
1

Static Data Race Detection for SPMD Programs
via an Extended Polyhedral Representation

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar

Habanero Extreme Scale Software Research Group
Department of Computer Science

Rice University

6th International Workshop on Polyhedral Compilation Techniques (IMPACT’16)

January 19, 2016

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

2

Introduction

Introduction

Moving towards homogeneous and heterogeneous many-core processors

100’s of cores per chip
Performance driven by parallelism
Constrained by energy and data movement

Need for improved productivity and scalability in parallel programming models

Most successful model - Single Program Multiple Data (SPMD)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

3

Introduction

Introduction - SPMD

Basic idea:

All logical processors (worker threads) execute the same program, with sequential
code executed redundantly and parallel code (worksharing constructs, barriers, etc.)
executed cooperatively

Exemplified by many popular parallel execution models

OpenMP for multicore systems
CUDA and OpenCL for accelerator systems
MPI for distributed systems

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

4

Introduction

Introduction - Data races

Data races are a pernicious source of bugs in SPMD model (Shared memory)

Definition:

In general, a data race occurs when two or more threads perform a conflicting
accesses (at least one access being write) to a shared variable without any
synchronization among threads.

Occurs only in few of the possible schedules of a parallel program

Extremely hard to reproduce and debug!

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

5

Introduction

Motivation and Our Approach

Motivation

Popular use of high-level constructs and directives for expressing parallelism in source
programs than low level constructs.

Our approach

Automatically detect data races in SPMD programs at compile time

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

6

Introduction

SPMD Parallelism using OpenMP

Currently, we support following constructs in SPMD model

OpenMP parallel construct
Creation of worker threads to execute an SPMD parallel region

OpenMP barrier construct
Barrier operation among all threads in the current parallel region
Currently, we consider textually aligned barriers in SPMD region

OpenMP for construct
Immediately following loop can be parallelized
Executed in a work-sharing mode by all the threads in the SPMD

Schedule(static): Iterations are statically mapped to threads
Schedule(dynamic): Iterations are dynamically mapped to threads.

nowait clause disables implicit barrier at end of the loop

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

7

Introduction

Motivating example 1 - Any data race ??

SPMD kernel with worksharing constructs

1 // t i d − Thread i d
2 // T − Tota l number o f t h r e a d s
3 #pragma omp p a r a l l e l s ha r ed (A) {
4 #pragma omp f o r schedule (dynamic , 1) nowait

5 f o r (i n t i = 0 ; i < N ; i++) {
6 A [i] = . . . // S1
7 }

9 #pragma omp f o r schedule (dynamic , 1)
10 f o r (i n t j = 0 ; j < N ; j++) {
11 . . . = A [j] // S2
12 }
13 }

N = 3, T = 3

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

8

Introduction

Motivating example 1 - Race b/w S1 and S2

SPMD kernel with worksharing constructs

1 // t i d − Thread i d
2 // T − Tota l number o f t h r e a d s
3 #pragma omp p a r a l l e l s ha r ed (A) {
4 #pragma omp f o r schedule (dynamic , 1) nowait

5 f o r (i n t i = 0 ; i < N ; i++) {
6 A [i] = . . . // S1
7 }

9 #pragma omp f o r schedule (dynamic , 1)
10 f o r (i n t j = 0 ; j < N ; j++) {
11 . . . = A [j] // S2
12 }
13 }

Race between read of A[i] in S1 (i = 1) and write to A[i]
in S2 (i = 1)

N = 3, T = 3

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

9

Introduction

Motivating example 2 - Any data race ??

SPMD kernel with barriers

1 // t i d − Thread i d
2 // T − Tota l number o f t h r e a d s
3 #pragma omp p a r a l l e l s ha r ed (A) {
4 f o r (i n t i = 0 ; i < N ; i++) {
5 f o r (i n t j = 0 ; j < N ; j++) {
6 i n t temp = A [tid + i + j] ; //S1
7 #pragma omp barrier

8 A [tid] += temp ; //S2
9 }

10 }
11 }

T = 2

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

10

Introduction

Motivating example 2 - Race b/w S1 and S2

SPMD kernel with barriers

1 // t i d − Thread i d
2 // T − Tota l number o f t h r e a d s
3 #pragma omp p a r a l l e l s ha r ed (A) {
4 f o r (i n t i = 0 ; i < N ; i++) {
5 f o r (i n t j = 0 ; j < N ; j++) {
6 i n t temp = A [tid + i + j] ; //S1
7 #pragma omp barrier

8 A [tid] += temp ; //S2
9 }

10 }
11 }

Race between read of A[tid+ i + j] in S1 (tid = 0, i = 0,
j = 1) and write of A[tid] in S2 (tid = 1, i = 0, j = 0)

T = 2
Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

11

Introduction

Our Contributions

Extensions to the polyhedral model for SPMD programs

Formalization of May Happen in Parallel (MHP) relations in the extended model

An approach for static data race detection in SPMD programs

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

12

Background

1 Introduction

2 Background

3 Our approach (PolyOMP)

4 Related Work

5 Conclusions and Future work

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

13

Background

May Happen in Parallel relation

May Happen in Parallel relation

Specification of partial order among
dynamic statement instances
MHP(S1, S2) = true ↔ S1 happens in
parallel with S2, where S1 and S2 are
statement instances.

MHP(S1 (i = 1), S2(i = 1)) = true

MHP(S1 (tid=0, i=0, j=1), S2(tid=1,i=0,
j=0)) = true

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

14

Background

Z3 solver (Microsoft Research)

SMT solver to check the satisfiability of logical formuale

Output: sat/ un-sat/un-decidable

If the logical formula is satisfiable from the solver, then there exists an assignment
that marks logical formula as true

Support for uninterpreted functions, non-linear arithmetic, divisions, quantifiers
etc.

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

15

Background

Polyhedral Compilation Techniques

Compiler techniques for analysis and transformation of codes with nested loops

Algebraic framework for affine program optimizations

Advantages over AST based frameworks

Reasoning at statement instance level
Unifies many complex loop transformations

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

16

Background

Polyhedral Representation (SCoP)

A statement (S) in the program is represented as follows in Static Control Part
(SCoP):

1) Iteration domain (DS)
Set of statement (S) instances

2) Scattering function (space-time mapping)
Space mapping: Allocation

Assigns logical thread ids to the statement instances (S)

Time mapping: Schedule (ΘS)
Assigns logical time stamps to the statement instances (S)
Gives ordering information b/w statement instances
Captures sequential execution order of a program
Statement instances are executed in increasing order of schedules

3) Access function (AS)
Array subscripts in the statement (S)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

17

Background

Can space-time mapping capture orderings in SPMD programs ?

Major difference between Sequential and Parallel programs

Sequential programs - total execution order
Parallel programs - partial execution order

Can Space-Time mapping (scattering function) capture all possible orderings in a
given SPMD program?

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

18

Background

Can space-time mapping capture orderings in SPMD programs ?

Consider the following simpler example with a barrier

1 // t i d − t h r e ad i d
2 // T − t o t a l number o f t h r e a d s
3 #pragma omp parallel

4 {
5 S1 ;
6 S2 ;
7 #pragma omp barrier

8 S3 ;
9 }

space-time mapping:
S1: (tid, 0)
S2: (tid, 1)
S3: (tid, 2)

Does this scattering function capture all possible orderings ??

Captures ordering within a thread

But, It doesn’t capture ordering across threads (E.g: Barriers)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

18

Background

Can space-time mapping capture orderings in SPMD programs ?

Consider the following simpler example with a barrier

1 // t i d − t h r e ad i d
2 // T − t o t a l number o f t h r e a d s
3 #pragma omp parallel

4 {
5 S1 ;
6 S2 ;
7 #pragma omp barrier

8 S3 ;
9 }

space-time mapping:
S1: (tid, 0)
S2: (tid, 1)
S3: (tid, 2)

Does this scattering function capture all possible orderings ??

Captures ordering within a thread

But, It doesn’t capture ordering across threads (E.g: Barriers)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

19

Background

Polyhedral Compilation Techniques - Summary

Advantages

Precise data dependency computation
Unified formulation of complex set of loop transformations

Limitations
Affine array subscripts

But, conservative approaches exist !

Static affine control flow

Control dependences are modeled in same way as data dependences.

Assumes input is sequential program

Unaware of all possible orderings in input parallel program

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

20

Our approach (PolyOMP)

1 Introduction

2 Background

3 Our approach (PolyOMP)

4 Related Work

5 Conclusions and Future work

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

21

Our approach (PolyOMP)

Intuition behind Data race detection algorithm

In order to check for race at static time b/w stmt instances S and T,
Generate race condition between S and T as follows

S and T may touch same memory location, at least one of which is write

S and T may happen in parallel

Forward the race condition to Z3 SMT solver

If the race condition is unsatisfiable, then there is NO race (Assuming no-aliasing)
If the race condition is satisfiable, then there MAY be a race

If there are no conservative estimations used during representation, then it is a
PRECISE race.

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

22

Our approach (PolyOMP)

Our workflow

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

23

Our approach (PolyOMP)

Extended Polyhedral Representation

Introduced Phase mapping to the scattering function (Space-Time mapping)

Phase mapping:

Motivation: SPMD program execution can be partitioned into a sequence of phases
separated by barriers.

Assigns a logical identifier, that we refer to as a phase stamp, to each statement
instance. (Can be multi-dimensional like schedules)

Statement instances are executed according to increasing lexicographic order of their
phase-stamps

Now, Scattering function = Space-Phase-Time mapping

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

24

Our approach (PolyOMP)

Reachable barriers of stmt instance S?

Defn: Reachable barriers of a stmt instance S

Set of barrier instances that may be executed after S without an intervening barrier.
(Similar to reachable definitions)

SPMD kernel with barriers

1 // t i d − Thread i d
2 // T − Tota l number o f t h r e a d s
3 #pragma omp p a r a l l e l s ha r ed (A) {
4 f o r (i n t i = 0 ; i < N ; i++) {
5 f o r (i n t j = 0 ; j < N ; j++) {
6 i n t temp = A [tid + i + j] ; //S1
7 #pragma omp barrier // B
8 A [tid] += temp ; //S2
9 }

10 }
11 }

Reachable barriers of S1 (i, j):
- B(i, j)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

25

Our approach (PolyOMP)

Reachable barriers of stmt instance S?

Defn: Reachable barriers of a stmt instance S

Set of barrier instances that may be executed after S without an intervening barrier.
(Similar to reachable definitions)

SPMD kernel with barriers

1 // t i d − Thread i d
2 // T − Tota l number o f t h r e a d s
3 #pragma omp p a r a l l e l s ha r ed (A) {
4 f o r (i n t i = 0 ; i < N ; i++) {
5 f o r (i n t j = 0 ; j < N ; j++) {
6 i n t temp = A [tid + i + j] ; //S1
7 #pragma omp barrier // B
8 A [tid] += temp ; //S2
9 }

10 }
11 }

Reachable barriers of S2 (i, j):
- B(i, j+1) if j < N-1
- B(i+1, 0) if j = N-1

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

26

Our approach (PolyOMP)

How to compute Phase mapping of S?

How to compute Phase mapping of S ?

Treat barriers also as regular statement
Compute 2d+1 regular schedules for all statements
Phase mapping of S = OR of time-mappings of barriers in Reachable barriers of S

SPMD kernel with barriers

1 // t i d − Thread i d
2 // T − Tota l number o f t h r e a d s
3 #pragma omp p a r a l l e l s ha r ed (A) {
4 f o r (i n t i = 0 ; i < N ; i++) {
5 f o r (i n t j = 0 ; j < N ; j++) {
6 i n t temp = A [tid + i + j] ; //S1
7 #pragma omp barrier // B
8 A [tid] += temp ; //S2
9 }

10 }
11 }

Reachable barriers of S1 (i, j):
- B(i, j)
Time mapping of B(i, j):
- (i, j, 1)
Phase mapping of S1 (i, j) :
- (i, j, 1)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

27

Our approach (PolyOMP)

How to compute Phase mapping of S?

How to compute Phase mapping of S ?

Treat barriers also as regular statement
Compute 2d+1 regular schedules for all statements
Phase mapping of S = OR of time-mappings of barriers in Reachable barriers of S

SPMD kernel with barriers

1 // t i d − Thread i d
2 // T − Tota l number o f t h r e a d s
3 #pragma omp p a r a l l e l s ha r ed (A) {
4 f o r (i n t i = 0 ; i < N ; i++) {
5 f o r (i n t j = 0 ; j < N ; j++) {
6 i n t temp = A [tid + i + j] ; //S1
7 #pragma omp barrier // B
8 A [tid] += temp ; //S2
9 }

10 }
11 }

Reachable barriers of S2 (i, j):
- B(i, j+1) if j < N-1
- B(i+1, 0) if j = N-1
Time mapping of B(i, j):
- (i, j, 1)
Phase mapping of S2 (i, j) :
- (i, j+1, 1)
- (i+1, 0, 1)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

28

Our approach (PolyOMP)

How to compute May Happen in Parallel (MHP) relations?

In general, two stmt instances S and T in a parallel region can be run in parallel if
and only if both of them are in same phase of computation (not ordered by
synchronization) and are executed by different threads in the region.

MHP(S, T) is true iff

Executed by different threads, Space(S) != Space(T)
And Same execution phase, Phase(S) = Phase(T)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

29

Our approach (PolyOMP)

Race detection: Step - 1 : Generated race condition

1 // t i d − Thread id , T − Tota l number o f t h r e a d s
2 #pragma omp p a r a l l e l s ha r ed (A) {
3 f o r (i n t i = 0 ; i < N ; i++) {
4 f o r (i n t j = 0 ; j < N ; j++) {
5 i n t temp = A [tid + i + j] ; //S1
6 #pragma omp barrier

7 A [tid] += temp ; //S2
8 }
9 }

10 }

Race condition b/w S1(tidS1, i, j) and S2(tidS2, i
′, j′):

Same access:(0 ≤ i , j < N) ∧ (0 ≤ i ′, j ′ < N) ∧ (tidS1 + i + j = tidS2)

Different threads: ∧ (tidS1 , tidS2)

Same phase: ∧ ((i = i ′ + 1 ∧ j = 0 ∧ j ′ = N − 1) ∨ (i = i ′ ∧ j = j ′ + 1 ∧ j ′ < N − 1))

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

30

Our approach (PolyOMP)

Race detection: Step - 2 : Z3 solver

1 // t i d − Thread i d
2 // T − Tota l number o f t h r e a d s
3 #pragma omp p a r a l l e l s ha r ed (A) {
4 f o r (i n t i = 0 ; i < N ; i++) {
5 f o r (i n t j = 0 ; j < N ; j++) {
6 i n t temp = A [tid + i + j] ; //S1
7 #pragma omp barrier

8 A [tid] += temp ; //S2
9 }

10 }
11 }

Satisfiable assignment from Z3 solver:

S1(tidS1 = 0, i = 0, j=1)

S2(tidS2 = 1, i = 0, j=0)

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

31

Our approach (PolyOMP)

Assumptions/ Limitations

We currently support textually aligned barriers

Hard to identify which barriers (unaligned) form a synchronization point

We assume no aliasing on variables

Can be supported with aliasing analysis done before race analysis

Generated race conditions are decidable.

This is true in case of basic constructs such as worksharing and barriers.

Support for only dynamic schedule in the worksharing construct

Static schedule with variable chunk size introduces non-affine terms.

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

32

Related Work

1 Introduction

2 Background

3 Our approach (PolyOMP)

4 Related Work

5 Conclusions and Future work

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

33

Related Work

Related work

Supported Constructs Approach Guarantees False +Ves False -Ves

Pathg
(Yu et.al)
LCTES’12

OpenMP worksharing loops,
Barriers, Atomic

Thread
automata

Per number
of threads

Yes No

OAT
(Ma et.al)
ICPP’13

OpenMP worksharing loops,
Barriers, locks,
Atomic, single, master

Symbolic
execution

Per number
of threads

Yes No

ompVerify
(Basupalli et.al)

IWOMP’11
OpenMP ‘parallel for’

Polyhedral
(Dependence
analysis)

Per ‘parallel for’
loop

No - (Affine subscripts) No - (Affine subscripts)

polyX10
(Yuki et.al)
PPoPP’13

X10 Async/ finish
Polyhedral

(HB relations)
Per a captured

SCoP
No - (Affine subscripts) No - (Affine subscripts)

PolyOMP
(Chatarasi et.al)

IMPACT’16

OpenMP worksharing loops,
Barriers, Single, master

Polyhedral
(MHP relations)

Per SPMD region
No - (Affine subscripts)

Yes - (Non affine)
No

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

34

Conclusions and Future work

1 Introduction

2 Background

3 Our approach (PolyOMP)

4 Related Work

5 Conclusions and Future work

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

35

Conclusions and Future work

PolyOMP - Conclusions and Future work

Conclusions:

Extensions to the polyhedral model for SPMD programs
Formalization of May Happen in Parallel (MHP) relations in the extended model
An approach for static data race detection in SPMD programs

Future work:

Support for textually unaligned barriers
Extend the analysis for more constructs such as doacross etc.
Transformations of SPMD regions such as SPMD fusion

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

36

Conclusions and Future work

Finally,

Representing explicitly parallel programs in polyhedral model is a new direction for
both analysis and transformations of parallel programs!

Acknowledgments

IMPACT 2016 Program Committee
Rice Habanero Extreme Scale Software Research Group

Thank you!

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

37

Conclusions and Future work

Related work

Extensive body of literature on identifying races in explicitly parallel programs

Symbolic approaches in the analysis of OpenMP programs
Consistency checking using thread automata [Yu et.al LCTES’12]

Support for guided witness search to show inconsistency
Guaranteed only for fixed number of threads

Analysis of concurrency errors [Ma et.al ICPP’13]

Support for guided witness search to show inconsistency
Guaranteed only for fixed number of threads

We extend the polyhedral framework to generate constraints that can be applicable
to any variable number of worker threads

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

38

Conclusions and Future work

Related work (contd)

Polyhedral approaches
Polyhedral optimizations of explicitly parallel programs [Chatarasi et.al PACT’15]

Analyze and Optimize parallel loops, task constructs in OpenMP
Supports only parallel constructs satisfying serial-elision property

Polyhedral approaches for OpenMP race detection [Basupalli et.al IWOMP’11]

Converts C-Programs into standard polyhedral representation
Supports only omp parallel for

Polyhedral approaches for X10 race detection [Yuki et.al PPoPP’13]

HB relation are analyzed and data-flow is computed and data-flow is computed based
on partial order imposed by HB relation.
This data-flow is used to certify determinacy.
Supports only async and finish constructs

Our approach is applicable to parallel SPMD programs in general

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar Static Data Race Detection for SPMD Programs

