorithm then obtains the two subsequences

by starting at the maximal cell of the scoring matrix and tracing back towards the

the upper-left, following the maximal neighboring cell at each step.

The subproblem of generating the scoring matrix exhibits a high degree of ideal

parallelism. We are free to compute, in parallel, all cells whose neighbors have already

been computed. For input sequences of size n and m, and for 0 < i < n and

0 < j < m, cell c(i,j) = f(c(i−1,j), c(i−1,j−1), c(i,j−1)), where f is the scoring function.

As stated, the top and left border cells (i = 0 or j = 0) are simply initialized to zero

and thus have no dependences. Figure 4.1 illustrates the data dependence graph for
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Smith-Waterman.

We can encode these data dependencies very conveniently using futures by chang-

ing the scoring matrix from integers to future integers. Then for each cell, we generate

an async task to compute its value from its neighbors, getting their values only when

needed. Once all cells have been assigned a future value, we force complete evaluation

of the future matrix by performing a get on the lower-right cell, c(n−1,m−1). Note that

while this parallelization scheme captures the ideal logical parallelism, in practice we

use tiling to amortize the overhead of creating an async task over multiple iterations.

4.1.1 Smith-Waterman with STL

We begin with an implementation using only the STL with std::async() and

std::future. The salient lines of code are shown in Figures 4.2 and 4.3.

To increase the granularity of the problem, our implementation uses tiling to gen-

erate one future per chunk of cells rather than one per cell. Lines 1-3 break the scoring

matrix into a logical tile row count × tile column count array of tiles. Instead of

breaking the scoring matrix into non-contiguous chunks of memory and storing those

chunks in the futures themselves, we allocate a single large scoring matrix and use a

separate two-dimensional array of std::future<void> objects (declared on line 4)

to synchronize between tiles of indices. Despite these differences, the structure of the

inter-cell data dependence graph for this algorithm is the same as that of the naive

fine-grained approach. Since the parallel tasks now share a mutable reference to the

scoring matrix, this solution is no longer strictly functional. However, the solution

is still data-race-free because only one task writes to a given chunk, and no chunk is

written until the chunks on which it depends have been written.

Outer for-loops iterate over tile rows and tile columns (lines 5 and 7, respectively).
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c(0,0) c(0,1) · · · c(0,m−2) c(0,m−1)

c(1,0) c(1,1) · · · c(1,m−2) c(1,m−1)

...
...

. . .
...

...

c(n−2,0) c(n−2,1) · · · c(n−2,m−2) c(n−2,m−1)

c(n−1,0) c(n−1,1) · · · c(n−1,m−2) c(n−1,m−1)

Figure 4.1 : Inter-cell data dependence graph for the Smith-Waterman local sequence

alignment algorithm.
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Figure 4.2 : STL-only parallel Smith-Waterman algorithm: outer loop.

1 constexpr int desired_tile_size = 800;

2 int const tile_row_count = max(1, m.height / desired_tile_size);

3 int const tile_column_count = max(1, m.width / desired_tile_size);

4 auto futures = vector <vector <shared_future <void >>>( tile_row_count);

5 for (int tile_i = 0; tile_i < tile_row_count; ++ tile_i) {

6 futures[tile_i ]. resize(tile_column_count);

7 for (int tile_j = 0; tile_j < tile_column_count; ++ tile_j) {

8 futures[tile_i ][ tile_j] = async([=, &m, &score_matrix , &futures]

9 {

10 /* See Figure 4.3 for task body. */

11 });

12 }

13 }

14 futures.back().back().wait();

15 int const score = score_matrix(m.height - 1, m.width - 1);

For each of these logical tiles, we spawn a task to compute all the scoring values within

that tile, using std::async() (line 8). The task body is shown in Figure 4.3. Lines

1-6 ensure proper synchronization among tiles by waiting on the top-left, top, and

left neighbor tile futures, as necessary, before computing the current tile. The actual

work occurs in lines 11-31, where for each cell in the tile, we compute the three scores

and write the maximum value to the scoring matrix. Once the lambda passed to

std::async() returns, all the cells for that tile have their values, and the future

associated with the tile is ready.

Once the outer loops have spawned all the tasks, we wait on the lower-right tile in

line 14. Since the lower-right tile transitively depends on all other tiles, this guarantees

the entire scoring matrix has been computed after that statement. Finally, we read

the score from the lower-right scoring matrix cell.
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Figure 4.3 : STL-only parallel Smith-Waterman algorithm: task body.

1 if (tile_i != 0 && tile_j != 0)

2 futures[tile_i - 1][ tile_j - 1]. wait();

3 if (tile_i != 0)

4 futures[tile_i - 1][ tile_j ].wait();

5 if (tile_j != 0)

6 futures[tile_i ][ tile_j - 1]. wait();

7 int const i_min = m.height * tile_i / tile_row_count;

8 int const i_max = m.height * (tile_i + 1) / tile_row_count;

9 int const j_min = m.width * tile_j / tile_column_count;

10 int const j_max = m.width * (tile_j + 1) / tile_column_count;

11 for (int i = i_min; i < i_max; ++i) {

12 for (int j = j_min; j < j_max; ++j) {

13 if (i == 0 || j == 0) {

14 score_matrix(i, j) = 0;

15 } else {

16 int const diagScore = score_matrix(i - 1, j - 1);

17 int const aboveScore = score_matrix(i - 1, j);

18 int const leftScore = score_matrix(i, j - 1);

19 int const scoreFirstWithGap = AlignmentMatrix :: alignmentScore

20 (m.sequence1[i], AlignmentMatrix ::gap);

21 int const scoreCurrentAlign = AlignmentMatrix :: alignmentScore

22 (m.sequence1[i], m.sequence2[j]);

23 int const scoreSecondWithGap = AlignmentMatrix :: alignmentScore

24 (AlignmentMatrix ::gap , m.sequence2[j]);

25 int const above = aboveScore + scoreFirstWithGap;

26 int const diag = diagScore + scoreCurrentAlign;

27 int const left = leftScore + scoreSecondWithGap;

28 score_matrix(i, j) = max(above , max(diag , left));

29 }

30 }

31 }



37

4.1.2 Fibertures

We apply the transformations from Chapter 3 to the STL source code to obtain an

implementation using libfib with the Fibertures extension. Figure 4.4 shows code that

has been added or modified from the STL version. We have omitted the additional

header inclusion and the worker initialization statement.

There are two notable modifications. First, the call to std::async() inside the

outer for-loops has been replaced by a call to fibertures::async(), resulting in the

use of fibers instead of threads to execute async tasks. Second, the blocking calls to

future<void>::wait() in the task lambda and just before the statement retrieving

the score have been replaced with a check-and-yield-loop, allowing the current worker

thread to steal work rather than blocking until the future value is available.

4.1.3 HClib

We used a conversion process similar to that of the STL-to-Fibertures conversion

to obtain an HClib implementation. First we must include the HClib header and

initialize the runtime. In HClib, this is accomplished by wrapping all the parallel code

in a call to hclib::launch(). We also changed the element type of the futures array

from std::future<void> to hclib::future t<void>* and use the arrow operator

in place of the dot operator when performing operations on the futures. Lastly, we

substitute a call to hclib::async future() for the call to std::async(), spawning

a lightweight task instead of a system thread. As in the Fibertures version, the HClib

version aims to reduce task creation overhead and eliminate blocking synchronization.
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Figure 4.4 : Modifications to parallel Smith-Waterman algorithm to use Fibertures.

1 futures[tile_i ][ tile_j] = fibertures :: async

2 ([=, &m, &score_matrix , &futures] {

3 if (tile_i != 0 && tile_j != 0) {

4 auto status = futures[tile_i - 1][ tile_j - 1]. wait_for (0ms);

5 while (status != future_status ::ready) {

6 worker :: current ().yield();

7 status = futures[tile_i - 1][ tile_j - 1]. wait_for (0ms);

8 }

9 }

10 if (tile_i != 0) {

11 auto status = futures[tile_i - 1][ tile_j ]. wait_for (0ms);

12 while (status != future_status ::ready) {

13 worker :: current ().yield();

14 status = futures[tile_i - 1][ tile_j ]. wait_for (0ms);

15 }

16 }

17 if (tile_j != 0) {

18 auto status = futures[tile_i ][ tile_j - 1]. wait_for (0ms);

19 while (status != future_status ::ready) {

20 worker :: current ().yield();

21 status = futures[tile_i ][ tile_j - 1]. wait_for (0ms);

22 }

23 }

24 ...

25 });

26 ...

27 auto status = futures.back().back().wait_for (0ms);

28 while (status != future_status ::ready) {

29 worker :: current ().yield();

30 status = futures.back().back().wait_for (0ms);

31 }
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4.1.4 Timing Results

We evaluate the performance of each implementation of parallel Smith-Waterman

using the same hardware as in Section 3.7, i.e. the Intel Ivy Bridge architecture,

with 8 GB of memory and an Itel Core i7-3770K processor with four cores and eight

hardware threads. Thus, for compute-bound (rather than I/O-bound) applications

such as the examples studied in this chapter, we would expect to achieve the best

performance with four or eight worker threads.

Table 4.1 shows the timing results for input sequences with 18,560 and 19,200

nucleotides. Each row lists the sample mean and standard deviation over ten runs.

For the Fibertures and HClib implementations, we give results for thread pool sizes

of 1, 2, 4, 8, and 16. Since std::async() does not use thread-pooling, we give only

one set of results for the pure STL implementation. For each runtime system, we

used the tile size that produced the shortest run time. The STL and Fibertures

implementations performed best with tiles approximately 800 cells by 800 cells, for

a total of 552 tiles. HClib performed best with tiles approximately 400 cells by 400

cells, totalling 2,208 tiles. Recall that each tile corresponds to one async task. The

results show that Fibertures and HClib performed best using eight worker threads,

as expected. The performance of the STL with std::async() and std::future was

comparable to that of both HClib and Fibertures, although Fibertures was slightly

faster.

Table 4.2 shows results for the same experiment as Table 4.1 except that we used

the same tile size for each runtime system in this case. Note that the STL-only

implementation fails in this case (throwing a std::system error) due to the large

number of Pthreads it attempts to spawn. This highlights one of the weaknesses

of current std::async() implementations, which is that applications that spawn
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Table 4.1 : Execution times of Smith-Waterman by runtime system.

Runtime System
Execution Time (ms)

Number of Tiles
Mean Std. Dev.

Sequential STL 26,335 34 N/A

STL with Parallel Futures 6,349 18 552

HClib

1 thread 26,650 17

2,208

2 threads 13,540 40

4 threads 7,113 83

8 threads 6,463 58

16 threads 7,126 221

Fibertures

1 thread 25,510 11

552

2 threads 13,153 64

4 threads 7,284 34

8 threads 6,218 26

16 threads 6,780 74

very large numbers of async tasks may quickly run into platform-dependent system

resource limitations.

4.2 Fast Multipole Method

The fast multipole method (FMM) is an important algorithm originally designed to

find approximate solutions to N-body problems, which has since found widespread

application in other fields. In [16], the performance of standard C++, OpenMP, HPX,

and Cilk were compared using the FMM benchmark. For this case study, we ported
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Table 4.2 : Execution times of Smith-Waterman by runtime system. In this case, all

runtimes use the same number of tiles: 2,208.

Runtime System
Execution Time (ms)

Mean Std. Dev.

Sequential STL 26,335 34

Parallel STL N/A N/A

HClib

1 thread 26,650 17

2 threads 13,540 40

4 threads 7,113 83

8 threads 6,463 58

16 threads 7,126 221

Fibertures

1 thread 25,534 10

2 threads 13,461 45

4 threads 7,615 36

8 threads 6,343 26

16 threads 6,319 32



42

Table 4.3 : Execution times of FMM benchmark by runtime system, problem size

20,000.

Runtime System
Execution Time (s)

Mean Std. Dev.

STL with Parallel Futures 1.2 0.044

Fibertures

1 thread 8.9 0.089

2 threads 8.0 0.057

4 threads 8.0 0.089

8 threads 9.3 0.061

the FMM benchmark to use the Fibertures library and obtained results comparing

Fibertures to the STL with parallel futures.

We have adjusted the problem sizes to account for differences in hardware and

optimization levels∗ between this study and [16]. We used data type II (points dis-

tributed over the surface of the unit sphere) and calculated the solution to six decimal

places. Tables 4.3 and 4.4 show results from the FMM benchmark by runtime system,

for problem sizes of 20,000 and 100,000, respectively. Each row gives the sample mean

and standard deviation over ten successful runs.

There are no timing results for the STL implementation in Table 4.4 because it

always fails due to excessive thread creation. The STL implementation often fails

even for the size 20,000 problem. The STL entry in Table 4.3 represents the first

ten successful runs, with seven out of twenty runs aborting. However, when the STL

implementation did terminate successfully, it was faster than the best Fibertures

∗We use the default optimization level due to a bug in libfib preventing the use of higher levels.
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Table 4.4 : Execution times of FMM benchmark by runtime system, problem size

100,000.

Runtime System
Execution Time (s)

Mean Std. Dev.

STL with Parallel Futures N/A N/A

Fibertures

1 thread 78 0.69

2 threads 73 1.2

4 threads 73 1.3

8 threads 81 0.62

runs by a factor of 6.7 on average. Furthermore, the Fibertures implementation

exhibits poor scaling as the number of worker threads is increased. These results are

inconsistent with the other benchmarks and require further investigation.
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Chapter 5

Related Work

In this chapter we discuss prior work related to the Fibertures library and runtime

system.

5.1 Polling and Spin-waiting

The Fibertures strategy for awaiting a future value, i.e. executing a yield-loop in

the current task until the value is available, is reminiscent of two existing software

techniques in asynchronous programming: polling and spin-waiting.

Polling is common in event-driven programming as a means for detecting some

condition and responding by invoking the appropriate event handler. The interaction

between async tasks and futures can be described in terms of event-driven program-

ming, where the event is the act of setting a promise’s value, and the handler invokes

any task continuations that were awaiting the corresponding future. The key differ-

ence between polling and Fibertures yield-loops is that a yield-loop only checks for

an “event”, i.e. a satisfied future, when the task that is executing it resumes. There

is no fixed, centralized polling loop. This means that the higher the number of ready

tasks compared to the number of blocked tasks, the less time the Fibertures scheduler

spends checking future statuses.

Spin-waiting is a technique used in a number of scenarios, including mutexes and

resolution of I/O contention. The critical difference between a spin-waiting loop and



45

a yield-loop is that spin-waiting is a blocking operation. A spin-waiting thread will

simply sleep until its requested resource is available (or until it times out), rather

than attempting to find useful work in the meantime. On the other hand, a worker

thread in the Fibertures runtime is capable of context-switching to a new task when

its current task becomes blocked while awaiting a future.

5.2 Qthreads

The Qthread Library from Sandia National Laboratories (not to be confused with

QT’s QThreads) provides support for light-weight tasks in C, comparable to fibers

[17]. Qthreads support the use of full/empty bits (FEBs) to perform a kind of data-

driven synchronization between qthreads. However, unlike std::futures, this pat-

tern lacks the structure and strong safety guarantees that STL futures provide, and

the Qthread API is not compatible with <future>. Therefore, Qthreads by them-

selves are not a suitable replacement for std::async(). They could, however, serve

as a building block for a higher-level futures interface, similar to how libfib serves as

the basis for Fibertures. Note that while the Qthread Library also has a construct

called “future”, this construct is unrelated to C++ STL futures. Figure 5.1 is an

example of a basic parallel “Hello World” program using Qthreads. Note the use of

FEBs for synchronization on line 12.

5.3 Folly Futures

Facebook has written their own promise-and-future library for C++11, independent

of <future>, called Folly Futures [2]. The purpose of this library is to make composi-

tion of futures easier and cleaner. Folly Futures have similar functionality to C++11

std::futures but also support callback chaining via the then() and onError()
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Figure 5.1 : “Hello World” program using Qthreads, adapted from [1].

1 aligned_t greeter(void *arg) {

2 printf

3 ( "Hello World! My input argument was %lu\n"

4 , (unsigned long)(uintptr_t)arg

5 );

6 return 0;

7 }

8 int main() {

9 aligned_t return_value = 0;

10 qthread_initialize ();

11 qthread_fork(greeter , nullptr , &return_value);

12 qthread_readFF(NULL , &return_value);

13 printf("greeter returned %lu\n", (unsigned long)return_value);

14 return EXIT_SUCCESS;

15 }

methods. The C++ standard does not currently support callback chaining; however,

the Concurrency TS does support chaining via std::future::then, std::when all,

and std::when any. Folly Futures are incompatible with <future> due to signifi-

cant API differences, meaning existing code written using STL futures cannot benefit

from Folly Futures without some refactoring. Furthermore, the Folly Futures library

does not itself provide a mechanism for asynchronous tasks, such as std::async()

or fiber async(). Rather, it allows the user to optionally specify an Executor to

schedule or execute a Future upon creation [18]. Executor is Facebook’s abstract

base class representing a task execution policy. Facebook provides several choices of

executor, including ThreadPoolExecutor, which is a simple thread pooling imple-

mentation. Unlike with <future> or Fibertures, the choice of execution policy is left

to the user. Folly Futures is a good alternative to Fibertures if the user requires more
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Figure 5.2 : Callback chaining using Folly Futures [2].

1 Future <OutputA > futureA(Output);

2 Future <OutputB > futureB(OutputA);

3 Future <OutputC > futureC(OutputB);

4 // then() automatically lifts values (and exceptions) into a Future.

5 OutputD d(OutputC) {

6 if (somethingExceptional) throw anException;

7 return OutputD ();

8 }

9 Future <double > fut =

10 fooFuture(input)

11 .then(futureA)

12 .then(futureB)

13 .then(futureC)

14 .then(d)

15 .then ([]( OutputD outputD) { // lambdas are ok too

16 return outputD * M_PI;

17 });

control over the execution policy. However, it requires more manual effort on the

user’s part when porting existing code using std::future to benefit from lightweight

threading.

The Folly Futures example in Figure 5.2 demonstrates the expressiveness of call-

back chaining with the then() member function.

5.4 Boost Fiber

Boost also recently released a lightweight cooperative threading library called Boost

Fiber, which includes futures among its synchronization constructs [19]. Similarly

to Fibertures, blocking future operations do not block the underlying worker thread

but merely suspend the current fiber, allowing the worker thread to continue doing
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Figure 5.3 : Parallel recursive Fibonacci function using Boost Fiber futures.

1 int fib(int n) {

2 if (n <= 1) return n;

3 boost:: fibers ::future <int > left = boost :: fibers ::async ([n] {

4 return fib(n - 2);

5 })

6 int right = fib(n - 1);

7 return left.get() + right;

8 }

useful work. Boost Fiber futures are a different type (boost::fibers::future) than

std::future and even boost::future; however, the interfaces are all very similar,

allowing easy refactoring from one type to another. Boost Fiber allows the use of

user-specified schedulers, defaulting to a round-robin scheduler. Due to the similarity

between std::future and boost::fibers::future, the Boost Fiber library provides

a similar level of backwards compatibility with existing STL-only code to Fibertures,

with the usual drawback that the user must be aware of thread-local storage when

performing the conversion from <future> to Boost Fiber.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

To remain at the forefront of high-performance high-level programming languages,

C++ must support expressive and efficient means of expressing parallelism. We have

seen that while C++ futures confer programmability and safety benefits, current

standard (STL) implementations have significant drawbacks in terms of performance.

These drawbacks are particularly apparent in applications that require large numbers

of async tasks, where the overhead of task creation, context-switching, and blocking

synchronization can overwhelm the computation time and system resources. As an

alternative, we see that for this class of problems, third-party libraries that support

parallel futures can effectively solve these problems through the use of thread-pooling

and work-stealing, reducing overhead and more efficiently utilizing system resources.

We implemented the Fibertures extension to libfib to improve the performance of

parallel futures in C++ by utilizing fibers. We have shown that Fibertures performs

well compared to the STL and other futures libraries in some benchmarks. Fibertures’

close adherence to standard C++ APIs in conjunction with our set of source-to-source

transformations from pure standard C++ to Fibertures facilitate conversion of exist-

ing parallel C++ code, allowing application programmers to leverage the improved

performance of Fibertures in existing code with less manual effort.
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6.2 Future Work

6.2.1 Fibertures Runtime and Transformation Improvements

Our case studies show that Fibertures has the potential to compete with other C++

future runtime systems. However, the validity of these results is limited to compilation

at the default optimization level, due to limitations of libfib. An important next step

in the evaluation and use of Fibertures is to fix libfib to support compilation under

higher optimization levels and reevaluate the performance of each runtime system in

that context.

The Fibertures runtime currently relies on a modified scheduler loop that pri-

oritizes stealing tasks over popping tasks from the local run queue. This prevents

a worker thread that has yielded a blocked task from repeatedly executing and sus-

pending that task, improving load balancing. However, the scheduler may still resume

blocked tasks more frequently than is necessary, and this scheduling algorithm may

reduce data locality as a side effect. It could be worthwhile to explore alternative

techniques for handing task dependences, such as keeping a list of dependences for

each task and only scheduling a task to run when all of its dependences are satisfied.

Currently, we implement the source-to-source transformations and analysis in this

work by hand per application. To facilitate the use of Fibertures for development,

it would be useful to automate these transformations using a compiler tool such as

LibTooling [20]. Such a tool would appreciably reduce programmer burden when

converting large bodies of existing code to use Fibertures. Furthermore, it would be

valuable to extend the transformations in this work to support other runtime systems,

such as HClib and HPX.

Lastly, the current Fibertures implementation requires manual specification per
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application of the fiber stack size. The choice of stack size has a large impact on

performance. If the stack size is too low, the program will experience a segmentation

fault; if it is too high, performance suffers from excess memory usage and allocation

time. Therefore, it could be valuable to explore ways to infer the best stack size

automatically. Furthermore, within a given program, it is not necessarily the case

that all fiber stacks have the same ideal size. We could investigate compile-time and

run-time analysis techniques to determine the best stack size for each instance of fiber

stack creation, rather than using the same value across the entire program. There

is prior work on this problem, such as SLAW, a runtime scheduler that can bound

the stack and heap space required by tasks[21]. Some of these techniques may be

applicable to Fibertures.

6.2.2 Fibertures as a Foundation for Other High-level Parallel Features

In Chapter 1, we noted that async tasks and futures are a general parallel program-

ming construct, meaning we can use them to implement other models of parallel

programming. A natural next step would be to use the Fibertures library to build

a full framework of parallel tools for C++, beyond those found in the STL. This

extended library could include constructs found in other C++ libraries such as HPX

and HClib as well as features from other languages, such as Java’s parallel streams.

Besides the implementation of the additional library features themselves, there

could be useful work to be done in developing extensions to libfib and Fibertures to

facilitate more efficient implementation of some of those features. For instance, the

ability to set thread affinity hints for async tasks could be useful for the development of

a parallel producer-consumer API by improving cache performance through improved

data locality.
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