SWAT: A Programmable, In-Memory, Distributed,
High-Performance Computing Platform

Max Grossman
Rice University
6100 Main St, Houston, TX, USA
jmg3@rice.edu

ABSTRACT

The field of data analytics is currently going through a re-
naissance as a result of ever-increasing dataset sizes, the
value of the models that can be trained from those datasets,
and a surge in flexible, distributed programming models.
In particular, the Apache Hadoop [1] and Spark [5] pro-
gramming systems, as well as their supporting projects (e.g.
HDFS, SparkSQL), have greatly simplified the analysis and
transformation of datasets whose size exceeds the capacity
of a single machine. While these programming models facili-
tate the use of distributed systems to analyze large datasets,
they have been plagued by performance issues. The I/O per-
formance bottlenecks of Hadoop are partially responsible for
the creation of Spark. Performance bottlenecks in Spark due
to the JVM object model, garbage collection, interpreted/-
managed execution, and other abstraction layers are respon-
sible for the creation of additional optimization layers, such
as Project Tungsten [4]. Indeed, the Project Tungsten is-
sue tracker states that the “majority of Spark workloads are
not bottlenecked by I/O or network, but rather CPU and
memory” [20].

In this work, we address the CPU and memory perfor-
mance bottlenecks that exist in Apache Spark by accel-
erating user-written computational kernels using accelera-
tors. We refer to our approach as Spark With Acceler-
ated Tasks (SWAT). SWAT is an accelerated data analyt-
ics (ADA) framework that enables programmers to natively
execute Spark applications on high performance hardware
platforms with co-processors, while continuing to write their
applications in a JVM-based language like Java or Scala.
Runtime code generation creates OpenCL kernels from JVM
bytecode, which are then executed on OpenCL accelerators.
In our work we emphasize 1) full compatibility with a mod-
ern, existing, and accepted data analytics platform, 2) an
asynchronous, event-driven, and resource-aware runtime, 3)
multi-GPU memory management and caching, and 4) ease-
of-use and programmability. Our performance evaluation
demonstrates up to 3.24x overall application speedup rela-
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tive to Spark across six machine learning benchmarks, with a
detailed investigation of these performance improvements.
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1. INTRODUCTION

The introduction of the Apache Hadoop [1] and Spark [5]
programming systems to the data analytics community has
greatly simplified the task of processing large datasets. While
users celebrate the programmability of Hadoop, Spark, and
the frameworks built on top of them, performance tuning of
these systems is non-trivial. Their construction on an inter-
preted, managed runtime improves the flexibility of Spark
and Hadoop, but this added layer of abstraction makes it
difficult to tune locality, instruction scheduling, memory al-
location, disk and network access, and other low-level per-
formance knobs. Indeed, Spark’s creation was partially mo-
tivated by criticisms of Hadoop’s disk bottlenecks, while
Project Tungsten [4] is motivated by CPU and memory bot-
tlenecks in Spark.

Therefore, while the problem of building distributed appli-
cations to operate on large datasets is being addressed effec-
tively, the challenge of achieving computational efficiency in
large-scale systems without sacrificing programmability re-
mains open. In particular, much of the existing work in the
open source community has focused on fixing the I/O bot-
tlenecks of these distributed programming systems, which
has led to the computational inefficiencies becoming more
pronounced. One recent approach to improving the compu-
tational performance of these big data analytics platforms
has been the exploration of the use of accelerators, such as
GPUs. We call these accelerator-based platforms accelerated
data analytics platforms (ADAs).

Both of the leading data analytics platforms listed above
(Hadoop and Spark) are JVM-based, but supporting full
JVM execution on accelerators is infeasible. To bridge this
gap, past work has taken a number of approaches. We char-
acterize these approaches along four axes: the generality
of the API exposed to the user, the degree to which low-
level accelerator details are exposed to the user, compatibil-
ity with existing frameworks, and the flexibility /efficiency of
the framework’s runtime.

To one extreme, fixed-function frameworks offer high-level,
domain-specific APIs which are highly programmable but
also inherently inflexible. Some well-known examples are



BIDMach [8], Caffe [14], and HeteroSpark [17]. The special-
ization of fixed-function frameworks allows them to optimize
both their performance and programmability for the domain
they target, but limit their applicability to any others.

On the other hand, fully programmable ADA frameworks
such as HeteroDoop [21] or HadoopCL [11] enable the imple-
mentation of novel algorithms and are more generally use-
ful, but often pay the price of added overhead. For example,
HadoopCL uses runtime code generation of accelerator ker-
nels from JVM bytecode to support accelerated execution.
This code generation step adds overhead to each job’s exe-
cution, but augments the framework’s overall flexibility.

While most ADAs choose to expose high-level accelerator-
agnostic APIs, SparkCL [22], GPMR [23], and Glasswing [10]
expose low-level details of accelerator hardware to the user,
such as thread IDs and accelerator-specific address spaces.
In our work, we follow the trends we observe in the commu-
nity and hide hardware details from the user. This approach
limits some user optimizations, but improves programmabil-
ity.

While compatibility with existing frameworks is partly a
software engineering concern, it is also an important con-
straint on the research problem. In past work, HadoopCL
and SparkCL required modifications to the core code of
Hadoop or Spark. While this approach enables applications
to run unmodified and leverage optimizations that are not
possible from outside of these frameworks, there are major
barriers to broad acceptance in the long term if these exten-
sions are not incorporated in the main development trunk
of the underlying open source projects. Frameworks like
HeteroDoop introduce entirely new APIs that sit on stop
of other frameworks but which require a complete rewrite
of any existing applications. Frameworks like MapCG [13]
construct entirely new APIs and runtimes, limiting both the
portability of legacy applications and the ability to co-locate
them with existing frameworks like Spark and Hadoop. In
this work, we build our solution as a third-party library
which maintains the look and feel of Apache Spark and runs
on top of Spark without requiring modifications to the in-
ternals of Spark.

Finally, the runtime system of an ADA is an important
factor in its performance and stability. Related work like
HadoopCL and HeteroDoop place a heavy emphasis on the
efficient management of resources on behalf of the user, ad-
dressing out-of-memory errors and efficient scheduling with-

out bothering the user with such low-level concerns. HadoopCL

even includes a component to automatically determine at
runtime which kernels to run in the JVM, on an accelerator,
or on the CPU natively. Other work minimizes the safety for
the user 1) by allowing them to allocate arbitrary amounts of
accelerator memory, 2) by using blocking operations rather
than asynchronous tasks, and 3) by generally requiring the
user to do more manual resource management without pro-
tecting them from mistakes. We focus on building a flexible,
asynchronous, and event-driven runtime that transparently
handles resource management for the user.

In this paper we describe the open-source Spark With Ac-
celerated Tasks (SWAT) framework, available at https://
github.com/agrippa/spark-swat. Table 1 compares the rel-
evant characteristics of SWAT with those of several related
ADAs. SWAT accelerates the user-written computational

kernels of Apache Spark jobs using OpenCL-supporting GPUs.

SWAT is not fixed function: it allows Spark programmers to

write custom kernels in high level JVM languages like Scala.
SWAT is high-level: it does not expose accelerator hardware
details, maintaining the same APIs as Spark. It fully in-
tegrates with the Spark framework as a third-party JAR,
requiring only minimal code re-write for existing Spark ap-
plications. SWAT uses an asynchronous, event-driven, and
resource-aware runtime to accurately and efficiently manage
intra-node resources for the programmer.

The remainder of this paper is structured as follows. Sec-
tion 2 will briefly describe Apache Spark, as well as explain
the characteristics of GPU accelerators that make them rele-
vant to data analytics workloads. Section 3 will describe the
techniques and contributions of this work in detail. Section 4
will evaluate the performance benefits of those methods ex-
perimentally. Section 5 will conclude with a discussion of
our approach and a summary of future work.

2. BACKGROUND

In this work, we combine Apache Spark and GPU accel-
erators to produce a programmable and high-performance
data analytics system. This section briefly provides back-
ground on Spark and GPUs, and puts this work in the con-
text of our past work on combining Hadoop MapReduce and
GPUs.

2.1 Apache Spark

Apache Spark is a distributed, multi-threaded, in-memory
programming system. The core abstraction of Apache Spark
is that of a resilient distributed dataset (RDD). An RDD
represents a distributed vector of elements. Elements in
an RDD can be of any serializable type. RDD creation is
lazy: creating an RDD object in a Spark program does not
necessarily evaluate and populate that RDD. Only certain
operations in Spark programs force evaluation, resulting in
long chains of lazily evaluated RDDs as one RDD is trans-
formed into another. RDD resiliency derives from their an-
cestry tracking. By persisting information on how RDDs
were created rather than their actual contents, Spark guar-
antees that lost data can be recovered through recomputa-
tion without storing large amounts of intermediate data on
disk.

A single RDD is split into multiple partitions. All ele-
ments in the same partition are stored on the same ma-
chine, but different partitions may be stored on different
machines. Hence, partitions are the granularity of distribu-
tion in Spark.

One of Spark’s strengths is its API, i.e. the transfor-
mations that it supports on RDDs. Spark transformations
run in parallel across the machines that an RDD is stored
on. Transformations are functional: they are applied to one
RDD and produce another. This generally leads to long
chains of lazily evaluated RDDs, linked by functional trans-
formations. The transformations that Spark supports in-
clude map, reduce, filter, reduceByKey, groupByKey, join,
and distinct. This variety of transformations greatly ex-
pands the flexibility of Spark relative to its predecessor,
Hadoop MapReduce.

Transformations generally take some Scala lambda £, ap-
ply it to the input RDD using the semantics of the transfor-
mation, and produce some output RDD. For example, the
map transformation applies £ to each element of the input
RDD, producing the corresponding element in the output
RDD. filter, on the other hand, applies £ to each element



Framework | Fixed Function | Low-Level Compatibility Runtime Flexibility
SWAT No No No code change, No data transorms Asynchronous runtime,
Full platform management
Small code change, T . .
HadoopCL No No Major data transforms Pipelined runtime, Auto-scheduling
No code compatibility, .
HeteroDoop No No shared runtime with Spark Transparent resource management
Assumes fixed memory usage,
MapCG No No None work partitioned across CPU + GPU
Efficient support of many-GPU
GPMR No Yes None execution through augmentation
of the MapReduce pipeline
Glasswing No Yes None Low-level OpenCL-based APIs
No code compatibility,
SparkCL No Yes shared runtime with Spark None
HeteroSpark Yes No Callable from Spark jobs Unspecified
BIDMach Yes No None Minimal
Calffe Yes No None Minimal

Table 1: A comparison of relevant characteristics of various ADAs, including whether they are fixed-function,
whether they expose low-level hardware details to the user, how much code rewrite is necessary for an existing
Hadoop/Spark application, and the flexibility of the underlying runtime system.

and stores that element in the output RDD if f returns true.
In this paper, we refer to the processing of a single RDD

partition by a single transformation as a Spark “task”.
In-memory caching is also an important feature of Spark.

Spark allows users to explicitly mark certain RDDs as “cached”,

indicating that the programmer would like Spark’s runtime
to make a best-effort at keeping the partitions of this RDD
in memory. This may benefit performance when the out-
put of one transformation is immediately fed into another
as input, or when a single RDD is accessed repeatedly.
Spark also supports broadcast variables. Spark broadcast
variables are read-only data structures accessible on every
node of a Spark cluster. Broadcast variables are an efficient
way to share read-only data among all tasks in a Spark job.

2.2 GPUs

It should be apparent that Spark is a highly parallel frame-
work for processing large amounts of data. This computa-
tional pattern fits well with GPUs.

GPUs are throughput-optimized devices which are gener-
ally attached to a host processor (i.e., CPU) but physically
separate from it. They perform best relative to multi-core
CPUs on highly parallel workloads with simple control flow
(i.e. minimal conditional divergence between threads) and
large memory bandwidth requirements.

GPU memory hierarchies also contain special-purpose mem-

ory that allow programmers to manually place data with
certain characteristics in appropriate parts of the hierarchy.
For example, GPU constant memory is useful for constant
data structures read by all threads on the GPU. GPU shared
(or scratchpad) memory is on-chip and useful for storing fre-
quently accessed, small data structures.

Programming GPUs requires the use of low-level, data
parallel programming models such as CUDA or OpenCL.
These models allow programmers to manage GPU memory,
GPU communication, and massively parallel kernel creation.
They are generally considered by be verbose, especially when
compared to high-level languages like Scala and Java.

The data parallelism, memory bandwidth, and low-level

programming models of GPUs make them complementary
to data analytics platforms like Spark. Both exhibit wide
parallelism, either across many cores in a chip or across a
whole distributed system. Spark processes large datasets in
a streaming model, which matches well with GPUs’ high
memory bandwidth. Spark offers a high-level programming
model but suffers from performance bottlenecks, while GPUs
suffer from low-level programming models but have a high
peak computational performance.

2.3 HadoopCL

In past work called HadoopCL, we explored accelerating
Hadoop MapReduce using GPUs. While the motivations
of HadoopCL and SWAT are similar, the constraints and
resulting systems are not. Hadoop and Spark are different
programming models that expose different abstractions and
are entirely disjoint in their backend implementations. As
a result, the accelerated frameworks HadoopCL and SWAT
are also entirely disjoint. HadoopCL simplified the prob-
lem of building an efficient ADA by modifying core Hadoop
code, introducing custom data structures, requiring the pro-
grammer to use HadoopCL-specific APIs, and significantly
limiting the logic that could be written in accelerated ker-
nels. On the other hand, SWAT is constructed entirely as
a third-party library, does not introduce custom data struc-
tures, has an API that consists of a single method, and uses
new techniques in code generation to broaden the JVM fea-
tures that can be used in accelerated kernels. SWAT’s run-
time system is also novel, doing a better job of seamlessly
combining multi-threaded JVM and OpenCL execution in
an event-driven model than HadoopCL’s runtime was able
to.

2.4 Contributions

In this work, we build a novel accelerated data analytics
platform, called SWAT, by accelerating Apache Spark with
GPUs. Our main contributions beyond past work include:

1. Full compatibility with a modern data analytics plat-
form, Apache Spark, by minimizing user-visible changes
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Figure 1: The SWAT software stack. Colored boxes
indicate components that are novel contributions of
this work.
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2. Extensions to the bytecode-to-OpenCL code genera-
tion work from [12] to support Spark-specific data struc-
tures, such as dense and sparse vectors from MLIib [24].

3. An asynchronous, event-driven, resource-aware run-
time for managing JVM and accelerator resources.

4. A multi-GPU memory management and caching layer,
with experiments in device locality-aware scheduling.

5. An evaluation of SWAT on six diverse machine learn-
ing benchmarks with detailed analysis to explain per-
formance improvements and losses.

3. METHODS

The software stack of SWAT is illustrated in Figure 1. In
this section, we start by describing the SWAT API and then
discuss each of these layers, starting at the bottom with the
clAlloc and clUtil modules and moving progressively higher
in the stack.

3.1 SWAT API

In a vanilla Spark program, RDDs are created by applying
transformations or operations to other RDDS. In the exam-
ple code snippet below, an RDD of integers is created from
a file stored in HDFS, and a new RDD is created where el-
ement i contains the value of element i in the first RDD,
multipled by two:

val input = sc.objectFile[Int] (hdfsPath)
val doubled = input.map(i => 2 * i)

To run this kernel on an accelerator, SWAT simply re-
quires that the input RDD be wrapped by a custom SWAT
RDD object using a c¢1 API call (shown below). No other
code change is required, and this is the only method exposed
by SWAT.

val input = cl(sc.objectFile[Int](hdfsPath))

val doubled = input.map(i => 2 * i)

SWAT currently supports intercepting and accelerating
calls to Spark map and mapValues transformations. Other
transformations could be supported, but we have not found
motivating application kernels that use other transforma-
tions and would benefit from acceleration. For example,
filter kernels tend to be short-lived and the GPU offload
time would be dominated by overheads. Future work could
investigate the use of kernel fusion across chained transfor-
mations to produce larger GPU kernels. These fused ker-
nels might offset the offload overheads, making offload of
lightweight transformations like filter profitable.

3.2 clUtil and clAlloc

clUtil is a simple utility library written by the authors that
simplifies management of OpenCL devices. It makes tasks
like device selection, device setup, querying device informa-
tion, and kernel launches less verbose than the lower-level
OpenCL APIs.

clAlloc is a thread-safe, single-accelerator memory man-
agement library built on top of the OpenCL APIs. It ex-
poses two data structures: 1) an allocator object for each
OpenCL device in a platform that serves as a context/handle
for clAlloc operations on that device, and 2) region objects
which represent a contiguous block of allocated memory on
a single OpenCL device. Its API is as follows:

1. clalloc_init(device): Initialize an allocator in-
stance for the selected device.

2. cl_allocate(nbytes, allocator): Allocate nbytes
bytes on the device associated with allocator, return-
ing a cl_region handle for the allocated memory or
NULL if the allocation failed.

3. cl_free(region, try_to_keep): Release the device
memory represented by region for future allocations.
If try_to_keep is true, clAlloc will make a best-effort
to not use that memory to satisfy future allocations as
it may be re-used soon.

4. cl_reallocate(region): Using the provided region,
attempt to re-allocate the same device memory. Suc-
cessfully re-allocating memory guarantees that it has
not been used to satisfy another allocation since re-
gion was originally allocated, and so its state is consis-
tent with previous operations performed on the same
region. If the region is not already free this simply
increments a reference counter, allowing multiple ker-
nels to share the same region.

5. get_pinned(region)/release_pinned(buf): Fetch or
release a page-locked buffer buf in host memory that
matches the size of region. Page-locked buffers are
necessary for performing asynchronous communication
to or from accelerators.

6. set_region(region, buf, nbytes)/get_region(buf,
region, nbytes): Fill or fetch the contents of a re-
gion on an OpenCL device using a corresponding host
buffer.

clAlloc adds a higher-level API on top of the standard
OpenCL APIs, including features that enable higher layers
of the software stack to perform inter-kernel data sharing
and efficient data communication. clAlloc pre-allocates all
device memory when it is initialized and partitions mem-
ory up for allocation requests on-demand using the OpenCL
clCreateSubBuffer API.

Free device memory is represented by a free list, sorted
by offset into the device memory address space. When a
clAlloc region is freed with c1_free and with try_to_keep
set to false, it is merged into any neighboring regions to
reduce fragmentation. If try_to_keep is set to true, it is
not merged.

clAlloc also stores free regions in buckets for efficient al-
location. For a single device, B buckets are created. Each
bucket b from 0 to B-1 stores all free regions on that device



with a size between 2° (inclusive) and 2°*! (exclusive). A
special-purpose bucket is used to store any regions larger

static double DenseVector__apply (
__global DenseVector *this, int index) {
return (this->values)[this->stride * index];

than 2% — 1. The free regions in each bucket are kept
sorted by size, from smallest to largest. Regions freed with
try_to_keep set to true are not kept in these buckets, only
in the global free list for each device.

When allocating nbytes, clAlloc starts with the small-
est bucket that may have a region of size nbytes, searching
larger buckets until a free region that is large enough to sat-
isfy this allocation is found. The free region is then trimmed
to nbytes, any leftover space is re-inserted in the free list
and free buckets, and the allocated region is returned.

If no free region is found in the buckets list, the alloca-
tor reverts to a linear search of the device-global free list
for adjacent free regions that can be merged to produce a
sufficiently large free region to satisfy this allocation. This
step will only succeed where the previous one failed if some
regions freed with try_to_keep set to true can be merged
with neighboring free regions to de-fragment device memory.
If this step fails, a NULL region is returned.

Note that clUtil and clAlloc are only exposed to the inter-
nals of SWAT, and not used directly by a SWAT program-
mer.

3.3 APARAPI-SWAT

APARAPI is an open source, general-purpose framework

that enables transparent execution of Java programs on OpenCL
devices through an API similar to Java’s Runnable. APARAPI

includes a runtime code generator from JVM bytecode to
OpenCL kernels and handles all OpenCL memory alloca-
tion, data transfer, and kernel execution for the program-
mer.

In this work, we use APARAPI’s code generator to trans-
late the Scala lamdbas passed to Spark transformations (il-
lustrated in Section 3.1) into OpenCL kernels that can be ex-
ecuted on an accelerator. This code generation is performed
at runtime, converting dynamically loaded JVM bytecode
into the OpenCL kernel language.

In past work, we have extended APARAPI’s code genera-
tor to support 1) dynamic memory allocation inside OpenCL
kernels through a retry-on-failure approach, and 2) JVM
object references in bytecode translated to OpenCL kernels
through generation of equivalent native structs and auto-
matic serialization of those objects. For more details, see
our previous work in [12].

In this work, we build on [12] to also support references
to Spark-specific data structures in kernels. In particular,
we support the SparseVector and DenseVector classes from
Spark’s MLIib, and the Scala Tuple2 class used to store key-
value pairs in Spark. An example of the OpenCL kernel code
generated to store and manipulate a DenseVector object is
shown below:

typedef struct __attribute_
__global double* values;
int size;
int stride;

} DenseVector;

static int DenseVector__size(
__global DenseVector *this) {
return (this->size);

}

((packed)) dv {

}

One important item to note in the definition of the Den-
seVector struct is the addition of a stride field. During
serialization of DenseVector JVM objects to native structs
that can be accessed on the GPU, we tile and stride Den-
seVector objects to improve memory access coalescing on
the GPU. This transformation places the ith element of
neighboring DenseVector objects adjacent to each other.
In our implementation, we tile 32 DenseVector objects to-
gether before striding them because NVIDIA GPUs schedule
threads in “warps” of 32 threads. However, the implemen-
tation is structured so that this can be easily tuned when
porting to new architectures. These same optimizations are
also performed on SparseVector objects.

The automatic optimization of the user-written kernels
during code generation is beyond the scope of this work,
but ideas from related work [25][16][7] could be integrated
into this code generator in the future.

3.4 SWAT Bridge

Sitting on top of clAlloc and clUtil is the SWAT Bridge,
a bridge between the components of SWAT running in the
JVM and those sitting on top of OpenCL. As such, SWAT
Bridge’s upward exposed APIs are expressed in terms of
JVM or Spark objects, which it then translates into com-
mands to the OpenCL-centric layers below.

The Bridge’s primary responsibilities are the caching of
data on OpenCL devices across kernels and tasks, the cre-
ation and management of native SWAT contexts, the set-
ting of arguments to OpenCL kernels, and the management
of asynchronously executing OpenCL operations (including
kernel executions and data communication). It exposes APIs
to the JVM that enqueue work for accelerators and block or
poll on their completion. At a high level, the Bridge accepts
input buffers from the JVM, places them on the accelerator,
launches computation on those buffers at the JVM’s request,
retrieves outputs, and signals the JVM on completion of var-
ious stages and as resources are released.

Described in Section 2.1, Spark uses in-memory caching to
address I/O bottlenecks in past frameworks without losing
resiliency guarantees. Logic in the Bridge supports similar
caching of data on OpenCL devices. In particular, we inves-
tigated caching RDD partitions and broadcast variables on
the GPU.

The Bridge stores two mappings for caching data on OpenCL
devices: one mapping from unique RDD partition IDs to
their clAlloc regions, and another from unique broadcast
variable IDs to their clAlloc regions. When layers higher
in the software stack indicate that a partition or broadcast
variable should be allocated and populated on a device, the
Bridge first checks if an entry already exists for it in one of
the cached mappings. If it does and a call to c1_reallocate
succeeds on it, the Bridge can skip creating a separate alloca-
tion. This saves space on the device through deduplication,
and reduces data communication to the device. When free-
ing regions associated with cacheable data, the try_to_keep
flag is set to true.

In practice, we found that caching partitions of RDDs on
the device was not useful. The limited size of device memory
and the scale of Spark datasets meant that RDD partitions



were never re-used before being evicted from device mem-
ory: the memory used to store them had to be allocated to
store other data before the application came back around to
a re-use of that partition. In fact, the increased fragmenta-
tion of device memory and added overhead of managing the
Bridge’s RDD cache mapping generally hurt performance.
Broadcast variables, on the other hand, are frequently used,
may be shared across multiple stages of a Spark application,
and are usually smaller than an RDD partition. We gen-
erally see benefits from caching them. For the evaluation
conducted in Section 4, we do not cache RDD partitions in
device memory but do cache broadcast variables.

SWAT does not make use of GPU constant or scratchpad
memory for a number of reasons. The OpenCL APIs for ac-
cessing GPU constant memory severely restrict the ability of
our runtime to store general, dynamically initialized data in
constant memory. We could not design a general technique
to make use of constant memory for arbitrary data and so,
rather than impinging on the generality of our framework by
asking programmers to explicitly handle constant memory,
we classify it as future work.

Preliminary experiments with scratchpad memory did show
performance benefits from using it to store certain thread-
local, SWAT internal data structures or broadcast variables.
However, the OpenCL kernel language requires annotating
every pointer with the address space it points to. The small
size of GPU scratchpad memory meant that storing even
moderately sized broadcast variables would require some
sort of tiling or partitioning, where part of the broadcasted
variable was stored in scratchpad memory with the remain-
der stored in global device memory. This would have meant
generating multiple versions of any OpenCL kernel func-
tion that used broadcast variables with different signatures
depending on the address space of the data being refer-
enced. This approach would have also caused thread diver-
gence as different threads went down the scratchpad memory
code path or the device memory code path. Further exper-
iments showed that this added complexity negated the per-
formance benefits of scratchpad memory for the cases where
we could automatically identify good candidates for storage
in scratchpad. Again, rather than ask the programmer to
explicitly manage scratchpad memory or reduce the gener-
ality of our framework, we classify its use as future work.

Besides caching, the bridge’s other main responsibility is
exposing an API that allows higher layers to enqueue asyn-
chronous OpenCL operations and check for their comple-
tion. In support of this, the bridge implements an asyn-
chronous runtime that coordinates asynchronous OpenCL
operations with the host application using pthreads condi-
tion variables, OpenCL events, and OpenCL event callbacks.
This runtime is illustrated in Figure 2. Below the dotted
line in Figure 2 are OpenCL operations managed by the
OpenCL runtime including data communication, kernel ex-
ecution, and SWAT-specific callbacks. These callbacks are
identified by the light gray boxes. All of these operations are
asynchronous with respect to the host JVM, with OpenCL
events being used to maintain inter-operation dependencies.

The functions that the SWAT Bridge exposes to higher
layers in SWAT are listed below:

1. setPinnedArrayArg: This function initiates the trans-
fer of the contents of a host page-locked buffer to a
buffer on an OpenCL device. It also sets the appro-
priate arguments of an OpenCL kernel to point to the

SWAT Core (JVM)

setPinnedArrayArg

Writes Release Kernel Check Read Release
! Host Buffers Completion eaos Device Buffers

3lo
3z
Reset | 3™
SWAT Bridge (Native) Heap

Figure 2: The flow of event-driven actions in the
SWAT Bridge at runtime.

waitForKernel

‘ launchKernel ‘

same OpenCL buffers. This call is non-blocking, and
creates OpenCL events for later operations to depend
on.

2. launchKernel: This function launches a new kernel
processing data initialized using setPinnedArrayArg.
This kernel is made dependent on the writes started by
setPinnedArrayArg using OpenCL events. Each ker-
nel launch is uniquely identified by a 64-bit sequence
number, which is incremented by one on each kernel
launch.

3. waitForKernel: This function forces the current JVM
thread to wait for a specific kernel launch to complete,
identified by its sequence number. This involves a wait
on a condition variable which is set by the box labelled
“Release Device Buffers” in Figure 2.

4. waitForInputBuffersRelease: This function forces the
current JVM thread to wait for a set of transfers to
the device to complete, signalling that the host buffers
they originate from are now available for re-use by the
host.

All of these APIs are thread-safe as they may be concur-
rently called by multiple JVM threads.

3.5 SWAT Core

SWAT Core refers to the components of SWAT that sit
inside the JVM. SWAT Core runs inside a Spark Worker
JVM. The interface between Spark and SWAT is a custom
SWAT RDD class (illustrated in Figure 3). When Spark
has a partition to process it calls a compute method on the
custom RDD, passing it an iterator over an input partition.
The compute method returns an iterator over output items.
SWAT currently adds two custom RDD classes: one each
for the Spark map and mapValues transformations. Both of
these classes hand off processing of the input partitions to a
shared code base in CLProcessor.

CLProcessor has four main responsibilities: 1) setup and
configuration of the SWAT environment, 2) input buffering
and serialization, 3) launching a GPU batched kernel, and
4) output deserialization and writing. At a high level, CL-
Processor accumulates many input items from the input
iterator, launches a batched OpenCL kernel on the accumu-
lated inputs, and returns the accumulated outputs to Spark
through the iterator which was returned by the RDD com-
pute method.

There are five categories of objects that the CLProcessor
is responsible for initializing:
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Figure 3: Example stack trace of entry point to
SWAT Core.

1. OpenCL objects: This includes SWAT-specific items
such as clAlloc allocators, as well as OpenCL-specific
items like compiled kernels and OpenCL contexts.

2. Native Input Buffers: These are JVM handles on na-
tive, page-locked buffers allocated from clAlloc. Mul-
tiple page-locked buffers may be grouped into a sin-
gle Native Input Buffer handle if they are required to
serialize a given input type. For example, accumulat-
ing vectors from a DenseVector input iterator requires
three native input buffers: one buffer to store the val-
ues of each vector, one buffer to store the length of
each vector, and one buffer to store the offset of each
vector in the values buffer.

3. JVM Input Buffers: These are small JVM objects that
contain the logic to serialize items from an input iter-
ator into backing Native Input Buffers. Sometimes it
is necessary to store small temporary buffers in JVM
Input Buffers. An actively buffering JVM Input Buffer
is always backed by a Native Input Buffer in which it
stores the accumulated and serialized input items.

4. Native Output Buffers: Page-locked host buffers that
SWAT Bridge transfers the outputs of an OpenCL ker-
nel into, asynchronously.

5. JVM Output Buffers: JVM objects backed by Native
Output Buffers that expose an iterator interface which
CLProcessor can use to deserialize and fetch output
elements from Native Output Buffers.

Only one JVM input buffer and JVM output buffer are
created by CLProcessor. Multiple native input and output
buffers are created, but are limited to a fixed number to pre-
vent out-of-memory errors caused by excessive native buffer
allocation. Only a single JVM input or output buffer is nec-
essary as different native buffers can be swapped in and out
as the storage backing the JVM buffers’ interfaces.

The CLProcessor uses two JVM threads: a dedicated
reader thread and the main Spark thread. A reader thread
is spawned by the main Spark thread when the SWAT RDD
compute method is called. The reader thread retrieves an
iterator for a given input partition. The reader thread is
responsible for accumulating items from the input iterator,
through the JVM Input Buffer, and into a Native Input
Buffer. It then initiates the asynchronous input copies to
the accelerator from the Native Input Buffer and launches
an asynchronous kernel to process them, using the SWAT
Bridge. Illustrative pseudocode for the reader thread is
listed in Algorithm 1.

1
2
3

currentInputSeqNo = 0
lastSequenceNo = -1
done = false

4 jvmInputBuf = createJVMInputBuffer()
5 jvmInputBuf.setNativeInputBuf(fetchNativeInputBuffer())
6
7 while not done do
8 jvmInputBuf.accumulate(inputlter)
9
10 nextNativelnputBuf = fetchNativeInputBuffer()
11 jvmInputBuf.transferOverflowTo(nextNativeInputBuf)
12 jvmInputBuf.nativeInputBuf.copyToAccelerator()
13
14 currNativeOutputBuf = fetchNativeOutputBuffer()
15 bridge.setupOutputBuffers(currNativeOutputBuf)
16
17 kernelSequenceNo = currentInputSeqNo++
18 done = bridge.run(kernelSequenceNo)
19 if done then
20 ‘ lastSequenceNo = kernelSequenceNo
21 end
22 end

Algorithm 1: Pseudocode for SWAT Core reader thread.

The main Spark thread for the current partition first re-

@)

trieves an output iterator from the SWAT RDD object’s
compute method and then repeatedly calls that iterator’s
hasNext and next methods to retrieve output items for the
current partition, until hasNext returns false. hasNext checks
that there are no remaining output items by verifying that
the input iterator is finished, there are no pending OpenCL
kernels, and that there are no pending output items left in
any Native Output Buffers. next, on the other hand, either
immediately returns an output item from a currently active
Native Output Buffer or loads a new Native Output Buffer
by waiting for the appropriate kernel launch to finish, based

n a kernel sequence number. Illustrative pseudocode for

the output iterator logic is listed in Algorithm 2.

1

currentOutputSeqNo = 0

2 jvmOutputBuffer = 0

3

4 Procedure next

5 if jumOutputBuffer == () then

6 currNativeOutputBuffer =

7 bridge.waitForFinishedKernel(

8 currentOutputSeqNo)

9 currentOutputSeqNo++

10 jvmOutputBuffer.fillFrom(currNativeOutputBuffer)
11 end

12 return jumQutputBuffer.next

13

14 Procedure hasNext

15 return lastSequenceNo == -1 or

16 currentOutputSeqNo <= lastSequenceNo or
17 juvmOutputBuffer.hasNext;

Algorithm 2: Pseudocode for the SWAT Output Iterator.



Dataset Size # Items Scala Type

Hyperlink | 16 GB | 1,289,970K (Int, Int)
Census 14 GB 49,166K DenseVector

ImageNet | 1.3 GB 40,646K (Int, DenseVector)

Table 2: Characteristics of each dataset.

4. EXPERIMENTAL EVALUATION

In this section we evaluate the performance gains and
losses made using the SWAT framework. We start by con-
sidering its overall performance and scalability relative to
Spark. We then look at task-level acceleration, i.e. how
much faster the processing of a single RDD partition is in
SWAT relative to Spark. Afterwards, we start looking at
the underlying characteristics of selected applications run-
ning on SWAT to explain the higher level characteristics.

4.1 Experimental Setup

All benchmarks and metrics are evaluated on a hardware
platform containing a 12-core 2.80GHz Intel X5660 CPU
with 48GB of system RAM and two NVIDIA M2050 GPUs
each with 2.5GB of device memory in each node. Nodes
in this platform are connected by QDR Infiniband. Our
experiments are limited to a maximum of nine nodes (one
master, eight workers) by hardware availability. All experi-
ments were run with 12 Spark executor threads in each node.
The softwate platform consists of JDK 1.7.0_80, Scala 2.11.5,
Spark 1.2.0, HDFS 2.5.2, and ICC 15.0.2. For the overall and
task-level performance results, each benchmark was tested
ten times at each node count. For the more detailed perfor-
mance analysis, median runs were selected for study.

We use six benchmarks to evaluate SWAT:

1. PageRank: A graph algorithm that ranks nodes in the
graph based on the nodes that link to them.

2. Connected: Connected components graph algorithm.
3. NN: A simple neural net implementation.

4. Fuzzy: A probabilistic clustering algorithm.

5. KMeans: An iterative clustering algorithm.

6. Genetic: A genetic, evolutionary algorithm. In this
case, we use a genetic algorithm to find cluster cen-
troids.

When writing these benchmarks for Spark, we chose to
cache in-memory any RDD that was read more than once.
We did this to keep the performance comparison fair, and
believe it to be a reasonable choice. For example, the input
points for the KMeans clustering algorithm are read on each
iteration of the algorithm and so we mark them as cached.
All applications were implemented using Spark’s Scala API.

For these six benchmarks, we evaluate on three datasets.
For PageRank and Connected we use the Hyperlink Graph
available from the Web Data Commons [18]. For Fuzzy,
KMeans, and Genetic we evaluate on the Census dataset
available from the UCI Machine Learning Repository [6].
For NN we evaluate on a subset of the images in the Im-
ageNet dataset [9]. The size of each dataset is listed in
Table 2.
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Figure 4: Overall speedup of each benchmark run-
ning on 1 master node and N worker nodes, for N
= 2, 4, and 8.

4.2 Overall Speedup and Scalability

Figure 4 shows the overall speedup SWAT achieved rel-
ative to Spark on 2, 4, and 8 worker nodes. There are
two clear categories of benchmarks: while Genetic, KMeans,
Fuzzy, and NN all show speedups between 2x and 3.5X,
PageRank and Connected either show no change, or slight
slowdowns. We explain this through the characteristics of
the applications: speedups are achieved when non-trivial
computation is present in the application logic being accel-
erated by GPUs. For applications that are I/O bound on
disk or network bandwidth and have small computational
kernels, SWAT demonstrates no improvement. We support
these claims in Sections 4.4, 4.5, and 4.6.

Figure 5 shows the scalability of each benchmark running
on both Spark and SWAT when moving from two to eight
executor nodes. Linear scalability would be denoted by a 4 x
speedup on the y-axis. At the scale of only eight executor
nodes, it is difficult to make conclusions about the scala-
bility of either framework. In general, neither consistently
achieves linear scalability. However, these applications are
not perfectly parallel and have collect or reduction stages
which would make perfect scalability unlikely. Evaluating
the scalability of the Spark framework is beyond the scope
of this paper, but we observe no trends indicating a loss of
scalability with SWAT.

We note that in Figure 5, the two applications with the
worst scalability (PageRank and Connected) also demon-
strated the lowest speedups in Figure 4. This poor scalabil-
ity is caused by the same network and I/O bottlenecks that
caused poor speedups when comparing SWAT to Spark.

4.3 Task-Level Speedup

Stepping down in the granularity of work being measured,
recall that Section 2.1 defined a Spark task as the process-
ing of a single RDD partition by a single transformation.
When accelerated by SWAT, this includes all accelerator
communication and computation. Figure 6 shows the aver-
age speedup for all different types of tasks in each bench-
mark. For most benchmarks, the task-level speedups are
similar to the overall speedups. The primary outlier is NN:
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Figure 5: Speedup for each benchmark from two to
eight nodes, using Spark or SWAT. This illustrates
the scalability of each platform.

Some of its tasks show between 5 and 9x speedup, despite
only achieving ~2x speedup overall. Further investigation
showed that the longest transformation of the NN bench-
mark consumes 26% of overall job time. Tasks in this stage
only achieved a speedup of 1.11x when using the GPU, lim-
iting the speedup achievable by Amdahl’s Law. While each
task consumed on average 48 seconds, only ~1 second of each
task was spent using the SWAT runtime. The remainder is
spent fetching shuffle outputs at the start of each task.

4.4 SWAT Execution Timelines

Stepping down another level of granularity, we select five
threads from a node running the PageRank and Genetic
benchmarks and visualize their behavior using a custom
SWAT profiling tool. We use these two benchmarks to study
more fine-grain characteristics of the SWAT framework, as
they are representative of the workloads that perform well
or poorly on SWAT. We categorize the work performed in
SWAT into three categories:

1. Input I/O, which includes deserialization and disk I/O.

2. OpenCL operations, which includes both data commu-
nication with and execution on the OpenCL device.
Section 4.5 will dive deeper into the time spent in spe-
cific OpenCL operations, such as communication and
execution.

3. Output I/O, which includes serialization and disk I/0O.

Figure 7 shows the execution timeline for the PageRank
benchmark, and Figure 8 shows it for the Genetic bench-
mark. Clearly, PageRank is dominated by input and output
1/0 while Genetic is dominated by computation. Combining
these observations with Amdahl’s Law explains the higher
overall speedups achieved for the Genetic benchmark com-
pared to the PageRank benchmark.

4.5 OpenCL Profiling

Finally, getting to the lowest work granularity, we use
OpenCL event profiling [15] to analyze the time spent in

Task Speedup

>>>
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Connected
NN

Fuzzy
KMeans
Genetic

Benchmark

Figure 6: The task-level speedup averaged within
each stage of each benchmark that is accelerated by
SWAT. For example, KMeans runs two stages on
the GPU and so we show two data points, each of
which is the average speedup for all tasks in those

stages.
W
I |

Figure 7: PageRank execution timeline. Light gray
indicates input I/0, dark gray indicates OpenCL op-
erations, and black indicates output I/O. No dark
gray is visible at this time scale as little computa-
tion is performed in PageRank.
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Figure 8: Genetic execution timeline. Light gray in-
dicates input I/0O, dark gray indicates OpenCL op-
erations, and black indicates output I/0. Note that
this figure is dominated by dark gray, indicating a
large amount of time in OpenCL operations.



OpenCL operations (the dark gray bars in Figures 7 and 8).
We subdivide OpenCL operations into data communication
to the accelerator, computation on the accelerator, and data
communication from the accelerator. OpenCL event profil-
ing allows us to further split the time spent in each of these
operations into:

1. Queued time: Time an operation spends in an OpenCL
command queue on the host.

2. Submitted time: Time an operation spends submitted
to the device driver, pending execution.

3. Run time: Time an operation spends running on the
device.

Figure 9 plots the OpenCL profiling info for each bench-
mark. Each vertical bar represents the total time spent in a
single node during a single job writing to the device, com-
puting on the device, and reading from the device. Each of
those operations is then subdivided into time those opera-
tions spend queued, submitted, and running. We can draw
several conclusions from this plot.

PageRank spends much more time communicating to and
from the device than actually running on it. The large
amount of time the Write and Read portions spend in the
Submitted state suggest high contention for the PCle bus,
forcing copies to wait before being able to execute. However,
little time is spent in the Submitted stage for the Compute
portion of PageRank, indicating that the device is poorly
utilized and generally available.

Genetic, on the other hand, demonstrates long Submit-
ted periods for all portions of the job: Write, Compute, and
Read. This suggests high contention for both the GPUs and
PCIe bus being shared by multiple JVM threads. While
the different scales for the left and right y-axes make it diffi-
cult to see, we also observe that Genetic spends significantly
more time in the Run stage of the Compute portion, relative
to PageRank: 483,677.065 ns for Genetic versus 1,492.259 ns
for PageRank.

4.6 Hardware Utilization

In addition to studying the performance of our application
in terms of time-to-complete certain software operations, we
also study how hardware utilization differs between Spark
and SWAT. In particular, we look at CPU utilization and
system memory utilization.

Figure 10 shows the change in CPU and memory utiliza-
tion for the PageRank benchmark. Figure 11 shows the same
information for the Genetic benchmark. Table 3 lists peak
utilization information for all benchmarks.

We observe that the results in Figure 10 and Table 3 sup-
port the conclusion that PageRank is not a compute-bound
benchmark, only achieving a peak CPU utilization of 55%
when running on Spark. Similarly, Figure 11 and Table 3
show that Genetic is compute-bound, achieving a peak CPU
utilization of 90% when running on Spark.

Performing a comparative study between Spark and SWAT,
we note that CPU utilization drops by an average of 31%
across all benchmarks when using SWAT), but system mem-
ory utilization increases by an average of 25%. Both of these
results are expected. It is natural for the host utilization to
drop if the main compute workload is now offloaded to an
accelerator. We also expect system memory utilization to
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Figure 9: OpenCL event profiling information for
PageRank and Genetic. Each vertical bar repre-
sents the total read, compute, or write time for a
single benchmark. Each vertical bar is broken up
into queued, submitted, and run times for that op-
eration. PageRank is plotted against the left y-axis,
Genetic is plotted against the right y-axis.

increase as SWAT allocates extra management data struc-
tures and host buffers for input and output accumulation.

Note that while there is an increase in system memory
utilization with SWAT, the memory controls implemented
as part of the SWAT Core are effective in keeping system
memory utilization stable throughout the job: it does not
oscillate or monotonically increase. In fact, it closely resem-
bles the behavior of Spark’s memory utilization, albeit with
a constant factor added on top.

S. DISCUSSION AND CONCLUSIONS

In this work, we present work on an accelerated data an-
alytics platform called SWAT that combines the distributed
execution and high-level programming model of Apache Spark
with the computational bandwidth of GPUs. Our approach
uses code generation, an asynchronous & event driven run-
time, dynamic GPU memory allocation inside & outside ker-
nels, and a careful approach to resource management. Our
performance evaluation in Section 4 shows that for compute-
bound applications, our SWAT implementation achieves up
to a 3.24x performance improvement, with no negative ef-
fects on scalability.

Some of the constraints we placed on this problem were
important in shaping the solution. First, we wanted com-
patability with an existing and accepted framework out-of-
the-box. That meant minimizing code change for existing
applications and no access to framework-internal state. No
existing work fulfills these constraints to our knowledge. Sec-
ond, we wanted a minimalistic API that abstracted out all
low-level details, leaving the runtime with more freedom to
optimize. With a single method in our API and no custom
data structures required, we satisfy this goal well. Third,
we wanted to support the development of novel software ap-
plications and algorithms, requiring a code generation ap-
proach rather than the library-based approach that most
related works have taken [8][14][17]. We see SWAT and



Benchmark Peak CPU Utilization Peak System Mem Utilization
Spark | SWAT | % Change | Spark | SWAT % Change
PageRank 55% 50% -9% 38% 49% +27% (+12.96 GB)
Connected 28% 36% -22% 81% 91% +12% (+5.76 GB)
NN 89% 66% -26% 7% 85% +10% (+4.8 GB)
Fuzzy 92% 52% -43% 30% 42% +43% (4+20.64 GB)
KMeans 85% 45% -47% 37% 47% +30% (+14.4 GB)
Genetic 90% 53% -41% 3% 47% +29% (+13.92 GB)
Average -31% +25% (+12.00 GB)

Table 3: Resource Utilization summary across all benchmarks
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Figure 10: Host processor and memory utilization
of the PageRank benchmark running on Spark and
SWAT.
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Figure 11: Host processor and memory utilization
of the Genetic benchmark running on Spark and
SWAT.

frameworks like it enabling domain experts to quickly de-
velop novel and well-performing applications.

In our implementation, we emphasize tight resource man-
agement and minimize dynamic allocations by the frame-
work on both the host and device to ensure that our frame-
work is stable for long-running applications.

We also identify three hardware trends relevant to this
work.

First, we see more accelerators packed into single nodes
and the ratio of CPU cores to accelerators decreasing. With
fewer threads sharing each accelerator, the device contention
observed in Section 4.5 becomes less of a performance bot-
tleneck.

Second, we also see higher performance interconnects be-
tween host and device, either in the form of higher band-
width and lower latency buses (e.g. NVLink [19]) or system-
on-a-chip solutions where the host and device physically
share memory, like an AMD APU [3]. In more tightly cou-
pled systems the data communication overheads for all het-
erogeneous applications are reduced, and we will see an in-
crease in the domain of applications that can achieve per-
formance improvement with SWAT. It is important to note
that GPUs are not exclusively useful for compute-bound ap-
plications: in general, they also offer more memory band-
with than CPUs. The challenge today is that bandwidth-
bound applications generally operate on large amounts of
data, which must be transferred across a PCle bus for the
GPU to operate on. This leads to large communication over-
heads and nullifies any memory bandwidth benefits. Tightly
coupled host-device systems reduce this problem.

Third, we see more researchers considering pairing power-
efficient, lightweight host processors (e.g. Intel Atom, ARM)
with GPUs to achieve high performance at low energy costs.
In Section 4.6 we observed that using SWAT reduced CPU
utilization by, on average, 31%. Most of our applications
running on SWAT were only using ~50% of the available
CPU cycles. It is possible that running this framework on
a platform with lightweight CPU cores instead would yield
energy gains without any loss in performance.

We plan to extend this work in a number of ways. We will
investigate load-balancing across the JVM and GPUs. As
we mentioned above, many of our SWAT applications show
~50% CPU utilization. It may be possible to do useful work
in the JVM in parallel with GPU computation during those
spare cycles.

We also will explore automatic device selection. In such a
system, the framework would be responsible for determining
that the JVM was the better execution platform for applica-
tions like PageRank and Connected, while the GPU should
be used for NN, Fuzzy, KMeans, and Genetic. Past work



has explored using historical performance data combined
with current device load to do online prediction of task per-
formance in Hadoop [11]. More recent work has looked at
estimating task performance offline based on static kernel
features using an SVM [2]. We plan to combine the lessons
learned from these works to perform more accurate perfor-
mance prediction for Spark tasks.

As a stress test for the SWAT runtime and API, ongoing
work also focuses on porting an existing large-scale appli-
cation, CS-BWAMEM [26], to use SWAT. We will continue
to improve the performance, stability, and flexiblity of the
open source release.

SWAT combines the strengths of Spark and GPUs into a
unified and programmable framework. There are many ex-
citing future directions for this work, and we see its design
and performance characteristics as being complemented by
ongoing and future hardware trends. We also believe SWAT
to be the first ADA constructed on Spark to be sufficiently
flexible for real world application development. SWAT con-
tinues the recent work on accelerated data analytics plat-
forms by emphasizing compatibility, careful resource man-
agement, runtime asynchrony, and programmability.
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