
Brief Announcement: Dynamic Determinacy Race
Detection for Task Parallelism with Futures

Rishi Surendran
Rice University

rishi@rice.edu

Vivek Sarkar
Rice University

vsarkar@rice.edu

ABSTRACT
Existing dynamic determinacy race detectors for task-parallel
programs are limited to programs with strict computation
graphs, where a task can only wait for its descendant tasks
to complete. In this paper, we present the first known deter-
minacy race detector for non-strict computation graphs with
futures. The space and time complexity of our algorithm are
similar to those of the classical SP-bags algorithm, when us-
ing only structured parallel constructs such as spawn-sync
and async-finish. In the presence of point-to-point synchro-
nization using futures, the complexity of the algorithm in-
creases by a factor determined by the number of future op-
erations, which includes future task creation and future get
operations. The experimental results show that the slow-
down factor observed for our algorithm relative to the se-
quential version is in the range of 1.00× – 9.92×, which is
very much in line with slowdowns experienced for fully strict
computation graphs.

1. INTRODUCTION
Current dynamic race detection algorithms for task paral-

lelism are limited to parallel constructs in which a task may
synchronize with the parent task [5] or an ancestor task [8,
9]. However, current parallel programming models include
parallel constructs that support more general synchroniza-
tion patterns. For example, the OpenMP depends clause
allows tasks to wait on previously spawned sibling tasks and
the future construct in X10, HJ, C# and C++11 enables
a task to wait on any previously created task to which the
waiter task has a reference. Algorithms based on vector
clocks [1] are impractical for these constructs because either
the vector clocks have to be allocated with a size propor-
tional to the maximum number of simultaneously live tasks
(which can be unboundedly large) or precision has to be
sacrificed by assigning one clock per processor or worker
thread, thereby missing potential data races when two tasks
execute on the same worker. In this paper, we present the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA ’16, July 11-13, 2016, Pacific Grove, CA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4210-0/16/07.

DOI: http://dx.doi.org/10.1145/2935764.2935815

first known sound and precise dynamic determinacy race de-
tector for non-strict computation graphs with futures.

Our work addresses parallel programming models that
can support combinations of functional-style futures and
imperative-style tasks. Specifically, our race detection algo-
rithm supports async-finish constructs for imperative-style
parallelism and future construct for functional-style paral-
lelism. The statement “async { S }” causes the parent task
to create a new child task to execute S asynchronously with
the remainder of the parent task. The statement “finish
{ S }” causes the parent task to execute S and then wait
for the completion of all asynchronous tasks created within
S. Each dynamic instance TA of an async task has a unique
Immediately Enclosing Finish (IEF) instance F of a finish
statement during program execution, where F is the inner-
most finish containing TA. A future [6] refers to an object
that acts as a proxy for a result that may initially be un-
known because the computation of its value may still be in
progress as a parallel task. The statement, “future<T> f =

async<T> Expr;” creates a new child task to evaluate Expr

asynchronously, where T is the type of the expression Expr.
In this case, f contains a handle to the return value (fu-
ture object) for the newly created task and the operation
f.get() can be performed to obtain the result of the future
task. If the future task has not completed as yet, the task
performing the f.get() operation blocks until the result of
Expr becomes available.

The remainder of this brief announcement is organized as
follows. Section 2 defines a determinacy race for our pro-
gramming model. Section 3 presents our approach for de-
terminacy race detection for parallel programs with futures,
and Section 4 discusses the experimental results for our race
detection algorithm.

2. DATA RACES AND DETERMINISM
We define a data race for programs containing async, fin-

ish, and future constructs in terms of the computation
graph [2], and as a preamble to defining determinacy races.
A computation graph models the execution of a parallel pro-
gram as a graph, where each node in a computation graph
corresponds to a step, where a step is defined as follows:

Definition 1. A step is a maximal sequence of statement
instances such that no statement instance in the sequence
includes the start or end of an async, finish or a get opera-
tion.

The edges in computation graph represent parallel control
dependences. There are three different types of edges in a



computation graph (akin to those in a fully strict computa-
tion graph):

1. Continue Edges capture the sequencing of steps within
a task. All steps in a task are connected by continue
edges.

2. Spawn Edges represent the parent-child relationship
among tasks. When task A creates task B, a spawn
edge is inserted from the step that ends with the async
in task A to the step that starts task B.

3. Join Edges represent the synchronization among tasks.
When task A performs a get on future B, a join edge
is inserted from the last step of B to the step in task
A that immediately follows the get() operation. Join
edges are also inserted from the last step of every task
to the step in the ancestor task immediately following
the Immediately Enclosing Finish (IEF). A join edge
from task B to task A is referred to as tree join if
A is an ancestor of B; otherwise, it is referred to as a
non-tree join.

Definition 2. A step u is said to precede step v, denoted as
u ≺ v, if there exists a path from u to v in the computation
graph.

We use the notation u 6≺ v to denote that there is no path
from step u to step v in the computation graph.

Definition 3. A data race may occur between steps u and
v, iff both u and v access a common memory location, at
least one of which is a write and u 6≺ v and v 6≺ u.

We say that a parallel program is functionally determin-
istic if it always computes the same answer when given
the same inputs. By default, any sequential computation
is expected to be deterministic with respect to its inputs;
if the computation interacts with the environment (e.g., a
GUI event such as a mouse click, or a system call like Sys-
tem.nanoTime()) then the values returned by the environ-
ment are also considered to be inputs to the computation.
Further, we refer to a program as structurally deterministic
if it always computes the same computation graph, when
given the same inputs. Finally, following past work [7]we
say that a program is determinate if it is both function-
ally and structurally deterministic. If a parallel program
is written using only async, finish, and future constructs,
and is guaranteed to never exhibit a data race, then it must
be determinate, i.e., both functionally and structurally de-
terministic. Note that all data-race-free programs written
using async, finish and future constructs are guaranteed to
be determinate, but it does not imply that all racy programs
are non-determinate.

3. RACE DETECTION APPROACH
Our race detection algorithm detects races on-the-fly dur-

ing a depth-first serial execution of the input program. A
dynamic race detector needs to provide mechanisms that
answers two questions: for any pair of memory accesses, at
least one of which is a write 1) can the two accesses logically
execute in parallel? 2) do they access the same memory
location? To answer the first question, we introduce a pro-
gram representation referred to as dynamic task reachability
graph which is presented in Section 3.1. Similar to most
race detectors, we use a shadow memory mechanism to an-
swer the second question which is presented in Section 3.2.
Section 3.3 presents a high-level view of our algorithm.

3.1 Dynamic Task Reachability Graph
The dynamic task reachability graph represents the reach-

ability information at task-level instead of step-level. It uses
the following three ideas for encoding reachability informa-
tion between steps in the computation graph of the input
program:

• Disjoint set representation of tree joins: The reacha-
bility information between tasks which are connected
by tree join edges is captured using a disjoint set data
structure. Two tasks A and B are in the same set if
and only if B is a descendant of A and there is a path
in the computation graph from B to A which includes
only tree-join edges and continue edges. Any m op-
erations on n sets take a total of O(m α(m,n)) time
where α is the inverse Ackermann’s function.

• Interval encoding of spawn tree: To efficiently store
and query reachability information from a task to its
descendants, we use a labeling scheme [4], where each
task is assigned a label according to the preorder and
postorder numbering scheme. The values are assigned
according to the order in which the tasks are visited
during a depth-first-traversal of the spawn tree, where
the nodes in the spawn tree correspond to each of the
tasks and edges represent the parent-child spawn re-
lationship. Ancestor-descendant relationship queries
between task pairs can be answered by checking if the
interval of one task subsumes the interval of the other
task.

• Immediate predecessors+significant ancestor represen-
tation of non-tree joins: The non-tree joins in the com-
putation graph are represented in the dynamic task
reachability graph as follows:

– immediate predecessors: For each non-tree join
from task A to task B, B stores A in the set of
predecessors.

– lowest significant ancestor: We define the signifi-
cant ancestors of task A as the set of ancestors of
A which has performed at least one non-tree join
operation. For each task, we store only the lowest
significant ancestor.

3.2 Shadow Memory
Our algorithm maintains a shadow memory Ms for every

shared memory location M . Ms contains the following fields

• writer , a reference to a task that wrote toM . Ms .writer
is initialized to null and is updated at every write to
M . It refers to the task that last wrote to M .

• readers, a set of references to tasks that readM . Ms .re-
aders is initialized to ∅ and is updated at reads of M .
It contains references to all future tasks that read M
in parallel since the last write to M . It also contains
a reference to one non-future (async) task which read
M since the last write to M .

3.3 Algorithm
As the input program executes in serial, depth-first or-

der the race detection algorithm performs additional oper-
ations whenever one of the following actions occurs: task
creation, task return, get() operation, shared memory read
and shared memory write. Determinacy races are detected
when a read or write to a shared memory location occurs.
When a write to a memory location M is performed by step



Benchmark Description Input Size Seq Racedet Slowdown
(millisecs) (millisecs)

Series-af Fourier coefficient analysis using async-finish Size C 483,224 484,746 1.00
Series-future Fourier coefficient analysis using futures Size C 487,134 487,985 1.00

Crypt-af IDEA encryption algorithm using async-finish Size C 15,375 119,504 7.77
Crypt-future IDEA encryption algorithm using futures Size C 15,517 128,234 8.26

Jacobi 2 dimensional 5-point stencil using futures 2048 × 2048 3,402 27,388 8.05
Smith-Waterman Sequence alignment using futures 10000 3,488 34,558 9.92

Strassen Strassen’s algorithm using futures 1024 × 1024 30,811 33,618 5.35

Table 1: Runtime overhead for determinacy race detection. Seq is the sequential execution time in milliseconds and Racedet
is the execution time with race detection enabled in milliseconds. Slowdown is the slowdown due to race detection (Racede-
t/Seq).

u, the algorithm checks if the previous writer or the previous
readers in the shadow memory space may execute in paral-
lel with the currently executing step and reports a race. It
updates the writer shadow space of M with the current task
and removes any task S if S ≺ u. When a read to a memory
location M is performed by step u, the algorithm checks if
the previous writer in the shadow memory space may exe-
cute in parallel with the currently executing step and reports
a race. It adds the current task to the set of readers of M
and removes any task S if S ≺ u. Given tasks A and B,
our algorithm determines if they can execute in parallel by
inspecting the dynamic task reachability graph. The algo-
rithm does this by traversing only the non-tree edges and
using the disjoint set and interval labels to answer reacha-
bility queries along paths with spawn and tree join edges.

Our race detection algorithm can be implemented to check
a program that executes in time T on one processor for de-
terminacy races in O(T (f + 1) (n + 1) α(T, a + f)) time
using O(a+ f +n+ v (f + 1)) space, where a is the number
of async tasks and f is the number of future tasks created by
the program, n is the number of non-tree joins performed by
the program and v is the number of shared memory locations
referenced by the program.

4. EXPERIMENTAL RESULTS
The race detector was implemented as a new Java library

for detecting determinacy races in HJ [3] programs contain-
ing async, finish, and future constructs. The benchmarks
written in HJ were instrumented for race detection during
a bytecode-level transformation pass implemented on HJ’s
Parallel Intermediate Representation (PIR). The instrumen-
tation pass adds the necessary calls to our race detection
library at async, finish, and future boundaries, future get
operations, and also on reads and writes to shared memory
locations.

Our experiments were conducted on a 16-core Intel Ivy-
bridge 2.6 GHz system with 48 GB memory, running Red
Hat Enterprise Linux Server release 7.1, and Sun Hotspot
JDK 1.7. To reduce the impact of JIT compilation, garbage
collection, and other JVM services, we report the mean ex-
ecution time of 10 runs repeated in the same JVM instance
for each data point.

The results of our evaluation are given in Table 1. The
first column lists the benchmark name. The fourth column
(Seq) reports the average execution time of the sequential
(serial elision) version of the benchmark, and the following
column (Racedet) reports the average execution time of a
1-processor execution of the parallel benchmark using the
determinacy race detection algorithm introduced in this pa-
per. Finally, the Slowdown column reports the ratio of the

Racedet and Seq values. The slowdowns for Series-af and
Crypt-af are comparable to the slowdowns reported for the
ESP-Bags algorithm that only supported async and finish,
thereby showing that our determinacy race detector does
not incur additional overhead for async/finish constructs
relative to state-of-the-art implementations. The slowdown
for Crypt-future is higher than that of Crypt-af because of
two reasons: 1) the additional number of memory accesses
due to the future references and 2) the average number of
readers stored in the shadow memory is higher, because of
the presence of future tasks. The slowdowns for Jacobi,
Smith-Waterman, and Strassen (8.05×, 9.92×, and 5.35×)
are positively correlated with the number of shared memory
accesses, the average number of readers stored in the shadow
memory, and 1/Seq.

5. REFERENCES
[1] Utpal Banerjee, Brian Bliss, Zhiqiang Ma, and Paul

Petersen. A theory of data race detection. In PADTAD
’06, pages 69–78, New York, NY, USA, 2006. ACM.

[2] Robert D. Blumofe and Charles E. Leiserson.
Scheduling multithreaded computations by work
stealing. J. ACM, 46(5):720–748, September 1999.

[3] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek
Sarkar. Habanero-java: the new adventures of old x10.
In PPPJ ’11, pages 51–61, New York, NY, USA, 2011.
ACM.

[4] P. Dietz and D. Sleator. Two algorithms for
maintaining order in a list. In STOC ’87, pages
365–372, New York, NY, USA, 1987. ACM.

[5] Mingdong Feng and Charles E. Leiserson. Efficient
detection of determinacy races in Cilk programs. In
SPAA ’97, pages 1–11, New York, NY, USA, 1997.
ACM.

[6] Robert H. Halstead, Jr. Multilisp: A language for
concurrent symbolic computation. ACM Trans.
Program. Lang. Syst., 7(4):501–538, 1985.

[7] Richard M. Karp and Raymond E. Miller. Parallel
program schemata. J. Comput. Syst. Sci., 3(2):147–195,
May 1969.

[8] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin
Vechev, and Eran Yahav. Efficient data race detection
for async-finish parallelism. Formal Methods in System
Design, 41(3):321–347, December 2012.

[9] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin
Vechev, and Eran Yahav. Scalable and precise dynamic
datarace detection for structured parallelism. In PLDI
’12, pages 531–542, New York, NY, USA, 2012. ACM.


