


ABSTRACT

Optimized Event-Driven Runtime Systems for Programmability and Performance

by

Sağnak Taşırlar

Modern parallel programming models perform their best under the particular

patterns they are tuned to express and execute, such as OpenMP for fork/join and

Cilk for divide-and-conquer patterns. In cases where the model does not fit the

problem, shoehorning of the problem to the model leads to performance bottlenecks,

for example by introducing unnecessary dependences. In addition, some of these

models, like MPI, have a performance model which thinly veils a particular machine’s

parameters from the problem that is to be solved.

We postulate that an expressive parallel programming model should not over-

constrain the problem it expresses and should not require the application programmer

to code for the underlying machine and sacrifice portability. In our former work, we

proposed the Data-Driven Tasks model, which constitutes expressive and portable

parallelism by only requiring the application programmer to declare the inherent

dependences of the application. In this work, we observe another instantiation of

macro-dataflow, the Open Community Runtime (OCR) with work-stealing support

for directed-acyclic graph (DAG) parallelism.

First, we assess the benefits of these macro-dataflow models over traditional

fork/join models using work-stealing, where we match the performance of hand-tuned

parallel libraries on today architecture through DAG parallelism. Secondly, we ad-



dress work-stealing granularity optimizations for DAG parallelism to address how

work stealing can be extended to perform better under complex dependence graphs.

Lastly, we observe the impact of locality optimizations for work-stealing runtimes for

DAG-parallel applications.

On our path to exascale computations, the priority is shifting from minimizing

latency to energy saving as the current trend makes powering an exascale machine

very challenging. The trend of providing more parallelism to fit power budgets suc-

ceeds if applications can be declared to be more parallel and also scale. We argue that

macro-dataflow is a framework that allows programmers to declare unconstrained par-

allelism. We provide an underlying work-stealing runtime to execute this framework

for load balance and scalability, and propose heuristics to extend the default work-

stealing approach to better perform with DAG parallel programs. We present our re-

sults on a multi-socket many-core machine and a many-core accelerator to showcase

the feasibility of our approach on architectures signaling what future architectures

may resemble.
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1

Chapter 1

Introduction

1.1 Motivation

If Zeno of Elea were alive today, predictions on Moore’s law’s end would have made

it into his set of paradoxes. Since we can still cram more components onto integrated

circuits, and while clock frequencies have leveled off with the end of Dennard scaling,

there is now widespread adoption of parallel processors in multiple forms including:

multi-core architectures, graphics units as today’s vector machines and heterogeneous

combinations of big/small cores. This adoption is providing the proverbial oxygen to

parallel programming models in their equivalent of the Cambrian explosion. Following

the allegory, different parallel programming models fill their ecological niches.

The first niche among shared-memory parallel programming models are thread-

level models, in which the user maintains the threads of execution at a coarse gran-

ularity. Adopters of these models have to use mutexes, semaphores and the like to

declare critical regions around parts of their code that are not safe for concurrent ex-

ecution. This is hard to accomplish and error-prone; moreover, concurrency bugs are

also rather hard to debug. Additionally, the coarse granularity of these models lead

to load imbalances, and therefore under-utilization of processors. If the implementer

over-subscribes the underlying machine by declaring their parallelism at a finer grain

through more threads to resolve these imbalances, they would be penalized by the

not-so-cheap context-switching overheads.
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Another class of parallel programming models, namely data-parallel models, tar-

gets problems for which the same computation is performed on a set of data. This

class of computations is the easiest to declare, and often results in embarrassingly

parallel computations. The constructs necessary for these problems can be as sim-

ple as higher-order functions in lambda-calculus (e.g. map(forall), reduce), and

many large-scale systems have been built to perform data-parallel computations ef-

ficiently. Though these models have been quite popular, they are only applicable to

a constrained subset of problems. For problems with phases of data-parallel regions,

better performance utilization requires the use of more general programming models.

On the other hand, task parallel models are used to declare problems where the

parallelism occurs among different tasks. One can argue that the data-parallelism

model discussed above is a special case of task parallelism which uses different in-

vocations of the same task on subsets of program data. Task parallelism, however,

can enable more complicated parallel program structures to be created by indicating

which tasks can be executed in parallel with other tasks, and implicitly (or explicitly)

imposing a synchronization among these tasks. These models can build programs with

dependency graphs that are more general than the data-parallel models mentioned

above.

Distributed memory models delegate the mapping and scheduling of tasks and

data to users, for the most part. These models tend to suffer less from pitfalls of

threading, like non-determinacy, because the low-level semantics of the underlying

protocols have to be known to the programmer. Though there is a community of ninja

programmers who enjoy the control and performance they get from these models,

delegating control of scheduling and mapping to the user is inherently unscalable,

and leads to productivity and performance losses for most mainstream programmers.
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The increasing cost of cache-coherence and possibly non-uniform distance, and

therefore cost, of memory from compute increases the likelihood of future systems

not being uniform shared-memory models. However, for the sake of programmer

productivity, future machines are likely to have islands of coherence. For today’s

parallel systems, a common example of this hybrid parallelism can be found in the

use of MPI across nodes on a cluster, where a node utilizes thread-level or fork/join

parallelism like OpenMP. At the time of this work, this hybrid model is referred to

as MPI+X, where X represents a shared-memory programming model.

Dataflow models are devised for massive parallelism and the early work has been

on the hardware side. On the software end of dataflow models, we can describe this

model as data driving the computation on a task graph built by the user. For an

everyday computer user, a spreadsheet application is a good example. For practical

and historical reasons, dataflow architectures did not catch on, and exploiting the fine

granularity of a dataflow model on today’s architectures would be prohibitively ex-

pensive. A compromise is a macro-dataflow model, where dataflow graphs are build

based on tasks suitable for today’s machines, rather than on instructions. Macro-

dataflow models enable task dependences to be expressed as a general directed acyclic

graph (DAG), and are more expressive than fork/join task parallel models. Addi-

tionally, macro-dataflow models can be used to bridge between shared-memory and

distributed-memory models via a single paradigm.

A macro-dataflow parallel programming model can express arbitrary graphs of

computation, however this does not solely guarantee performance. In our former

work [3], we have shown how a macro-dataflow parallel programming model could

be implemented on a work-sharing runtime for competitive parallel performance. We

extend this work for work-stealing, as work-stealing suffers less contention compared
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to a work-sharing runtime and is therefore more scalable by design. However, work-

stealing runtimes are designed for task-parallel models with certain restrictions (e.g.,

series-parallel computation graphs) that do not necessarily apply to macro-dataflow

models.

This thesis explores the implementation of macro-dataflow models on top of work-

stealing runtimes, with extensions to obtain better performance through granularity

and locality optimizations to the underlying runtime.

1.2 Contributions

In this thesis, we

• Introduce new work-stealing runtime algorithms for macro-dataflow parallelism.

• Contribute our ideas to Habanero languages and a library implementation of a

publicly available macro-dataflow runtime: version 0.7 of the Open Community

Runtime (OCR).

• Introduce work-stealing heuristics for granularity and locality optimizations for

unrestricted DAG-parallelism

• Present results for various scheduling policies on theoretical and practical met-

rics for multiple benchmarks on multiple platforms

1.3 Organization

Chapter 2 provides the background for our work and provides the foundation for

the unaccustomed reader. Chapter 3 presents our vision to make dependence a first

order construct, how that leads to our macro-dataflow implementations. Chapter 4
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describes our approaches to further fit macro-dataflow on work-stealing runtimes.

Chapter 5 discusses locality optimizations for work-stealing macro-dataflow runtimes.

Lastly, chapter 6 concludes our work and provides future directions to our research.

1.4 Thesis Statement

Macro-dataflow parallelism and event-driven runtime systems offer programmability

and performance benefits for applications with complex dependence structures. These

runtime systems can also be extended to address new granularity and locality con-

cerns for programs with dependence structures that are more general than fork-join

parallelism.
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Chapter 2

Background

As we introduce new parallel programming models and how they compare to estab-

lished work, section 2.1 will discuss background information on parallel programming

models, in further detail than in section 1.1. We discuss series-parallel graphs and

their properties in section 2.2 because of their correspondence to nested fork/join

task parallel programming model, and then introduce futures in section 2.3, as new

variants of this construct will be introduced later in chapter 3. Finally, we summarize

the Habanero language constructs and runtime in section 2.4 to familiarize the reader

with the language and the underlying runtime that provide the foundation for this

thesis.

2.1 Parallel Programming Models

An extensive background on parallel programming models is beyond the scope of this

document, so we choose to restrict the scope only to models that are of immediate rel-

evance to our work. One might argue that these are simple, orthogonal classifications

of established work, since many models adopt multiple different aspects of parallel

programming. As all models by utility have to be Turing complete, any problem can

be expressed by all of them but in varying difficulties of expression and performance

characteristics. We will compare the choices these models make, the intent behind

them and how these affect the ease of expression and performance.
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2.1.1 Thread based parallelism

Native thread libraries (e.g. PThreads)

In order to utilize multiple execution units on a parallel architecture, these models

require the user to declare multiple threads of execution explicitly. For the sake of

simplicity, let us assume that there is a one-to-one correspondence between execution

units and threads of execution unless stated otherwise.

If these multiple threads of execution share data amongst each other, which they

do if they are not embarrassingly parallel, the user has to guarantee the safety of

accesses through language constructs like mutexes, semaphores for critical sections

and et cetera. These are common pitfalls where the user has to have mastery of

these constructs and their underlying semantics to write correct code that performs

scalably [4, 5].

Another concern is granularity, since a typical PThreads user statically partitions

the problem into equal or nearly-equal parts, assuming that perfect load balance leads

to the best performance. The first optimistic assumption here is that a reasonable

static partitioning is possible ahead of program execution; in practice, complex and

dynamic dependence patterns may make this hard to achieve. Even then, perfect load

balance may still lead to suboptimal performance due to variability in task execution

times e.g., if the computation is run on a multi-programming environment, where

a thread may lag behind, or on a machine where an execution unit may speed up

and slow down dynamically, or may contain a critical section that exhibits different

execution times depending on the (nondeterministic) ordering constraints for lock

acquisition.

However, these models are relevant to our work because we advocate the delega-
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tion of the user’s responsibility of load balance through over-subscription, dynamicity,

granularity management and proper handling of shared data across threads of exe-

cution to the runtimes of higher level programming models. Implementations of task

parallel programming models’ runtimes are themselves applications that utilize thread

level parallelism.

OpenMP [6]

provides annotations in the form of pragmas to achieve parallelism. There are prag-

mas to declare what computation can be run by which thread, divide work across

threads and what distribution to use, where critical sections are, et cetera. These

pragmas provide syntactic sugar to a thread library approach and can easily be in-

tegrated into legacy code, though with compiler support. Therefore the performance

and the expressibility concerns from PThreads remain, but with less user involvement.

As the model allows nested fork/joins operations and recently tasks, the programming

model can now be used as more than a thin wrapper for PThreads.

2.1.2 Data parallelism

When the same computation is to be applied to a set of data, we can classify this as

data parallelism. As suggested before, this kind of parallelism can be declared with

a higher-order function as in lambda-calculus’: map.

Initial work on data parallelism has been on vector machines and vectorizing com-

pilers to apply an instruction not just to a single register but to a wider size of data.

Parallelism is achieved by the computation being applied to multiple data elements

simultaneously, if they are independent from each other. This can be declared by the

user through annotations, or array languages, or by optimization through vectoriz-
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ing compilers. Vector parallelism has recently bounced back in popularity as many

vendors are increasing the width of SIMD-parallelism supported by hardware.

Within the last decade, the use of graphics units for generic computation has

gained serious traction, aptly named GPGPU. These graphics cards can also be clas-

sified as vector machines attached as accelerators to CPU host machines. These

architectures are hierarchical in nature, where the leaf level are vector units. Though

the programming models for these machines (CUDA, OpenCL) have been relaxing

the constraints for expressible programs, the nature of these models is to support

very wide data-parallelism. The user, through syntactic sugars, map subsets of data

through hierarchical decompositions of the architecture.

Another realm of data-parallelism is one level above on systems hierarchy: the

cluster. For the sake of brevity, we will try to keep discussions on distributed mem-

ory data parallelism. However, the most commonly utilized parallel programming

model is Flynn taxonomy’s SPMD, namely single program multiple data. The data

is scattered throughout explicit tuples of memory domain and execution units (e.g.

MPI ranks), where every execution unit works on its assigned data. In the business

world, the same paradigm to process big amounts of data lead to data-parallel pro-

gramming models like Map-Reduce, whose name is influenced by the higher order

functions map and reduce, that are inherent to data-parallel models.

It may be obvious to the reader that these models only solve a subset of problems

that can be expressed in a data-parallel fashion. Additionally, multiple stages of

data-parallel regions in a problem may require special attention to avoid bottlenecks

and loss of locality across parallel stages.
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2.1.3 Task parallel languages

As we hinted in section 2.1.1, task parallelism can be described as a special case of

thread-level parallelism to address its limitations.

Task parallel models introduce new constructs to control flow for explicit paral-

lelism but in a finer granularity than thread based models, hence the name ‘task’.

User declares parallel procedures and how they are synchronized, where an underly-

ing runtime handles the mapping and scheduling aspects. These address the concerns

mentioned in section 2.1.1.

Most common of these constructs are flavors of fork and join. A fork operation

creates an alternate and parallel flow of control to the context from which it is called.

In contrast, a join operation merges more than one flows of control onto one. These

constructs occur in thread based models, too but the differentiating factor is the

granularity used for best practices.

As the user delegates the mapping and scheduling of contexts enough to over-

subscribe the threads of execution, a runtime program claims this responsibility.

Runtimes have to address the problems aforementioned in section 2.1.1, mapping

tasks to threads (i.e. scheduling) for better utilization (i.e. load balance). There are

two common scheduling techniques for load balancing these dynamically unfolding

fork/join graphs.

Work-sharing is a ‘push’ model; as tasks become ready and handed to a scheduler,

they are either pushed to a shared task queue for pick up by a set of workers (like a list

scheduler) or eagerly distributed amongst workers. The former approach introduces

contention over the shared task queues and the latter does not take into account how

busy the other lists are. For example, our initial implementation of macro-dataflow [3]
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utilized a global task pool scheme for its ease of implementation.

Work-stealing is a ‘pull’ model; as every thread of execution maintains its own

pool of tasks and starts extracting tasks from other contexts once it runs out of work.

This distributed list nature of the scheduler alleviates contention and under particular

assumptions of victim selection and task extraction policies provides tight bounds on

scaling and memory usage [7].

We will discuss work-stealing schedulers in further detail in the upcoming sections

and chapters, since it is the basis of the runtime scheduler on which we support our

macro-dataflow programming models.

2.1.4 Macro-Dataflow

We briefly introduced macro-dataflow model in section 1.1. As stated before, dataflow

ideas were initiated for computer architecture for initially explored as a direction for

fine-grained hardware parallelism, where operands’ availability led to an instruction

rather than a program counter [8]. Modern architectures have only adopted this

model in a limited way with the use of out-of-order superscalar execution engines.

One exception in recent literature advocating for dataflow architectures for a specific

domain is Anton [9]. We will opine further about this as our motivation in section 3.1.

In today’s architectures architectures, creating tasks at the level of fine-grained

statement-level parallelism would overwhelm a runtime scheduler. If the user declares

a scope of sufficiently granular computation as a task, just as they would in task par-

allel models, but instead utilizes the dataflow concept of readiness driving scheduling,

we classify these models as macro-dataflow models [10, 11, 12, 13, 14, 15, 16].

The distinction of macro-dataflow is in the declaration of the parallelism. Task or
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thread driven models declare control flow paths to extract parallelism, whereas macro-

dataflow models require programmers to declare the inherent dependences between

tasks. The comparison between macro-dataflow and task parallel models is analogous

to the comparison between declarative and imperative languages: what vs how.

Macro-dataflow programming models allow a user to declare any possible depen-

dence graph, as dependence is exposed as a user-level construct. However, task-

parallel models may restrict the set of problems that can be declared without intro-

ducing additional dependences. This is further elaborated in section 3.1.

2.2 Series-parallel graphs

A series-parallel graph can be formulated inductively by defining a series or a parallel

composition applied to two series-parallel graphs. The base case for this induction is

the unit series-parallel graph, which only consists of a sink and a source node. Since

series-parallel graphs are a subset of partially-ordered sets, one can think of sink and

source nodes as greatest and least elements of a partial-order. A series composition of

two series-parallel graphs, (g1, g2), merges the sink node of g1 and the source node of

g2. A parallel composition of series-parallel graphs (g1, g2) merges the source node of

both graphs as the resulting graph’s source and merges the sink node of both graphs

as the sink node of the resulting graph.

Series-parallel graphs are proper subsets of partially ordered sets, and can not

declare all possible partially-ordered sets. One example is the subset relation.

In our discussion of task-parallel languages in section 2.1.3, we discussed the lan-

guage constructs: fork and join. Nested use of these constructs yield task graphs that

are series-parallel [17]. A fork and its matching join operation is a parallel decompo-

sition of the graph corresponding to the context where those operations are called,
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and the graph that corresponds to the context created within those calls.

2.3 Futures

A future is a language construct that serves as a reference to a value. The state of

this value is not known till observation, and the act of observation resolves the value,

thus it is a Schrödinger’s value.

Futures were initially formulated in the literature as a 3-tuple, consisting of storage

for the value, pending consumers and the producer [18, 19]. Therefore, a future

object handle serves the storage purpose; the contexts where the future is asked

to be resolved is maintained as the pending consumers, and the user is required to

declare the producing task when declaring the future. When the future is asked

to be resolved, if the runtime scheduler executed the producer task and updated

the storage, the resolution just amounts to referencing the storage. However, if the

resolution has not happened yet, the common implementation is to block the current

context and execute the producer task to resolve the value and continue with the

context, since the context after the futures observation is assumed to be dependent

on the future’s resolution. Otherwise, an analysis would be required to legitimize an

ordering optimization.

Futures can be used to declare dependences and therefore build task-graphs, since

they create a producer-consumer relationship between contexts of declaration and

resolution [20]. However, the blocking resolution of futures would lead to inefficien-

cies. The blocked context can either be packaged and restored or a thread would

be blocked to store the context implicitly and a new one would resolve the pro-

ducer task. To alleviate these possible problems, we explore future constructs like

data-driven tasks/futures [21] with non-blocking implementations. The model will be
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introduced and elaborated in section 3.2.1.

2.4 Habanero

Habanero model is a dynamic light-weight task parallel model, implemented in var-

ious languages (Scala, Java, C++, C [22], etc) with parallelism extensions for those

languages. We utilize Habanero-C [22] and Habanero-Java [23] as a basis for our

data-driven tasks and Concurrent Collections work.

2.4.1 Constructs

async declares a child task which is semantically parallel to the parent task, like

a fork operation. The body of the async construct specifies the computation to be

performed in the child task. The child task can usually copy in local variables from

the parent task’s lexical scope; however, copying local variables from a child task to

a parent task may not always be safe since a child task may outlive its parent.

finish synchronizes all the async tasks in its scope, like a join operation. Finish

and async constructs may be nested within each other to an unbounded depth; each

async task synchronizes with its Immediately Enclosing Finish (IEF).

phaser [24] declares a point-to-point synchronization object, which can define

producer-consumer relationships. We mention them as a reference, since their di-

rected dependence structure are akin to that of data-driven futures.

2.4.2 Runtime

Habanero models support work-sharing and work-stealing runtimes. Our initial work

was on Habanero-Java’s work-sharing implementation [21, 3]. The implementations
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of the Habanero model that we utilize in this thesis builds on the work-stealing

implementation.

Work-sharing runtime implementation uses a multiple producer multiple con-

sumer first-in first-out queue as a task pool. This pool accumulates tasks that are dy-

namically created from multiple contexts and makes them available to worker threads

looking for work to execute. In order to avoid deadlock while blocking calls are ob-

served (e.g. synchronizing for a finish scope) a new thread is created to continue

executing tasks, when a blocked thread maintains the continuation of the blocked

call, waiting to be unblocked.

Work-stealing runtime implementation uses a double-ended last-in first-out sin-

gle producer multiple consumer task queue (deque) per thread of execution (worker

thread, as in Cilk [25] implementation). Dynamically created tasks get pushed in a

last-in fashion and work is locally extracted in a first-out fashion. When a worker

thread runs out of work, it selects a random victim worker thread’s deque to steal a

task from first-in end of the deque.

The impact of the path chosen in the task graph traversal is elaborated in [26]

and the locality implications of this are covered in [27]. The runtime also supports

extensions for locality that allows a hierarchical structure (i.e. tree) of deques to be

used instead of a flat list [28]. Particular traversals of this tree of tasks with explicit

user placement of tasks is observed in previous work. We will elaborate on this further

in comparison to our work.
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Chapter 3

Dependence: A Declarative Approach to
Synchronization

3.1 Motivation

3.1.1 Imperative vs Declarative

Most popular architectures of our day (x86, ARM, etc) are modifications to original

von Neumann machines ∗. Inherent to this design are: the program counter (what

to do next) and the state of the memory (what has happened before). Imperative

languages declare a sequence of instructions to the machine, where what will hap-

pen next and what has happened before are how programs are declared. Hence the

evolution of programming languages favored imperative languages, as they provide a

better fit for the underlying architecture.

Firstly, let us observe the implications of imperative programming without delving

into parallelism. An imperative program consists of a sequence of actions declared

by the programmer, where implicitly in between every statement is a state change to

the underlying machine. To a programmer, the sequence in a program may seem an

arbitrary choice and a different order could instead have been chosen †. However for

the environment, all the way from the compiler to the chip, that order is fixed, and is

∗For the pedantic reader, they are modified Harvard architectures [29, 30]
†Any problem can be viewed as a partially-order set of tasks, where the partial order relation

is the dependence relation. By order-extension principle, there is at least one strictly total order
relation (one legal topological-sort of this relation).
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considered to be the true meaning of the program. Optimizations on all these levels

have to reverse-engineer the programmer’s intent and check if these statements can

be reordered, or otherwise manipulated to maintain the same semantics for better

performance for metrics of choice.

We argue that an imperative program is an arbitrary topological sorting of the

inherent dependence graph of that program. This restricts optimization decisions to

the motto: ‘Everything is banned unless it is allowed by dependence analysis’. We

instead propose dependence as a user-lever construct to allow better optimizations,

and changing the motto to: ‘Everything is allowed unless it is banned by dependence

declarations’.

Let us look at a sample dependence graph for the algorithm of getting dressed on

figure 3.1 from [1]. The dependence relation imposes an ordering between items of

clothing; for example, according to this sample graph, one can not wear a tie before

a shirt is worn.

Figure 3.1 : Actual dependences of getting dressed, figure credit [1]

On imperative programs, this sample graph can only be declared in a linear fash-

ion. One alternative result of topologically sorting the dependence graph on figure 3.1
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is shown on figure 3.2, also from [1]. Now unless a compiler, a runtime system can de-

duce figure 3.1 from figure 3.2, figure 3.2 is the only legal schedule of getting dressed.

Though, one can easily observe that the watch can be worn at any time according to

the dependence graph provided.

Figure 3.2 : Expressed dependence of getting dressed, figure credit [1]

The conditions on ordering and state becomes more problematic, once we consider

the implications of parallel programming for parallel architectures. Given a machine

with N execution units, there are N program counters to decide what will happen

next and this makes utilization (load-balancing) a bigger concern. Secondly, these

N execution units have intractable [31] number of possible states (schedules, and

therefore states of the machine). Both these problems, in addition to the inherited

pitfalls of imperative programming, led to parallel programming models that either

constrain the expressivity of the model for performance and safety of that particular

subset, or relinquish a lot of control (but also performance pitfalls) to the programmer.

Additionally, given that the necessary ordering constraints between objects are

declared as dependences, the legal schedules prevent any ordering hazards. Though,

we burden the programmer with expressing these dependences, the programmer does

not have to guess what the underlying semantics for memory orderings are. The legal

orderings must all obey the dependences specified by the programmer.
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3.1.2 Restricted set of task-graphs

We argue that explicit dependence declaration allows further scheduling opportunities

than popular programming models by not constraining how problems can be declared.

In section 2.2, we give a brief introduction to series-parallel graphs and how nested

fork/join task-parallel models create these graphs. Additionally, we also mentioned

how series-parallel graphs are a proper subset of all partial orders and therefore can

not describe all possible partial orders, like the subset relation in figure 3.3.

Figure 3.3 : Subset relation for {a,b,c}

There is no series of series/parallel decompositions to reduce that graph to a single

node. Recognition of two-terminal series-parallel graphs is beyond the scope of this

document but algorithms can be found in [32].

First-order dependence constructs however would allow any arbitrary task graph

to be built, as a dependence construct would serve as the relation between any two

nodes, or the directed arcs seen on the sample task graphs. We have covered the future

construct in section 2.3 and suggested they can be used as dependence constructs.

As an example for this, figure 3.4 declares the subset graph in figure 3.3, using C++11

syntax for futures.
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#include <iostream> #include <future> #include <thread>

int main() {

std::packaged_task<const char*()> empty([](){ return "{}"; });

std::future<const char*> f_empty = empty.get_future();

std::packaged_task<const char*()> a([&](){

f_empty.wait(); return "{a}"; });

std::future<const char*> f_a = a.get_future();

std::packaged_task<const char*()> b([&](){

f_empty.wait(); return "{b}"; });

std::future<const char*> f_b = b.get_future();

std::packaged_task<const char*()> c([&](){

f_empty.wait(); return "{c}"; });

std::future<const char*> f_c = c.get_future();

std::packaged_task<const char*()> ab([&](){

f_a.wait(); f_b.wait(); return "{a,b}"; });

std::future<const char*> f_ab = ab.get_future();

std::packaged_task<const char*()> ac([&](){

f_a.wait(); f_c.wait(); return "{a,c}"; });

std::future<const char*> f_ac = ac.get_future();

std::packaged_task<const char*()> bc([&](){

f_b.wait(); f_c.wait(); return "{b,c}"; });

std::future<const char*> f_bc = bc.get_future();

std::packaged_task<const char*()> abc([&](){

f_ab.wait(); f_ac.wait(); f_bc.wait();

return "{a,b,c}"; });

std::future<const char*> f_abc = abc.get_future();

std::thread(std::move(abc)).detach();

std::thread(std::move(ab)).detach();

std::thread(std::move(ac)).detach();

std::thread(std::move(bc)).detach();

std::thread(std::move(a)).detach();

std::thread(std::move(b)).detach();

std::thread(std::move(c)).detach();

std::thread(std::move(empty)).detach();

f_abc.wait();

}

Figure 3.4 : Subset relation for {a,b,c} expressed with C++11 futures
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3.2 Macro-Dataflow models

We gave a brief introduction to macro-dataflow models on section 2.1.4. Let us recap,

a macro-dataflow programming model is considered to be a compromise between

dataflow and imperative programming. A pure dataflow model does not suit on

today’s architectures, however we can have imperative tasks, which would follow

dataflow semantics across but not within tasks. As macro-dataflow models explicitly

declare the dependence relations between tasks, these models utilize dependence as a

first-level construct.

3.2.1 Habanero C with Data-Driven Tasks and Futures

We introduced the Habanero approach to parallelism on section 2.4, through the use

of async for task creation and finish for task synchronization. By introducing data-

driven futures as a type, and an await clause for tasks to declare their dependences

through a list of data-driven futures, we achieve a macro-dataflow version of the

Habanero-C language.

In our former work [21], we introduced data-driven futures as a means to make

dependence a first level construct analogous to I-structures [33].

Futures in the literature has been described as three-tuples, a reference to a value,

the computation that resolves to that value and the awaiting tasks for that value.

Commonly, when a future is asked to be resolved, the calling context is blocked and

the resolving computation for the value is executed to supply the awaiting task or

tasks. A blocked task’s state has to be stored either by creating a continuation on-

the-fly and yielding to a child task, or by blocking a thread to preserve the state and

create a new thread to run children tasks to prevent a possible deadlock. Both these

options introduce overheads.
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Whereas, a data-driven future is a reference to a value and the list of awaiting

tasks. It is two-tuple, and the resolving computation is not known at declaration

time. A computation that has a handle for a data-driven future can resolve it ex-

plicitly. Not requiring futures to declare their resolving computation makes the case

for a non-blocking semantics even stronger. A blocking future can be immediately

resolved since the producer is known, however a data-driven future, if we provided a

blocking implementation, would block till the producer computation registers itself as

a producer. We guarantee non-blocking semantics to data-driven futures by requiring

them to be only resolved within data-driven tasks.

A data-driven task is an explicitly parallel task with an await clause, where the

await clause consists of all the data-driven futures that would be asked to be resolved

within that task. This task is only scheduled when all its await clause data-driven

futures are resolved. Therefore it follows dataflow semantics: the availability of input

data fires the task.

Expressibility

When a user declares shared data between tasks via data-driven futures, this allows

them to express true dependences. As there is a single producer for a data-driven

future in an error-free program, that may be considered the source of the dependence,

where all the data-driven tasks listing that data-driven future are sinks of dependences

on that value. Moreover, there is no requirement for data-driven futures to abstract

just data; they can also be used as void data-driven futures to impose an ordering, for

example to prevent hazards on a shared, non single assignment datum by declaring

anti-dependences or output dependences.

If you depict your dependence graph as a DAG, a data-driven future abstracts a
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directed edge. Hence dependence relations that can be established are all possible

graphs that can be expressed by directed edges as shown in figure 3.4 in section 3.1.

Scheduling

Data-driven futures and tasks utilize non-blocking scheduling semantics by requiring

data-driven futures be accessed only within registered data-driven tasks. Common

futures allow unrestricted resolution from any context, but if the resolving task has

not completed, they block. This preserves the calling context at the cost of delaying

the continuation that is not dependent on the future’s resolution and tying up an

execution unit in case it is not the one resolving the future.

When a data-driven task is declared with its await clause, a frame to contain its

context gets implicitly created, just like a common async. Additionally, a list of data-

driven future references gets passed to this async that serves as a synchronization

frontier. Eagerly the task tries to register to the first unready data-driven future

by iterating over its list, checking readiness condition. Once an unready data-driven

future is reached, the task registers itself to that data-driven future and the control

returns to the parent task. If all the dependences have been met at the time of

creation, the task is simply passed onto the scheduler, just like a normal async would.

When a data-driven future is resolved by the producer task creating its value,

the producer task grabs the list of pending tasks and iterates their synchronization

frontier, as described in the paragraph above. If the pending tasks have all their

dependences met, they are passed onto the scheduler, if not they linger in the heap

to be picked by their following dependences’ producers.

This scheduling follows the semantics of dataflow; the tasks are fired when their

data becomes ready. Most parallel programming models require the data dependences
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to be met at the point of task creation, burdening the programmer to structure their

code accordingly, following the spirit of the imperative-language causing topological-

sort argument covered in the section 3.1 above.

Work-stealing support

In past work [3], we provided a proof of concept for data-driven futures on the Java

incarnation of Habanero ideas, Habanero-Java. We ported data-driven futures ideas

to the C incarnation, Habanero C. The compiler support for continuation creation

at fork points are designated to take await clauses into account and attach it to the

frame allocated on the heap for the parallel task, as described in the scheduling section

above. As also discussed above, once a task is created, its parent task eagerly iterates

over the await list to find the data-driven future to which the task should register

itself. The last task that satisfies the last dependence in the list of dependences

spawns the task as if it has no dependences. Porting the data-driven futures to the

Habanero-C infrastructure helped us achieve work-stealing support.

Safety

Shared objects across tasks when expressed through data-driven futures, do not suffer

from race conditions. As a data-driven future can be resolved only once and by a

single producer, its value can not be written over, preventing race-conditions. Data

that is not resolved or at the state of being written, can not be observed by the

consumers, since consumer’s synchronization frontier iteration is succeeded by the

data resolution.

Though the schedule is input and the underlying hardware dependent (and there-

fore undeterministic), the unfolding computation is deterministic when data-driven
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futures are utilized. The orderings declared by the users through data-driven futures

are obeyed and can not change. Additionally, the data computed and consumed can

not change as described on the paragraph above.

On the expressiveness tab above, we likened data-driven future’s to directed de-

pendence edges. This power, however may be misused by the programmer to create

cycles and cause deadlocks. Though there is no such thing as a circular true depen-

dence, if the user mistakenly declares so, the program will deadlock ‡. We have not

provided a runtime mechanism for deadlock detection, but one can be programmed

easily by tagging data-driven futures at runtime based on the ordering relations ob-

served. These tags will follow a partial-order. Once a relation in between two tasks

are introduced that violates this partial order, a deadlock is introduced.

Distributed memory implementations

We collaborated to provide a data-driven task and future implementation on the dis-

tributed memory supporting incarnation of the Habanero-C language. A distributed

data-driven future is a data-driven future with a user-defined home rank. Any data-

driven task registering to a distributed data-driven future sends the registration re-

quest to the home rank. Once a data-driven future is resolved, the home rank sends

the value to all the registered unready tasks by sending the values to the ranks of

where those tasks originated.

‡This is a restricted form of deadlock, where some tasks may only be blocked at the start because
their preconditions have not been satisfied.
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3.2.2 Open Community Runtime

Open Community Runtime is a collaboration involving academia and industry part-

ners in order to set a programming interface between a parallel programming language

and the underlying runtime to supporting this API. A user level API allows the user

to declare unrestricted DAG parallelism and the underlying runtime executes it. The

separation of concerns provided by this API allows runtime research to be conducted

on separate platforms with several different objectives.

In the section above, we have revisited our discussion of data-driven futures, data-

driven tasks and macro-dataflow scheduling. The future and task constructs are

declared by the user through language extensions, which necessitates either a source-

to-source translator or a compiler. Those in turn, introduce portability, maintenance

and adoption concerns. In the library versus language decision, data-driven tasks

adopted the language approach, where Open Community Runtime opted for the li-

brary approach. However, the two can come together since OCR can be used to

implement higher-level language constructs.

Application Programmer Interface

Open Community Runtime, henceforth abbreviated as OCR, declares macro-dataflow

parallelism using the following library calls, which will also cover the concepts utilized:

ocrTaskCreate is used to create a parallel task. This task may have dependences

that would be declared via ocrAddDependence that the runtime would maintain and

may need static data (as in function arguments) that the user should maintain. Since

the user may not know the underlying implementation, it is not safe to assume any

implicit ordering among tasks or the permanence of the stack variables across stack
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invocations. This interface requires the user to pass the function to be executed, the

function parameters and how many of them there are, and how many dependences it

will eventually declare.

ocrEventCreate This function creates an event object, which can be used to de-

clare dependences between tasks. The event construct is a more general version of a

future, in that it does not know its producer or the value it will carry. Since events

are the dependence abstraction for this model, they are single assignment, as in they

can only be satisfied once.

ocrDbCreate This function is used to create a data-block. A data-block can be

described as a contiguous chunk of memory managed by the runtime. They can

be used to satisfy events, and declare data-dependences. This abstraction allows

the runtime to maintain the data and provide guarantees. Any data that is not

declared to be a data-block is user-managed and if used as shared data in between

tasks without knowing the underlying implementation assumptions, would lead to

errors. Unlike the data-driven futures discussed earlier, there is no single-assignment

property guarantee for data-blocks. Since the dependence aspect is separated into an

event and the data it carries, the single assignment property remains on the event,

and not the data-block.

ocrEventSatisfy As events can be used to build a dependence graph, this interface

informs the runtime that the dependence has been satisfied. If the dependence is a

data-dependence, this function declares what data is flowing through this dependence

via data-blocks. If the dependence satisfied is not a data-dependence, the event may

be satisfied with any object or a sentinel value.
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ocrAddDependence is how a task declares that it is a sink of a dependence that is

passed as an argument. This serves the same purpose of the await clause mentioned

in the previous section. The user is required to enlist all the shared data across tasks

to be declared as a dependence to guarantee safe access through the synchronization

provided by dependences.

ocrScheduleEDT is the user declaring that the listing of the dependences for a

particular task is over and now the runtime can take control over it. As the number

of dependences are known at creation time and the ocrAddDependence can count

the number of dependences declared, this interface could have been avoided. In the

following versions of OCR, this function is deprecated.

Runtime Library

Any OCR runtime library that implements the functions described above, can be

labeled an OCR library, thus there is not ‘the’ OCR library. For our explorations,

we have used an OCR runtime library implementation that is heavily influenced by

Habanero-C [22] that implements the user interface from OCR version 0.7 [34].

A detailed run-down of the runtime programmer’s API is beyond the scope of

this document, however, we will provide a quick introduction below to lead into the

implementation we utilized.

Runtime Programmer Interface

The runtime library is implemented in C, which does not natively support modern

constructs like abstract classes, interfaces or inheritance. Therefore we instead have

provided a poor man’s version for these constructs by providing base structures for
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modules that we anticipate the runtime implementer would have to extend, with

function pointer tables mimicking a virtual function table. The modules are for data-

blocks, events, task pools, workers, executors (abstracting the underlying execution

unit), schedulers and policy-domains (abstracting a mini-runtime, for hierarchical

runtimes).

Habanero-like runtime for OCR v0.7

We implemented an OCR version 0.7 library replicating the scheduler by the data-

driven scheduling implementation covered in section 3.2.1. Regarding other modules,

like data-blocks, workers, executors and policy-domains, we implemented bare neces-

sities. Data-blocks are implemented as wrappers for contiguous memory on a shared

memory machine that does not move or get tracked by the runtime. Workers execute

a loop of popping, work-stealing when pop is failing, executing extracted work, just

like Habanero workers. Executors are abstracting the underlying cores with an at-

tached PThreads instantiations. Policy models are not utilized as we have not needed

explicit hierarchies for our observations.

3.3 Results

3.3.1 Methods and environments

We use Open Community Runtime version 0.7 as a starting point for our parallel

runtime implementation. We use N workers for a machine with N execution units,

with a total of N double ended last-in/first-out queues (deques) for ready tasks, with

one-to-one correspondence between execution units, workers and deques. As intro-

duced in section 2.4, the work-stealing implementation utilized is local task extraction
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of the most recently created task in the local doubly-ended queue, once local work is

depleted, the default victim selection is random for stealing and extracting the oldest

task for stealing from the victim.

We tested our runtime on two different setups:

A Xeon machine This machine has two-sockets of Intel E5-2699 v3 running at

2.30GHz. Each socket is an 18-core machine with an extra hyperthread per core

Haswell architecture. The total amount of memory available to the machine is

128GBs. We will not be utilizing the hyperthreads, so the runtime treats this ar-

chitecture as a flat 36-core machine.

We use Intel Parallel Studio XE 2015 Update 2 Composer Edition for Linux, which

features icc version 15.0.2 as the C compiler, Intel MKL version 11.2 update 2 as the

math library, and Intel TBB version 4.3 update 3 whose scalable memory allocator

we link with to replace malloc calls.

A XeonPhi machine This machine has a XeonPhi coprocessor as an accelerator

that we use in native mode as a standalone machine, rather than a host-card pair.

This card features 60+1 inorder x86 cores with 4 hyperthreads per core, each running

at 1100Mhz. Total memory available to the machine is 8GB.

We use Intel Parallel Studio XE 2013 Service Pack 1, which features icc version

14.0.1 as the C compiler for cross-compiling to the XeonPhi coprocessor, Intel MKL

version 11.1 Update 1 as the math library and Intel TBB version 4.2 update 1 whose

scalable memory allocator we link to replace malloc calls.
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3.3.2 An inefficient Fibonacci

We addressed how divide-and-conquer algorithms and languages that express series-

parallel task graph match, and competitive performance can be achieved even with

this ease of expression. We want to show that divide-and-conquer problems can also

be easily expressed through declaring this restricted subset of possible directed acyclic

graph and also provide competitive performance.

We will use an inefficient (non dynamic-programming) approach to calculating

the N th element of the Fibonacci sequence. The Fibonacci sequence can be described

inductively as follows:

fibonacci(n) =

8
>>>><

>>>>:

fibonacci(n− 1) + fibonacci(n− 2) n ≥ 2

1 n = 1

0 n = 0

fib(24)

fib(23) fib(22)

fib(22) fib(21) fib(21) fib(20)

fib(21) fib(20) fib(20) fib(19) fib(20) fib(19)

fib(20) fib(19)

Figure 3.5 : Task graph for calculating fib(24) with cut-off 20
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On figure 3.5, we can observe the divide-and-conquer aspect and the almost bal-

anced nature of the algorithm. As we argued before, there also is a dual join edge for

every node for synchronization we chose not to depict.

Our implementation of the non dynamic-programming version of Fibonacci fea-

tures a cut-off value, at which the program stops spawning child tasks and calls a

serial version of the non dynamic-programming version of Fibonacci in order to in-

troduce an artificial granularity to leaf computation tasks. This artificial granularity

is a means to hide the overhead of task creation, scheduling and work-stealing. Cilk

language and runtime fares better at no or very low cutoff values compared to OCR,

as Cilk is a language approach which creates continuations and fast paths while OCR

can not. So with a very low cutoff value OCR fares worse compared to Cilk.

For collecting our OCR results, we provide a text file mapping worker threads

to which cores, in order to prevent thread migration or a possible across socket core

selection. Therefore for the sake of fairness the Cilk version is run with an explicit

restriction of which subset of cores the program can run on using taskset.

#cores 1 2 4 8 12 16 18 36
time(s) 68.425 35.406 19.149 10.868 7.327 5.498 4.933 2.512
speedup 1.933 3.573 6.296 9.339 12.445 13.870 27.240

Figure 3.6 : fib(50) with cut-off 25 results for the Xeon Machine using Intel CilkPlus

#cores 1 2 4 8 12 16 18 36
time(s) 68.601 35.182 19.156 10.886 7.363 5.522 4.986 2.511
speedup 1.950 3.581 6.302 9.317 12.424 13.758 27.322

Figure 3.7 : fib(50) with cut-off 25 results for the Xeon Machine using OCR v0.7

Given a cutoff value, OCR and Cilk performs head to head, as can be seen in
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figure 3.6 and figure 3.7. We calculate the 50th number on the Fibonacci sequence

and the leaf computation nodes calculate the 25th number. Scaling is not perfectly

linear on this 2 socket (a total of 36 core) machine because of the inherent overheads

and also the imperfect balance between left and right children of the tree. As we know,

the ratio between consecutive Fibonacci numbers converge to the golden ratio(˜1.618),

which means the left child of root task is ˜1.618 the size of the right child.

#cores 1 2 4 8 16 32 48 60
time(s) 78.646 39.329 19.685 10.073 5.045 2.617 1.756 1.442
speedup 2.000 3.995 7.807 15.590 30.049 44.793 54.536

Figure 3.8 : fib(45) with cut-off 25 results for the XeonPhi Machine using Intel
CilkPlus

#cores 1 2 4 8 16 32 48 60
time(s) 78.668 39.526 19.699 9.906 4.945 2.488 1.669 1.342
speedup 1.990 3.994 7.942 15.908 31.614 47.146 58.604

Figure 3.9 : fib(45) with cut-off 25 results for the XeonPhi Machine using OCR v0.7

The results for our XeonPhi machine can be seen on figures 3.8 and 3.9. We

observe almost linear scaling for OCR, where Cilk scaling tapers off faster than OCR.

However we should note that the environment for the XeonPhi card we utilize does

not feature taskset, so the Cilk results can be attributed to unpinned threads, where

OCR pins individual PThreads to XeonPhi execution engines one-by-one.

3.3.3 Smith-Waterman/Needleman-Wunsch sequence-alignment

This benchmark is an algorithm to align two strings by attributing scores to a match

at a given site based on the matches at possible previous sites that are one fewer
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in length, hence it is a dynamic algorithm. Building the tabular structure that re-

members match scores for substrings of all sizes is of order O(N ∗M) in space and

computation, for strings of size M and N . If the scores cached are positive and ‘for-

gotten’ below a certain threshold, it is a local sequence alignment and is called the

Smith-Waterman algorithm. If scores cached are not forgotten and a global sequence

alignment is sought after with the sink node of the task graph’s alignment score is

the match score, it is called Needleman-Wunsch algorithm. We will be using the

Needleman-Wunsch variation for our experiments.

{0,0} {0,1}

{1,0} {1,1}

{0,2}

{1,2}

{2,0} {2,1} {2,2}

{0,3}

{1,3}

{2,3}

{0,4}

{1,4}

{2,4}

{3,0} {3,1} {3,2} {3,3} {3,4}

{4,0} {4,1} {4,2} {4,3} {4,4}

Figure 3.10 : Dependence graph for a 4 by 4 tiled string matching

This benchmark is used in bioinformatics field to match amino-acid sequences

of proteins, or nucleotide sequences of sites for local and global alignment to trace

evolutionary paths, homology and etc. We see this benchmark frequently in the

parallelism, high performance computing literature to showcase non-series-parallel

graphs, and are known colloquially as the diamond graph. We can see the dependence

graph of a string matching benchmark of 2 strings sized 4, or 2 strings with square
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tiles of quarter the size of the original string on figure 3.10. The first row and column

is to keep track of the alignment with a gap instead of a nucleotide at the beginning

of the first or the second string, hence the need for a fifth row and column.

On figure 3.11, we can see the whole tabular structure maintaining the scores for

the alignment of two strings: TACTG and CTAGTCG. The dependence graph for this

computation is superimposed on the tabular structure and is depicted by directional

arrows. The score for a node on this tabular structure is calculated by deciding the

maximum of three possible predecessor node’s values and how much a match from

that path would cost. For example the value −3, at the intersection of second row and

the third column, is calculated by choosing in between: the diagonal path (the first

string’s A should be matched with the first C of the second string, −1 +−4 = 5), the

horizontal path (matching first string’s A with a gap, −2 +−1 = −3) or the vertical

path (matching second string’s first C with a gap, −2+−1 = −3). The winning path

for each node is depicted by a dotted line instead of a solid one. The global match,

and hence the alignment, is depicted by red dotted lines tracking the path from the

right bottom corner to top left corner.

In order to introduce some granularity to the leaf computation tasks, we tile the

strings, so that a task calculates the values of a tile rather than a single entry. We

performed a sweep for tile sizes to choose which tile size achieve the highest operations

per second, and the results reported below use those tile sizes.

An exception for the results collected on the XeonPhi machine for this benchmark

is that the best number operations per second is achieved when neither the application

nor the benchmark itself is linked with Intel TBB, and when the libraries including

the runtime are linked statically.

For both of the figures above, we observe scaling that is not perfectly linear.
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Figure 3.11 : Score graph for a 5 by 7 string matching

#cores 1 2 4 8 12 16 18 36
time(s) 39.688 20.354 11.135 6.335 4.318 2.910 2.152 1.523
speedup 1.950 3.564 6.265 9.191 13.640 18.440 26.059

Figure 3.12 : Matching strings of size 135K with tile size 576 for the Xeon machine
using OCR v0.7

#cores 1 2 4 8 16 32 48 60
time(s) 135.327 67.586 34.020 17.127 8.682 4.476 3.225 2.740
speedup 2.002 3.978 7.901 15.587 30.236 41.964 49.395

Figure 3.13 : Matching strings of size 67.5K with tile size 432 for the XeonPhi machine
using OCR v0.7

If we look back at figure 3.10, we can see that the beginning and the end of the

computation do not provide sufficient slackness. For a better visualization, one can
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skew the graph as in loop-skewing and conclude the parallelism is one the diagonal

that can be represented with f(x, y) → x − y + C = 0. Our macro-dataflow model

allows unstructured diagonals to be expressed that does not need static diagonal

extractions of parallelism. However, even in our model the unstructured diagonals

shrink to sizes smaller than the number of execution units available at the beginning

and end of the benchmark preventing linear scaling.

3.3.4 Cholesky decomposition

Given a symmetric, positive definite matrix A, cholesky decomposition calculates a

lower triangular matrix L such that A = LLT and can be considered a special case of

LU factorization where the upper triangular matrix is the lower triangular matrix’s

conjugate transpose. The computational complexity of the calculation is O(n3) and

for a serial, in-place implementation the memory footprint is O(n2). Our parallel

implementation through array-expansion, exposes the iteration-space as the third

dimension and gets rid of the antidependences to expose further parallelism, which

increases the memory footprint to O(n3).

The dependence graph of a 5 by 5 blocked cholesky factorization is depicted on

figure 3.14 with tasks annotated with the LAPACK routines applied on said tiles.

On a given iteration the top-left most tile has a sequential cholesky(dpotrf) applied,

where that result enables a column of triangular solves(dtrsm) below it. A trisolve

indexed i feeds data to triangular(dsyrk) or square(dgemm) matrix multiplications on

row or column i. The resulting matrices of these matrix multiplications feeds in to the

next iterations domain, depicted as vertical arrows crossing the iteration boundary

on the figure.

As it can be seen on the figure, the dependence graph is an unstructured directed
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Figure 3.14 : Dependence graph for a 5 by 5 tile cholesky factorization

acyclic graph, and does not remotely resemble a series-parallel computation. Hence

it is a motivating example for our macro-dataflow model.

We have implemented the benchmark with tasks serving as a wrapper to serial

Intel Math Kernel Library(MKL) calls. Since MKL library calls are destructive writes

to their input data, we use events to synchronize these writes on to the same data-
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block. Additionally, to provide coarser granularity into the tasks, we use a blocked

version of the cholesky decomposition, where the tile size is a user provided runtime

parameter. As auto-tuning and providing performance models for different architec-

tures are not within the scope of this work, we do a tile sweep to calculate the tile

size that gives the highest floating point operations per second(flops).

#cores 1 2 4 8 12 16 18 36
time(s) 16.579 8.409 4.245 2.374 1.625 1.339 1.248 0.665
speedup 1.972 3.906 6.984 10.201 12.386 13.287 24.947

Figure 3.15 : Cholesky decomposition results for a 12K by 12K matrix with 192 by
192 tiles using OCR v0.7 with Intel MKL for the Xeon machine

#cores 1 2 4 8 12 16 18 36
time(s) 13.870 6.845 3.476 1.943 1.379 1.203 1.065 0.751
speedup 2.026 3.991 7.138 10.059 11.526 13.017 18.465

Figure 3.16 : Cholesky decomposition results for a 12K by 12K matrix using Intel
MKL for the Xeon machine

Figures 3.15 and 3.16 show that we can surpass a hand-tuned library in floating

points per second throughput on our Xeon setup. We should still note we used serial

MKL kernels to describe the kernel computations and used our runtime to provide

the parallelism where the figure 3.16 results show what a single parallel MKL call

to solve cholesky would do. Additionally, we had to do a tile-sweep to find the best

throughput providing tile size (192 for this case), where parallel MKL did not need

that runtime parameter. Likely, the scaling results for parallel MKL can also be

partially attributed to the library using adaptive tiling. We can observe that the base

case for OCR is slower than MKLs and a tile size different than 192 providing the

best throughput for a single core execution would make our scaling results worse than

the 25× shown on the figure.
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Additionally, we should remind that we do not utilize hyperthreading and use

only 36 cores pinned to individual cores for our OCR executions. The Xeon ma-

chine provides 36 additional hyperthreads, which MKL can utilize further to achieve

even higher throughput, but we will postpone covering this aspect for the upcoming

chapters.

#cores 1 2 4 8 16 32 48 60
time(s) 27.845 13.952 7.039 3.568 1.833 0.972 0.718 0.642
speedup 1.996 3.956 7.804 15.191 28.647 38.781 43.372

Figure 3.17 : Cholesky decomposition results for a 6K by 6K matrix with 96 by 96
tiles using OCR v0.7 with Intel MKL for the XeonPhi machine

#cores 1 2 4 8 16 32 48 60
time(s) 11.635 11.634 3.932 2.161 1.105 0.581 0.425 0.347
speedup 1.000 2.959 5.384 10.527 20.025 27.394 33.554

Figure 3.18 : Cholesky decomposition results for a 6K by 6K matrix using Intel MKL
for the XeonPhi machine

Unlike the result for the Xeon architecture, for the XeonPhi machine our OCR

results could not outperform Intel MKL’s hand tuned for XeonPhi parallel cholesky

decomposition. As we argued above for Xeon, one of the problems can be attributed

to our choice of non-adaptive tiling. Though we achieve a respectable scaling for a

fixed tile size, Intel MKL can achieve almost twice the throughput for a tile size it

tunes.

We observed OCR scaling better on Xeon to catch up and pass MKL even though

the base case is OCR is worse. That still is the case our XeonPhi results. However,

our base case is 2.5× slower for our best tile size, 96, for maximum throughput on 60

threads. Even when a favorable tile size for a single thread execution is picked the

base case is 18.278 seconds, 1.57× slower.
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Another observation is the effect of Intel TBB being linked with the multi-threaded

MKL implementation. For our OCR variations of the code, the application being

linked with TBB do not have much of an effect, however multi-threaded MKL being

linked with TBB on XeonPhi provides double the throughput for cholesky. We should

also note the suggested link flags for parallel Intel MKL does not necessarily suggest

using TBB.

Lastly, as we covered on our Xeon discussion above, MKL can utilize hyperthreads.

As we do not have access to taskset on our machine we can not make sure how many

hyperthreads MKL is using and which subset of cores it utilizes. However, for OCR

we still use PThreads pinned to each core without utilizing hyperthreading. Just like

Xeon, the XeonPhi results can be further by MKL in throughput by allowing it to use

more threads. With OCR, we observe using flat work-stealing on an oversubscribed

machine degrades performance as opposed to the single thread per core case.
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Chapter 4

Efficient work-stealing in Event-Driven Runtime
Systems

4.1 Introduction

It is interesting to observe that nested fork-join parallel models are more popular than

macro-dataflow parallel models, despite the factor that the former is more restricted

than the latter. One reason nested fork/join models are popular is because of the

top to bottom design and implementation choices that go along with the model. We

have briefly covered the work-stealing runtimes in section 2.1.3 that are used by these

models. Let us elaborate further on this discussion.

Popular work-stealing runtimes for nested fork-join parallelism [35, 25] have uti-

lized lazy task creation [2] in order to avoid the runtime being swamped by eagerly

created tasks. Lazy task creation can be interpreted as a sequential-by-default depth-

first exploration of the task tree, in which multiprocessor thread scheduling is achieved

by taking tasks from the unexplored list in the depth-first traversal. Since this depth-

first traversal has a much smaller frontier than an alternative traversal (e.g. breadth-

first), the number of tasks available to the scheduler is tightly bound. This approach

to thread scheduling of tasks is a flavor of work stealing, since idle threads extract

tasks from busy threads’ yet unexplored paths.

For example, in Multilisp, one of the earliest implementations of work-stealing

schedulers, the stealing heuristic employed is to steal the oldest task from the victim,
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just like the Cilk [25] implementation that followed. An oldest task would be the

task that would be the first task to make it to the backtracking list of a depth-first

traversal by a worker, and therefore the last one to be utilized for further exploration.

Figure 4.1 : Possible decomposition and mapping of a divide and conquer problem,
figure credit [2]

Let us look at a snapshot of a work-stealing runtime with lazy task creation and

oldest task stealing. We can see in figure 4.1 that thread2 stole taskR from thread1’s

first task that is on that thread’s depth-first traversal backtrack list. Then thread3

stole a taskLR from thread1, which is the new oldest task after taskR’s extraction.

Lastly thread4 stole taskRR from thread2 to achieve the depicted decomposition and

mapping.

The task-graph on figure 4.1 does not reflect the join aspect of the graph. As

nested fork/join models require the children to synchronize with the parent, a com-

plete depiction would include a mirroring of the graph on the plane created by the

leaf nodes. That graph would have the aforementioned series-parallel graph property.

For simplicity, we will depict task graphs only till their leaf nodes and not include

their dual join edges.

In a series-parallel task graph, stealing a task that was put aside to be explored

provides the source node of another series-parallel graph. By definition series-parallel
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graphs are recursive structures, and if a task is put aside to be explored, it can only

come from a parallel composition of more than one series-parallel graphs.

For a divide-and-conquer algorithm with a cutoff, like the one depicted in fig-

ure 4.1, stealing the oldest task from a thread provides the coarsest grained series-

parallel graph that thread has to offer. As work starts dissipating from a single source

node, stealing would build a binary reduction tree of splitting and mapping subsets of

the task graph, as seen in figure 4.1. Cilk or Mul-T [2] implementations also depend

on this property of probabilistic work-stealing.

Figure 4.2 is a pathological case of a series-parallel task graph for stealing oldest

tasks, where the graph is recursively left-skewed and there is not sufficient parallelism

to make up for the runtime overheads introduced. The oldest tasks for any series-

parallel that is being explored or stolen has the smallest grain size where the youngest

tasks have the coarsest grain. That is why most models perform their best at high

parallel slackness. Slackness is amount of ideal parallelism (in layman’s terms the

ratio of width to depth of the task graph).

The increased granularity of steals reduces the number of steal attempts and im-

proves performance as steal operations introduce more runtime overhead, contention

and increase idle time.

4.2 Granularity

We use work stealing runtimes for our aforementioned macro-dataflow models for

dynamic scheduling and load-balance. However, since task graphs that may be ex-

pressed by macro-dataflow models are more general than series-parallel graphs, the

heuristics we discussed in section 4.1 for work-stealing runtimes do not necessarily

hold anymore.
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Figure 4.2 : A pathological task graph that is recursively left-skewed

In a series-parallel graph, stealing one task from the victim gives us the source

node of another series-parallel graph. If you ignore the join edge symmetry, a series-

parallel graph is tree. So a steal returns the root task of a tree of tasks. Since that

root task enables all the descendent tasks, if none of them is stolen from the thief,

the whole tree is executed on that thief. Therefore stealing one task is analogous to

stealing a subtree of a task tree.

In section 4.1, we discussed the motivation for stealing the oldest task for series-

parallel graphs with divide-and-conquer algorithms being the best fit. Let us assume

that the base case of a divide-and-conquer algorithm has a unit computational cost

of c. A thread executing a leaf task, the base case computation, has n ready tasks

for execution (or victims for stealing), where the ith youngest task, for i ≥ 1, costs

c ∗ (2i − 1) cumulatively, since tasks are roots of a task tree of computation. If we

observe figure 4.3 as a sample, we see that a thread’s depth first traversal of an
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available task (taskA) executed taskA, taskB, taskC and taskD and pushed taskI ,

taskF and taskE on to its queue of tasks. The subtrees rooted by taskE, taskF and

taskI cumulatively cost c, 3c and 7c respectively. The total amount of work for these

n tasks is
Pn

i=1 c ∗ (2i − 1) = c ∗ (2n+1 − 1 − n). The oldest task, the first in line

to be stolen, is of cumulative cost c ∗ (2n − 1). So stealing the oldest task is roughly

stealing half the amount of total work, since c ∗ (2n− 1) ≈ 2−1 ∗ c ∗ (2n+1− 1− n) as

n grows larger.

B

A

I

C F J M

D E G H K L ON

E

F

I steal

poppush

Figure 4.3 : Task graph of a divide-and-conquer application run under work-first
policy

Our assumption to conclude steal-half is a major one, where we know the structure

of the dynamic task graph statically by restricting the problem to balanced divide-

and-conquer algorithms. How we concluded the half is through assuming unit task

sizes, and the number of tasks a stolen task would enable as a root (source node).

If we want to generalize, we may require the user to annotate tasks with how many

descendants they may enable. For example, in figure 4.2, we have given an example of

an ‘unbalanced’ series-parallel graph. However, if the user knows how many descen-

dants every task has when the task is created, and annotates the task accordingly,

the runtime still can pursue a steal-half heuristic by a bin packing approximation.
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In contrast, stealing a single task from an arbitrary DAG may not result in getting

a root of a tree of tasks. Pathologically, a stolen task may not dominate ∗ any of

its descendant tasks. Let us observe figure 4.4. If a taskA is stolen with successors

taskB and taskC , and if taskB and taskC each depends also on taskD and taskE

respectively where taskD and taskE are not taskA’s ancestors, based on a particular

schedule taskD and taskE may not yet be available. In that case taskA would not

lead to any new descendant computations at all, and would eventually lead to another

steal attempt.

Figure 4.4 : Snapshot of a stolen taskA and its immediate successors taskB and taskC

If we wish to translate the implicit steal half the work policy for nested fork/join

work-stealing models to macro-dataflow work-stealing in order to minimize steal at-

tempts, we need to take further information into account as the property does not

hold anymore and we need an explicit steal-half as in [36, 37]. For graph algorithms,

granularity optimization to achieve half through batching can be employed [38].

∗A noden dominates a nodem, if all the paths from the source of the graph to nodem passes
through noden.
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Firstly, we would need annotations, just like unbalanced graphs would have needed

for nested fork/join models. For arbitrary DAG task graphs, one can still annotate or

calculate the number of dominated descendants for a task. However, the number of

descendants a task may lead to is schedule dependent. A task can lead to descendant

tasks only if it satisfies their respectively last unsatisfied dependence, so dominance

relation is a function of a runtime schedule. In contrast, for nested fork/join models,

since tasks are roots of trees of tasks, the values can be computed bottom up or can

be determined statically by counting the tasks they dominate.

Since we can not calculate half the tasks on a dynamically unfolding task-graph

with schedule dependent number of descendants, we restrict our heuristic to static

assumptions, just like nested fork/join models. We explore two extremes of the spec-

trum on the number of descendant tasks, one pessimistic and one optimistic. A

pessimistic heuristic assumes a task can only lead to a number of tasks it statically

dominates. On the contrary, an optimistic heuristic assumes all the descendants will

have all their other dependences satisfied by the schedule and a task can lead to all

its descendants.

We also explore further simplifications of the model, where the number of de-

scendants are not calculated or annotated and every task is treated uniformly pes-

simistically, as they do not lead to any work which implicitly treats every task as a

leaf.

4.3 Successor task heuristics

Stealing half the tasks have been proposed to address granularity in other models,

but the goal is to steal half the amount of work [39]. On generic directed acyclic

task graphs, we can not statically decide the number of successors a task has, since
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a descendant task on a join node may have predecessors that may not be executed

by the time the join node is visited. Predecessor-successor relation becomes schedule

dependent on join nodes, as we discussed above on figure 4.4. In order to address the

granularity concerns arising from adopting non series-parallel task graphs, we propose

two heuristics on counting the number of successor tasks for a given task to be used

as annotations to guide granularity aware work-stealing.

4.3.1 Pessimistic descendance

Given tasks taskA and taskB, where taskB is a predecessor to taskA and also dom-

inates taskA on the task graph, we label taskA a pessimistically descendant task of

taskB. A node taskB dominates a node taskA, if taskB is on every path from a root

task to taskA. If a task is annotated for granularity with the cardinality of its set of

dominator tasks, it has the number of tasks it leads to in the worst possible schedule:

a schedule where no schedule dependent descendance is materialized. Hence we label

this heuristic as pessimistic.

These annotations can be calculated for a task in linear time by the programmer

ahead of time since the all legal task graphs are reducible, assuming that the structure

of the graph can be known statically. An iterative reverse postorder traversal on the

task graph until convergence in constant number of steps would give the dominance

sets, and therefore that set’s size.

Using this heuristic on series-parallel graphs does not lead to inaccurate descen-

dant counts. As we argued before, on series-parallel task graphs join edges just for

synchronization purposes may be eliminated which would leave a tree of tasks. The

special case of directed acyclic graphs, trees, have the dominance tree which is identi-

cal to themselves. Hence the pessimistic descendance annotations for trees reflect the
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correct number of descendants. If a steal half the work heuristic for a work-stealing

runtime supporting macro-dataflow is implemented using these annotations, problems

that have a series-parallel task graph (well-balanced divide and conquer algorithms)

would perform as if they were expressed and executed in a nested fork/join model

using a default work-stealing approach. This abides by the motto: ‘first do no harm’.

We argue above that the motivation for macro-dataflow parallelism is the preven-

tion of overconstricting arbitrary task graphs to a structured graph. Therefore one

expects the less series-parallel a task graph is, the better fit it is for macro-dataflow

models. However, the less structured the graphs are, the fewer dominance relations

they have. The lack of dominance relation between tasks leads to pessimistic descen-

dance providing much smaller numbers for granularity annotations of tasks and may

regress to almost every task treated as a leaf task that may not lead to any other

computation. As this is the default behaviour, using pessimistic descendance has a

smaller impact on graphs that are further away from series-parallel graphs. For those

graphs, performance may be hampered by not being able to utilize granularity aware

scheduling because of how unaggressive this heuristic is. We will see how pessimistic

descendance relation regresses to steal half the number of tasks from a ready work

queue on the discussion of our case studies below.

4.3.2 Optimistic descendance

Contrary to pessimistic descendance, optimistic descendance heuristic assumes that

every task enables all its descendant tasks, hence the name optimistic, as it assumes

a particular schedule that allows this assumption. Though this assumption may be

an invalid by being overly optimistic, where no such schedule may exist.

These annotations can also be calculated in linear time by the programmer ahead
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of time with the same caveat that the graph can be known statically. A traversal of

the topologically sorted task graph in reverse where tasks transitively accumulate the

descendant counts of their predecessors provides the values for annotation in linear

time.

As pessimistic descendance, this heuristic also converges to the correct descen-

dance counts for problems with series-parallel task graphs. The leaf nodes update

the deepest inner nodes of the tree with leaf counts, and the inner nodes recursively

propagate all the way to the root, annotating it with the total number of nodes on

the task graph. So just like pessimistic descendance, one should observe performance

as if these programs are expressed in a nested fork-join model with steal oldest policy

with random victim selection.

We should note that the possible abundance of join nodes on task graphs, which is

our motivation for macro dataflow models, introduces complexities to this heuristic as

well. A node with more than one predecessor, where those predecessors do not have a

dominance relation, is counted more than once, since that node can be optimistically

enabled by each of those predecessors. No matter how many predecessor a task has,

it is only executed once, making these optimistic annotations more accurate for some

nodes over others based on a particular schedule. On our discussion of the cholesky

decomposition case study below, we observe that even though the complexity of the

algorithm is O(n3), the root task is annotated with values of O(4n) rather than O(n3),

as it counts possible descendant tasks many times over through separate paths.

4.4 Task queues

In section 4.2, we talked about how the age of a task is reflective of its granularity,

using the example on figure 4.3. As double-ended last-in first-out queues, deques, are
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the default data structure for work stealing, one can observe that there is an implicit

prioritization of the most granular tasks for stealing and the least granular tasks for

local thread’s execution. We argue in the previous sections that these assumptions

do not hold for arbitrary task graphs. Below we address how the choice of data

structures impacts granularity-aware work stealing.

4.4.1 Deques

Prior work-stealing algorithms on series-parallel programming models utilize deques,

as they prioritize most granular tasks for stealing which leads less frequent steals and

also to the simplification of the data structure which in turn leads to less contention

between the victim and the thief.

We mentioned in section 4.3 that if one chooses to employ steal half of the total

work from victim policy for arbitrary task graphs, they have to estimate(or annotate)

costs for tasks, since the number of successors one task may lead to (and therefore

its cumulative cost) is schedule dependent. Given that tasks are annotated with the

number of tasks they may lead, one can calculate an approximate set of half the

available work. A deque of tasks in this case is an unprioritized set of tasks with

granularity estimates. We still can employ separate ends for local (pop) and remote

(steal) extraction to ease contention and the implementation for synchronization.

We emphasized approximately above, since an accurate half (of possibly inaccurate

granularity estimates) of the total work is an NP-complete problem to solve because

it can be reduced to the partitioning problem. Solving that problem is not likely to be

amortized by fewer steals, so we employ a greedy heuristic to calculate an approximate

half by iterating through the steal end of the deque and steal tasks whose total cost

(of all the cumulative costs) passes the half of the estimated work on a deque. The
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estimated work on a deque can easily be a state of the data structure by adding the

estimated cost of every pushed task and subtracting the cost of every extracted task.

Both descendance heuristics we mentioned above give the accurate number for

granularity annotations, if the input problem has a series-parallel task graph. If we use

the heuristic for stealing approximately half the work by accumulating victim tasks’

costs using deques as described, we converge to the default work stealing algorithm

of stealing a single task from the steal end, still abiding by: ‘first do no harm’.

4.4.2 Prioritized Data Structures

The ordering provided by deques is a ranking from youngest to oldest task for local

extraction and the other way around for remote extraction. Though the age of the

task on a ready task queue has granularity implications on series-parallel task graphs,

we covered above that this coupling (and therefore implicit granularity ordering) does

not hold for more general task graphs.

In section 4.4.1, we utilized deques to coarsen the granularity of stealing using

annotations and steal approximately half the work heuristics to reduce the number of

steals and improve scalibity for general task graphs. Despite addressing the coarsening

of the set of stolen tasks, we did not address the ranking of tasks for granularity, as

deques achieve implicitly in series-parallel task graphs. Annotations for cumulative

number of descendant tasks serve as a natural priority for granularity ranking, which

we already anticipate to be provided. If we explicitly rank tasks increasing by their

descendant task count annotations, we achieve ranking in estimated granularity of

tasks.

The ranking of tasks percolates the least granular tasks for the local thread to

execute and more granular tasks to be stolen, where the granularity ordering may
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be arbitrary based solely on push order on deques. Additionally, the traversal to

steal cumulatively half terminates quicker by exploring coarsest grain tasks first and

therefore reduce contention on task queues.

Another benefit to store explicitly ordered tasks by granularity is that it already

pays the sorting cost of employing the Karmarkar-Karp algorithm to better partition

the set of tasks into two approximate sets in cost than the aforementioned greedy

algorithm.

Total versus partial orders

Though we argue for the intrinsic values of prioritization above, we need to address

the feasibility and the amortizability of the associated cost. The data structures for

task queues are chosen to be contiguous, like circular buffers, in order to increase the

locality of reference for tasks and also to avoid frequent memory allocations necessary

for pointer based data structures.

When we employ data structures with a total order that are contiguous, insertion

to a sorted list costs O(n) which may be too costly to incur per task and also increases

the contention on the underlying queue. If we keep the ranking as state of a random

set of entries, extracting the minimum cost and updating ranks cost O(n).

In order to trade accuracy for performance, we also propose in place partial order

data structures that allow cheaper extract minimum, insertion and extract a set of

likely maximum till half the cost. Binary heaps provide solution for these interfaces

accordingly: extracting the minimum is of constant cost with O(logn) maintenance

cost, insertion is of O(logn) maintenance cost. Stealing is achieved by traversing the

heap leaf-first in a breadth-first fashion so extracting half the work from the costlier

end is of worst case O(n) cost with no maintenance cost.
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Let us observe the precision we lose for the performance we gain. We can interpret

a heap data structure as a recursive partial orders through parent-child relationships.

This recursive nature allows us to cover half the number of sorted elements at any

given iteration of insertion and therefore lead to O(logn) cost rather than O(n),

where no precision is lost. However, when trying to steal the costliest half, we can

not anymore guarantee a ranking of the absolute costliest m tasks if m tasks are to

be stolen. We expect the costliest of tasks to cluster on the leaf nodes and steal leaves

as if they are ordered, which also eliminates the need for re-fixing the heap property.

Though on any sub-heap of a heap, the costliest element of that heap is a leaf node,

it is possible to have pathological cases like we showcase in figure 4.5 where the order

of the leaf nodes may not be to our expectation.

1

97 2

99 98 4 3

Figure 4.5 : A pathological heap for leaf-first breadth-first stealing

4.5 Experiments

4.5.1 Methods and environments

Our experimental setups are just as we described in section 3.3.1 and below are the

differences for our results in this particular chapter.
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As we did on section 3.3.1, we use Open Community Runtime version 0.7 is parallel

runtime implementation. The base case algorithm is analogous to the default work-

stealing algorithm for macro-dataflow programs discussed in the previous chapter.

For a machine with N execution units, we create N workers with a total of N double

ended first-in/last-out queues for ready tasks with one-to-one correspondence between

execution units, workers and deques. The default local work extraction is popping

the youngest task from the local queue. Once local work is depleted, the default

victim selection is random, and once a victim is selected the remote work extraction

(stealing) is getting the oldest task on that queue.

We proposed different heuristics above to ameliorate the default choices. Firstly,

we provide a locked queue implementation to provide a base case for our workpile

implementations in contrast to the lock-free deque implementation utilized by the

default implementation. Though it is possible to have lock-free implementation of

prioritized data structures, we chose to exclude their implementations as we postulate

that the need for frequent memory allocations and compare-and-swap operations will

not be amortized with the extra concurrency introduced on our experimental setups.

Our prioritized work queue implementations are specializations of the aforemen-

tioned locked queue. A total-ordered queue is a locked queue where the invariant

is tasked are total-ordered with respect to their annotations of expected granularity

estimates. A partially-ordered queue is a minimum binary heap on a circular queue

whose invariant is the heap order being maintained.

4.5.2 An inefficient Fibonacci

As we have argued the need for better heuristics to fit work-stealing and macro-

dataflow, we want to observe what are the impacts on a series-parallel benchmark
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expressed in macro-dataflow. We will be using an inefficient way of computing an ele-

ment of the Fibonacci sequence, rather than the linear dynamic programming solution

for the sake of having an almost balanced series-parallel task graphed benchmark.

A task of height, h, leads to fib(h + 2) number of leaf nodes, as can be seen

on figure 3.5. If we were to take into account the intermediate empty spawn edges

and empty join synchronization edges, a spawn node of height, h, would still lead to

fib(h+2) leaf nodes. This sub-tree of spawn tasks would lead to fib(h+2)−2 in nodes

excluding the root of the sub-tree, since this sub-tree is a binary tree. Since there is

also a dual join edge tree for synchronization, there is an additional fib(h + 2)− 1 as

this time the dual root has to be counted too. So the annotation for a pessimistic tree

would have been 3× fib(h + 2)− 3 rather than the actual fib(h + 2) leaf tasks with

actual computation. For optimistic descendance we would have to consider all the

join edges on the dominance frontier of the sub-tree, which would add an additional

maxh − h amount of empty synchronization nodes.

#cores 1 2 4 8 12 18 36
min lock-free
time(s)

68.657 35.339 19.154 10.886 7.361 4.979 2.482

min locked
time(s)

68.631 35.218 19.214 10.903 7.359 4.973 2.504

median lock-
free steals

0 116696 100188 35913 77515 84284 109050

median
locked steals

0 216437 104171 47349 60647 74136 65074

Figure 4.6 : fib(50) with cut-off 25 results for the Xeon Machine using OCR v0.7
lock-free vs locked ready task queues

When we showcase task graphs of benchmarks throughout this work, we abstained

from showing the dual join edges of the task graph that does not carry any work but
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is there only to propagate the synchronization and reduce it to a single done node.

That is why, we argued that series-parallel graph having benchmarks have a task

graph that are trees. In that case, optimistic and pessimistic descendance relations

converge to the actual descendance relations. We will be displaying the results for

this case, where the descendance counts reflect the actual descendance relations by

annotating the tasks with how many leaf task nodes with actual computation they

dominate.

Figure 4.6 shows that the locked ready task queue utilization has a 1% slow-

down effect on the maximal core case and competitive on all other configurations.

We observe the number of steals attempts diminish which can be attributed to the

contention introduced by the lock, as a failed steal attempt would take longer.

#cores 1 2 4 8 12 18 36
default steal
last no

min 68.631 35.218 19.214 10.903 7.359 4.973 2.504

descendance
time(s)

median 68.655 35.468 19.279 10.935 7.365 4.978 2.524

steal half min 68.619 35.395 19.180 10.875 7.362 4.970 2.519
descendance
time(s)

median 68.655 35.628 19.236 10.917 7.366 4.978 2.539

Figure 4.7 : fib(50) with cut-off 25 results for the Xeon Machine using OCR v0.7
partially sorted descendance heuristic impact on execution time

We argued that for a series-parallel task graphed benchmark our heuristics would

converge to the default work-stealing algorithm. Figure 4.7 shows the slowdown to

be around 1% in execution time for following our heuristics which can be attributed

to the overheads introduced.

Besides outliers that can be attributed to the randomness of the steal algorithm,

figure 4.8 shows that while the execution time remains competitive the number of
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#cores 2 4 8 12 18 36
default steal
last no

min 164598 34466 37398 24488 28377 44748

descendance
time(s)

median 216437 104171 47349 60647 74136 65074

steal half min 6907 38924 13697 26219 56321 31416
descendance
time(s)

median 194245 82089 43195 62390 66040 57057

Figure 4.8 : fib(50) with cut-off 25 results for the Xeon Machine using OCR v0.7
partially sorted descendance heuristic impact on steal attempts

steals drops while our proposed heuristics are used though the underlying locked

queue implementation remains. Our steal half algorithm utilizing descendance rela-

tion allows us to steal more accurate halves than stealing the oldest element that is

roughly half the amount of work enqueued.

#cores 1 2 4 8 12 18 36
default steal
last no

min 68.710 35.538 19.174 10.905 7.370 4.979 2.520

descendance
time(s)

median 68.759 35.659 19.208 10.928 7.373 4.987 2.541

steal half min 68.720 35.420 19.191 10.894 7.366 4.976 2.522
descendance
time(s)

median 68.765 35.687 19.229 10.929 7.370 4.985 2.545

Figure 4.9 : fib(50) with cut-off 25 results for the Xeon Machine using OCR v0.7
sorted descendance heuristic impact on execution time

Comparing figures 4.7 and 4.8 versus figures 4.9 and 4.10, we can see the extra

overhead introduced by maintaining a total order of granularity for a more precise

steal half algorithm is not amortized and the execution times gets 0.5% worse. On a

sorted task queue of granularities stealing only the oldest task provides fewer number
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#cores 2 4 8 12 18 36
default steal
last no

min 98721 20260 36500 38488 60455 24110

descendance
time(s)

median 194452 80070 47988 65721 73411 51031

steal half min 109079 5599 30834 37670 29768 38191
descendance
time(s)

median 203530 72110 40632 65824 62432 61162

Figure 4.10 : fib(50) with cut-off 25 results for the Xeon Machine using OCR v0.7
sorted descendance heuristic impact on steal attempts

of steal attempts compared to a partial order, however for the steal half the work case

partially ordered queues have fewer steals.

#cores 1 2 4 8 16 32 48 60
min lock-free
time(s)

78.965 39.515 19.764 9.889 4.988 2.498 1.673 1.342

min locked
time(s)

78.963 39.512 19.762 9.890 4.988 2.498 1.672 1.341

median lock-
free steals

0 8856 12282 7948 9925 9648 13794 19202

median
locked steals

0 8692 34426 6022 5563 10105 15811 18800

Figure 4.11 : fib(45) with cut-off 25 results for the XeonPhi Machine using OCR v0.7
lock-free vs locked ready task queues

XeonPhi architecture features a simpler in-order core that does not seem to benefit

more from the lock-free queue implementation, as it is seen on figure 4.11. As we

argued before, we anticipate the default of stealing last and explicitly stealing half

heuristic should be comparable for this benchmark. Figures 4.12 and 4.13 for partially

sorted and figures 4.14 and 4.15 for totally ordered queues show this property to

hold for execution time. For the maximal core case, we observe the number of steals
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#cores 1 2 4 8 16 32 48 60
default steal
last no

min 78.963 39.512 19.762 9.890 4.988 2.498 1.672 1.341

descendance
time(s)

median 78.971 39.519 19.765 9.938 4.993 2.500 1.678 1.348

steal half min 78.971 39.516 19.763 9.889 4.987 2.497 1.670 1.343
descendance
time(s)

median 78.979 39.519 19.766 10.034 4.995 2.501 1.674 1.348

Figure 4.12 : fib(45) with cut-off 25 results for the XeonPhi Machine using OCR v0.7
partially sorted descendance heuristic impact on execution time

#cores 2 4 8 16 32 48 60
default steal
last no

min 5389 6709 4755 4494 8622 10633 13176

descendance
time(s)

median 8692 34426 6022 5563 10105 15811 18800

steal half min 5656 6773 4584 6588 7756 10045 18378
descendance
time(s)

median 9341 14649 6967 7845 10852 11611 20394

Figure 4.13 : fib(45) with cut-off 25 results for the XeonPhi Machine using OCR v0.7
partially sorted descendance heuristic impact on steal attempts

#cores 1 2 4 8 16 32 48 60
default steal
last no

min 79.093 39.577 19.787 10.049 4.960 2.502 1.674 1.343

descendance
time(s)

median 79.099 39.586 19.792 10.065 4.963 2.504 1.678 1.349

steal half min 79.096 39.574 19.793 9.904 5.000 2.501 1.673 1.343
descendance
time(s)

median 79.102 39.576 20.313 10.054 5.005 2.503 1.678 1.350

Figure 4.14 : fib(45) with cut-off 25 results for the XeonPhi Machine using OCR v0.7
sorted descendance heuristic impact on execution time
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#cores 2 4 8 16 32 48 60
default steal
last no

min 6968 9378 4097 5284 6799 12746 12534

descendance
time(s)

median 9573 16604 6004 6935 10986 14107 19120

steal half min 6765 7168 4772 4654 7832 9857 17863
descendance
time(s)

median 10121 12089 7221 7644 9569 14622 20741

Figure 4.15 : fib(45) with cut-off 25 results for the XeonPhi Machine using OCR v0.7
sorted descendance heuristic impact on steal attempts

increases slightly for the annotated steal half the work cases. One explanation for this

phenomenon is that stealing half by stealing multiple tasks may suffer from imbalances

worse than stealing the oldest task that is roughly the half. We steal tasks till we

pass the threshold of half the work, which may be much coarser than half the work

if the task passing the half threshold is coarse. This may lead to over-stealing and

ping-ponging to achieve load balance.

4.5.3 Smith-Waterman/Needleman-Wunsch sequence-alignment

In section 4.3, we talked about how pessimistic descendance can underestimate and

optimistic descendance can overestimate descendance relations. If we look at the

dependence graph at figure 3.10, we can see that except the outer most layer (the

first row and the first column) all pessimistic descendance counts are zero, since all

those tasks can be visited by distinctly multiple paths to the root task. In order to

simplify, and also observe the default unannotated behaviour, we treated all tasks as

leaf tasks for pessimistic descendance. So a steal-half heuristic uses a locked-queue

where half the oldest tasks are extracted. In contrast, on figure 4.16 we can see the

optimistic descendant counts overestimating the descendant tasks, by counting join
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O(n^7) O(n^6)

O(n^6) 4493

O(n^5)

1825

O(n^5) 1825 840

O(n^4)

643

339

O(n^3)

187

114

O(n^2)

41

29

O(n)

5

4

O(n^4) 643 339 159 63 19 3

O(n^3) 187 114 63 30 11 2

O(n^2) 41 29 19 11 5 1

O(n) 5 4 3 2 1 0

Figure 4.16 : Optimistic descendance count graph for sequence alignment

edges for every path over and over again. For example, the task annotated with a

descendant count of 5 on the diagonal, can lead to 3 immediate tasks, where 2 of

those tasks have descendant counts of 1 each, for the sink task node they enable.

However the sink task node is count on 3 separate occasions which lead to the count

of 5 rather than a 3. The recurrence relation to populate this table is not trivial

function. The bottom row is linear as all of them enable a task down a chain. The

row above is quadratic as the difference in two sequence is linear, and likely the row

above is cubic as the row below is quadratic. The values are symmetric across the

diagonal x + y = k, so the functions domain are just half the bottom half triangle.

The first four functions are f(x) = x, f(x) = x2 +3x+1, 2/3x3 +5x2 +40/3+11 and

1/3x4 + 14/3x3 + 77/3x2 + 196/3x + 63, and the functions above can be calculated

inductively from those or just fit to a curve of their ordinal. Building this table by

counts proved a much simpler exercise, so our benchmark calculates these counts and

annotates the tasks accordingly for optimistic descendance.
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#cores 1 2 4 8 12 18 36
min lock-free
time(s)

39.688 20.354 11.135 6.335 4.318 2.910 1.523

min locked
time(s)

39.694 20.418 11.096 6.356 4.320 2.906 1.520

median lock-
free steals

0 172135 844919 1063628 964971 796581 1084365

median
locked steals

0 248104 1048177 1009193 814662 721328 658999

Figure 4.17 : Matching strings of size 135K with tile size 576 for the Xeon machine
using OCR v0.7 lock-free vs locked ready task queues

Figure 4.17 shows the locked queues do not incur longer execution times and with

higher number of threads the number of steals diminish for the Xeon machine.

#cores 1 2 4 8 12 18 36
default steal
last no

min 39.694 20.418 11.096 6.356 4.320 2.906 1.520

descendance
time(s)

median 39.700 20.443 11.198 6.381 4.364 2.937 1.531

steal half
pessimistic

min 39.688 20.392 11.131 6.334 4.318 2.903 1.514

descendance
time(s)

median 39.695 20.451 11.179 6.384 4.349 2.946 1.539

steal half
optimistic

min 39.692 20.345 11.081 6.369 4.322 2.910 1.519

descendance
time(s)

median 39.701 20.499 11.169 6.394 4.353 2.938 1.533

Figure 4.18 : Matching strings of size 135K with tile size 576 for the Xeon machine
using OCR v0.7 partially sorted descendance heuristic impact on execution time

Taking the locked queues with the steal oldest task as a base case, we see on

figure 4.18 that steal half the work heuristic do not provide benefits for either descen-
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dance heuristic and introduced overheads are in the milliseconds scale for the median

case where the minimum execution time can be better for the pessimistic case.

#cores 2 4 8 12 18 36
default steal
last no

min 112229 369973 445747 426085 346991 526196

descendance
time(s)

median 248104 1048177 1009193 814662 721328 658999

steal half
pessimistic

min 38598 799094 1137233 544637 344246 519281

descendance
time(s)

median 161289 1102944 1511462 773097 739668 584397

steal half
optimistic

min 14497 404105 583300 613631 372815 473406

descendance
time(s)

median 144937 1087902 936369 942265 698295 665971

Figure 4.19 : Matching strings of size 135K with tile size 576 for the Xeon machine
using OCR v0.7 partially sorted descendance heuristic impact on steal attempts

Stealing half the work under pessimistic descendance heuristic leads to fewer num-

ber of steals with maximal core utilization for the median case where optimistic de-

scendance leads to more steal attempts, though optimistic descendance fares better

under fewer cores utilized.

Though maintaining a sorted queue introduces overheads and contention, fig-

ure 4.20 shows that the execution times are a couple percentage points better across

the board in comparison to a partially order queue case. However, stealing half the

work does not provide benefits as it did not for the partially ordered case.

Comparing figure 4.20 and 4.21, we observe that the number of steal attempts

have increased dramatically though the execution time went down. The contention,

overheads and the load imbalance introduced help the program run faster though it
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#cores 1 2 4 8 12 18 36
default steal
last no

min 39.685 20.374 11.085 6.267 4.277 2.897 1.496

descendance
time(s)

median 39.698 20.499 11.113 6.324 4.280 2.904 1.499

steal half
pessimistic

min 39.685 20.436 11.060 6.316 4.278 2.894 1.493

descendance
time(s)

median 39.697 20.488 11.093 6.341 4.279 2.901 1.503

steal half
optimistic

min 39.695 20.336 11.082 6.313 4.279 2.894 1.496

descendance
time(s)

median 39.701 20.495 11.101 6.334 4.282 2.896 1.505

Figure 4.20 : Matching strings of size 135K with tile size 576 for the Xeon machine
using OCR v0.7 sorted descendance heuristic impact on execution time

#cores 2 4 8 12 18 36
default steal
last no

min 2404488 865973 1372983 1612446 1201229 1228981

descendance
time(s)

median 2479098 1388011 1740426 2021978 1334203 1429434

steal half
pessimistic

min 2369563 517300 1128669 1253308 964977 1127862

descendance
time(s)

median 2399557 1303704 1630406 1706037 1344766 1274677

steal half
optimistic

min 2327468 598690 1126037 1371637 1195740 1008394

descendance
time(s)

median 2426383 1324075 1579062 1532670 1364124 1294009

Figure 4.21 : Matching strings of size 135K with tile size 576 for the Xeon machine
using OCR v0.7 sorted descendance heuristic impact on steal attempts

is busier stealing. As this application is memory bound, the bandwidth reduction

achieved through the load imbalance helps achieve better throughput.
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#cores 1 2 4 8 16 32 48 60
min lock-free
time(s)

134.766 67.669 34.743 17.197 8.677 4.513 3.209 2.768

min locked
time(s)

135.039 67.645 34.043 17.196 8.627 4.516 3.223 2.768

median lock-
free steals

0 510941 573992 561979 350153 473096 578762 603606

median
locked steals

0 515302 701050 354854 357391 360883 467350 367362

Figure 4.22 : Matching strings of size 67.5K with tile size 432 for the XeonPhi machine
using OCR v0.7 lock-free vs locked ready task queues

As it was the case for fibonacci on XeonPhi, for string alignment using a locked

queue had no impact on execution time. The number of steals are noticeably fewer

for the maximal core case for the locked queue implementation.

#cores 1 2 4 8 16 32 48 60
default steal
last no

min 135.039 67.645 34.043 17.196 8.627 4.516 3.223 2.768

descendance
time(s)

median 135.449 67.784 34.176 17.377 8.790 4.614 3.248 2.814

steal half
pessimistic

min 135.084 67.635 33.987 17.263 8.634 4.512 3.237 2.756

descendance
time(s)

median 135.370 67.821 34.185 17.336 8.812 4.531 3.265 2.782

steal half
optimistic

min 134.791 67.478 34.052 17.117 8.674 4.520 3.222 2.733

descendance
time(s)

median 135.168 67.729 34.203 17.276 8.823 4.590 3.277 2.773

Figure 4.23 : Matching strings of size 67.5K with tile size 432 for the XeonPhi machine
using OCR v0.7 partially sorted descendance heuristic impact on execution time

Utilizing steal half heuristics had a miniscule advantage for execution time for the
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maximal core case for partially sorted queues, as can be seen on figure 4.23.

#cores 2 4 8 16 32 48 60
default steal
last no

min 214428 434656 160895 258134 290729 410202 313375

descendance
time(s)

median 515302 701050 354854 357391 360883 467350 367362

steal half
pessimistic

min 187241 142356 119132 258707 293072 383022 410298

descendance
time(s)

median 683617 867473 269778 434857 373860 441834 480433

steal half
optimistic

min 195845 478352 330130 184977 263363 372835 445425

descendance
time(s)

median 710379 801994 391780 289037 365076 406908 483459

Figure 4.24 : Matching strings of size 67.5K with tile size 432 for the XeonPhi machine
using OCR v0.7 partially sorted descendance heuristic impact on steal attempts

As it is for the Xeon results case, this miniscule improvement on execution time

can be attributed to the load imbalance introduced by contention as we see number

of steal attempts increase when all the cores are used.

We can see the impact of more steal attempts leading to better execution times

further on figures 4.25 and 4.26 presenting the cases for sorted, more contentious

queues.

4.5.4 Cholesky decomposition

Just like we discussed for sequence alignment, cholesky factorization also has a graph

where pessimistic dominance relations are almost as informative as treating each task

as a leaf. Accordingly, we will also use the pessimistic descendance counts of 1 for

all tasks, and resort to the default behaviour. For optimistic descendance counts, as
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#cores 1 2 4 8 16 32 48 60
default steal
last no

min 135.055 67.641 33.890 17.000 8.585 4.470 3.204 2.716

descendance
time(s)

median 135.365 67.806 33.944 17.018 8.653 4.489 3.227 2.758

steal half
pessimistic

min 134.872 67.635 33.873 17.000 8.595 4.468 3.194 2.722

descendance
time(s)

median 135.410 67.742 33.995 17.162 8.614 4.486 3.233 2.749

steal half
optimistic

min 135.238 67.772 34.702 16.995 8.587 4.469 3.201 2.718

descendance
time(s)

median 135.444 67.824 34.861 17.029 8.595 4.486 3.227 2.752

Figure 4.25 : Matching strings of size 67.5K with tile size 432 for the XeonPhi machine
using OCR v0.7 sorted descendance heuristic impact on execution time

#cores 2 4 8 16 32 48 60
default steal
last no

min 164929 213178 371432 394147 501369 580709 621771

descendance
time(s)

median 527960 451255 559418 620387 641609 653999 734910

steal half
pessimistic

min 202469 238869 403338 397109 570022 492892 543412

descendance
time(s)

median 516578 533688 534673 616280 667771 673093 660325

steal half
optimistic

min 418276 232263 445089 444523 532175 549408 499212

descendance
time(s)

median 479753 284024 548128 669186 658722 713847 635061

Figure 4.26 : Matching strings of size 67.5K with tile size 432 for the XeonPhi machine
using OCR v0.7 sorted descendance heuristic impact on steal attempts

expected the numbers are overly optimistic and though the computation is of O(n3),

the root task (the very first dpotrf) has the annotation to the order of O(22n+1). Let
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Figure 4.27 : Optimistic descendance counts for cholesky factorization

us observe the optimistic descendance counts for the example trace on figure 4.27.

We can start seeing the effect of the optimism exaggerating the counts at iteration 2,

where every dsyrk and dgemm are claiming credit for all the tasks downstream, where

it is their join which would lead to those tasks executions.

The recurrence relations can be solved to return a polynomial, which we feed
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as the annotations. Let us first start with noting the part of the function that is

common to calculating any class of task, g, to be (19× (22k+1)− 9k2 + 3k + 43)/27,

where k is difference of the range of the iteration space(5 for the example) and the

current iteration number. For example, the descendance counts for dpotrf tasks are

g(k − 1) − k − 2 . If we label the aforementioned function gdpotrf , then gdpotrf (1) =

0, gdpotrf (2) = 3, gdpotrf (3) = 18, gdpotrf (4) = 83, and gdpotrf (5) = 350. Tasks of the

dtrsm kind have the function gdtrsm(k, i) = g(k − 1 − i) × 2i − k − 2, where k still

is used as the difference of the range of the iteration space and the current iteration

number and i is the row index on the column of dtrsm, where i = 0 for the dpotrf

tile of the same iteration. So gdtrsm(5, 1) = 171, gdtrsm(5, 2) = 85, gdtrsm(5, 3) = 49,

and gdtrsm(5, 4) = 41. Once we have the formulas for dpotrf and dtrsm, dsyrk

and dgemm functions can be calculated from them. As we initially discussed, these

matrix multiple update variations are the computations that introduce the loop-

carried dependences. So a dgemm(or dsyrk) starts a chain that ends in a non matrix

multiply task. For example, we can see the whole iteration 1 numbers on the graph

are 1 fewer than their corresponding iteration 0 ancestors. Likely, if we look at the

task labeled 6 at the iteration 0, it is a chain that feeds into the dpotrf of iteration

3, accumulating 1 on every iteration. For the sake of completeness, the function for

dsyrk is gdsyrk(k, j) = g(k − 1 − j) − k − 2 + 2j, where k is as mentioned above

and j is the row/column number where j = 0 for the dpotrf tile of the iteration,

so gdsyrk(4, 1) = 19, gdsyrk(4, 2) = 5 and gdsyrk(4, 3) = 3. Lastly, gdgemm(k, i, j) =

g(k − 1 − i) × 2i−j − k − 2 + 2j, where k is the same as the functions above, and i

and j are the row and the column indexes where i = 0 and j = 0 for the dpotrf tile

of the iteration. So gdgemm(4, 2, 1) = 10, gdgemm(4, 3, 1) = 8 and gdgemm(4, 3, 2) = 4.
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Results

#cores 1 2 4 8 12 16 18 36
min
lock-free
time(s)

16.475 8.139 4.193 2.349 1.612 1.353 1.260 0.670

min
locked
time(s)

16.443 8.216 4.210 2.352 1.620 1.350 1.276 0.695

median
lock-free
steals

0 5545867 1872148 868718 1339106 1657395 1730409 2171493

median
locked
steals

0 6283501 1671696 867156 1094485 1195346 1213038 1212280

Figure 4.28 : Cholesky decomposition results for a 12K by 12K matrix with 192 by
192 tiles using OCR v0.7 with Intel MKL for the Xeon machine lock-free vs locked
ready task queues

Let us observe the effect on the proposed heuristics on the Xeon machine. We

use the tile size 192 by 192 doubles on a 12288 by 12888 matrix, which provides the

best results in FLOPS. First, we compare the default lock-free deque implementation

with the locked deque we use for this section on figure 4.28. The locked deque

implementation used for ready work queues causes a 3% drop on throughput for the

36 core case and for most cases it is still competitive within that noise range. As the

queues are locked, even with the same policies for scheduling, the number of steals

are drastically reduced compared to the lock-free case, since pop and steal can not

be run concurrently anymore. We will be using the locked queues implementation as

our base case for the heuristics results to be addressed below.

Figure 4.29 shows the results for partially ordered ready tasks for optimistic and

pessimistic descendance counts and for steal half the available work policy. Using a
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#cores 1 2 4 8 12 16 18 36
default steal
last no

min 16.443 8.217 4.210 2.352 1.620 1.350 1.276 0.695

descendance
time(s)

median 16.551 8.250 4.231 2.373 1.633 1.360 1.284 0.711

steal half
pessimistic

min 16.339 8.195 4.216 2.359 1.613 1.348 1.279 0.671

descendance
time(s)

median 16.543 8.282 4.244 2.380 1.632 1.361 1.290 0.683

steal half
optimistic

min 16.345 7.981 4.243 2.371 1.625 1.356 1.261 0.663

descendance
time(s)

median 16.556 8.150 4.311 2.402 1.647 1.370 1.278 0.674

Figure 4.29 : Cholesky decomposition results for a 12K by 12K matrix with 192
by 192 tiles using OCR v0.7 with Intel MKL for the Xeon machine partially sorted
descendance heuristic impact on execution time

steal half the amount of ready work according to pessimistic or optimistic descendance

relations lead to 3% or 5% improvement in throughput respectively for the 36 core

case for minimum execution times of 10 runs. For the median execution times the

improvement is 4% and 5% respectively. These results are better than the default

lock-free case which we have shown in the previous chapter to have outperformed

MKL, and make up for the overhead and contention introduced by the locked deques.

The impact on the number of steals can be seen on figure 4.30. With the exception

of the 2 core case, stealing half the estimated work optimistically or pessimistically

lead to fewer number of steals and better load balance.

Comparing figures 4.31 and 4.32 versus figures 4.29 and 4.30, tells us that for

the fewer number of cores the overhead and contention introduced by maintaining

a contiguous ordered queue is amortized. However scaling is not as steep as the
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#cores 2 4 8 12 16 18 36
default steal
last no

min 5879889 1574198 814140 1047042 1154373 1175952 1023233

descendance
time(s)

median 6283501 1671696 867156 1094485 1195346 1213038 1212280

steal half
pessimistic

min 5817302 1545589 786202 1018884 1122402 1124866 986641

descendance
time(s)

median 10665503 1661004 815038 1058976 1148046 1164886 1078297

steal half
optimistic

min 5858771 1542175 764717 1032906 1126424 1157081 1004314

descendance
time(s)

median 15505355 1665103 797596 1058638 1179674 1192685 1134369

Figure 4.30 : Cholesky decomposition results for a 12K by 12K matrix with 192
by 192 tiles using OCR v0.7 with Intel MKL for the Xeon machine partially sorted
descendance heuristic impact on steal attempts

#cores 1 2 4 8 12 16 18 36
default steal
last no

min 15.271 7.959 4.266 2.423 1.657 1.367 1.303 0.708

descendance
time(s)

median 15.379 8.052 4.308 2.439 1.677 1.395 1.316 0.713

steal half
pessimistic

min 15.247 7.784 4.134 2.356 1.600 1.336 1.268 0.703

descendance
time(s)

median 15.390 7.867 4.164 2.366 1.623 1.349 1.276 0.710

steal half
optimistic

min 15.270 8.009 4.260 2.415 1.654 1.376 1.302 0.705

descendance
time(s)

median 15.393 8.057 4.295 2.441 1.673 1.391 1.310 0.722

Figure 4.31 : Cholesky decomposition results for a 12K by 12K matrix with 192 by
192 tiles using OCR v0.7 with Intel MKL for the Xeon machine sorted descendance
heuristic impact on execution time
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#cores 2 4 8 12 16 18 36
default steal
last no

min 5938836 1554192 757351 1029531 1147752 1152238 1064868

descendance
time(s)

median 15779814 1727265 780512 1090875 1186915 1199266 1105933

steal half
pessimistic

min 5622065 1496201 776626 1030586 1080877 1144362 1052693

descendance
time(s)

median 15282867 1709527 806670 1055041 1118891 1182699 1139030

steal half
optimistic

min 5555446 1545787 759326 1027088 1087020 1126756 1073924

descendance
time(s)

median 6056469 1631443 804290 1044307 1132836 1181772 1172316

Figure 4.32 : Cholesky decomposition results for a 12K by 12K matrix with 192 by
192 tiles using OCR v0.7 with Intel MKL for the Xeon machine sorted descendance
heuristic impact on steal attempts

partially ordered case and the 36 core case for the sorted queue results show a lower

throughput compared to the partially order case. The overheads and contentions

introduced challenge the scaling sought by the heuristics we proposed.

On XeonPhi, our base case results from the previous chapter is presented in fig-

ure 3.17. Let us see the impact of our proposals above by changing one parameter

at a time. First, let us compare the impact of a locked deque implementation we use

that supports the heuristics we described. We start with presenting the values for the

tile size providing the highest throughput, 96 by 96 doubles.

Figure 4.33 shows that the lock contention expected from 60 workers stealing

from one another did not materialize. On the contrary, the minimum execution

time improved by 0.5%. Additionally, the number of steals also decreased for higher

number of cores. One outlier is the two core case, where the minimum is fewer than
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#cores 1 2 4 8 16 32 48 60
min
lock-free
time(s)

27.845 13.952 7.039 3.568 1.833 0.972 0.718 0.642

min
locked
time(s)

27.878 13.963 7.027 3.569 1.835 0.980 0.723 0.639

median
lock-free
steals

0 2141999 229449 357942 561748 464851 798042 925303

median
locked
steals

0 5223875 257613 371591 459488 370755 614567 748908

Figure 4.33 : Cholesky decomposition results for a 6K by 6K matrix with 96 by 96
tiles using OCR v0.7 with Intel MKL for the XeonPhi machine lock-free vs locked
ready task queues

the lock-free case but 6 out of 10 trials ended up stealing 5 million times, making the

median much higher. However, we should note it is possible for the fewer number of

steals and faster execution time to be caused by contention. The workers could be

spinning rather than overloading the cache coherency and main memory bandwidth.

For our granularity work, the locked queue is used as the base line to compare the

impact of the heuristics.

Figures 4.38, 4.39, 4.40, 4.41 show the impact of the heuristics on a smaller tile

size of 64 by 64 doubles. As we expect parallelism to increase in the future in order

to fit power budgets, to facilitate strong scaling one has to support smaller tile sizes.

We see that stealing half the estimated work has a bigger impact on smaller tile sizes

compared to the tile size we used that provided the maximum throughput. However,

as in other cases, sorted contiguous ready work queues do not amortize the overheads

and contentions introduces for maximal core utilization.
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#cores 1 2 4 8 16 32 48 60
default steal
last no

min 27.878 13.963 7.027 3.569 1.835 0.980 0.723 0.639

descendance
time(s)

median 27.892 13.980 7.099 3.610 1.846 0.985 0.733 0.661

steal half
pessimistic

min 27.872 14.033 7.125 3.597 1.836 0.977 0.710 0.622

descendance
time(s)

median 27.882 14.044 7.176 3.628 1.851 0.983 0.719 0.629

steal half
optimistic

min 27.859 14.179 7.028 3.562 1.829 0.974 0.722 0.631

descendance
time(s)

median 27.870 14.199 7.042 3.586 1.846 0.983 0.729 0.648

Figure 4.34 : Cholesky decomposition results for a 6K by 6K matrix with 96 by
96 tiles using OCR v0.7 with Intel MKL for the XeonPhi machine partially sorted
descendance heuristic impact on execution time

#cores 2 4 8 16 32 48 60
default steal
last no

min 2048945 242353 360395 437370 364267 506046 732313

descendance
time(s)

median 5223875 257613 371591 459488 370755 614567 748908

steal half
pessimistic

min 1965356 212124 345750 423646 347285 534442 687727

descendance
time(s)

median 1996673 248181 360618 443965 351748 570376 704295

steal half
optimistic

min 1979577 215427 351142 427654 354911 561870 709329

descendance
time(s)

median 5056339 243876 364379 447438 362438 603603 725036

Figure 4.35 : Cholesky decomposition results for a 6K by 6K matrix with 96 by
96 tiles using OCR v0.7 with Intel MKL for the XeonPhi machine partially sorted
descendance heuristic impact on steal attempts
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#cores 1 2 4 8 16 32 48 60
default steal
last no

min 30.690 15.983 7.418 3.715 1.876 0.986 0.713 0.617

descendance
time(s)

median 30.767 16.058 7.437 3.729 1.886 0.989 0.718 0.634

steal half
pessimistic

min 30.682 15.165 7.524 3.767 1.904 1.020 0.746 0.663

descendance
time(s)

median 30.786 15.192 7.551 3.784 1.917 1.026 0.756 0.682

steal half
optimistic

min 30.742 15.139 7.445 3.702 1.884 0.987 0.715 0.624

descendance
time(s)

median 30.780 15.181 7.475 3.722 1.895 0.994 0.723 0.628

Figure 4.36 : Cholesky decomposition results for a 6K by 6K matrix with 96 by 96
tiles using OCR v0.7 with Intel MKL for the XeonPhi machine sorted descendance
heuristic impact on execution time

#cores 2 4 8 16 32 48 60
default steal
last no

min 1785920 216064 362403 451408 352923 495241 695828

descendance
time(s)

median 1810773 252212 370426 453404 355821 578489 703770

steal half
pessimistic

min 2028367 232253 345794 450156 360563 496183 705870

descendance
time(s)

median 5043777 244381 364736 461513 368264 584401 745836

steal half
optimistic

min 1956378 231960 348784 410939 345974 472524 680292

descendance
time(s)

median 4643201 242595 361844 441988 352903 564978 692718

Figure 4.37 : Cholesky decomposition results for a 6K by 6K matrix with 96 by 96
tiles using OCR v0.7 with Intel MKL for the XeonPhi machine sorted descendance
heuristic impact on steal attempts
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#cores 1 2 4 8 16 32 48 60
default steal
last no

min 35.238 17.833 9.060 4.546 2.303 1.229 0.902 0.826

descendance
time(s)

median 35.253 17.871 9.123 4.587 2.338 1.239 0.927 0.835

steal half
pessimistic

min 35.244 17.929 9.022 4.563 2.306 1.211 0.883 0.757

descendance
time(s)

median 35.252 18.025 9.071 4.577 2.317 1.224 0.889 0.772

steal half
optimistic

min 35.245 18.159 8.939 4.499 2.286 1.212 0.897 0.796

descendance
time(s)

median 35.257 18.258 8.965 4.524 2.314 1.232 0.904 0.815

Figure 4.38 : Cholesky decomposition results for a 6K by 6K matrix with 64 by
64 tiles using OCR v0.7 with Intel MKL for the XeonPhi machine partially sorted
descendance heuristic impact on execution time

#cores 2 4 8 16 32 48 60
default steal
last no

min 2345957 239281 405546 491642 432739 697022 868260

descendance
time(s)

median 5694922 261125 417818 515249 443344 729196 884956

steal half
pessimistic

min 2255943 241122 403568 476623 395313 590154 771575

descendance
time(s)

median 3985901 259792 408756 500862 399478 662676 788819

steal half
optimistic

min 2270256 239354 389497 476122 412845 576533 829182

descendance
time(s)

median 3895726 262234 409494 510881 421011 695410 838279

Figure 4.39 : Cholesky decomposition results for a 6K by 6K matrix with 64 by
64 tiles using OCR v0.7 with Intel MKL for the XeonPhi machine partially sorted
descendance heuristic impact on steal attempts
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#cores 1 2 4 8 16 32 48 60
default steal
last no

min 42.311 19.997 9.659 4.760 2.391 1.251 0.902 0.801

descendance
time(s)

median 42.326 20.033 9.999 4.786 2.422 1.264 0.911 0.821

steal half
pessimistic

min 42.301 20.270 10.050 5.000 2.512 1.325 0.969 0.838

descendance
time(s)

median 42.341 20.303 10.066 5.015 2.524 1.338 0.980 0.846

steal half
optimistic

min 42.307 19.966 9.657 4.767 2.414 1.269 0.905 0.784

descendance
time(s)

median 42.330 20.015 9.779 4.838 2.452 1.284 0.920 0.831

Figure 4.40 : Cholesky decomposition results for a 6K by 6K matrix with 64 by 64
tiles using OCR v0.7 with Intel MKL for the XeonPhi machine sorted descendance
heuristic impact on execution time

#cores 2 4 8 16 32 48 60
default steal
last no

min 2347000 244532 391480 487895 398495 614862 836222

descendance
time(s)

median 5670729 263937 423531 496045 402649 664766 853802

steal half
pessimistic

min 2299815 254199 395518 482656 405872 620655 786072

descendance
time(s)

median 2321755 279799 413318 502440 412174 675328 796520

steal half
optimistic

min 2236455 239951 385190 470013 391511 616382 780760

descendance
time(s)

median 2258287 254851 414864 495533 400599 647527 825821

Figure 4.41 : Cholesky decomposition results for a 6K by 6K matrix with 64 by 64
tiles using OCR v0.7 with Intel MKL for the XeonPhi machine sorted descendance
heuristic impact on steal attempts
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Chapter 5

Locality-aware Scheduling in Event-Driven
Runtime Systems

5.1 Introduction

In previous chapters, we discussed why macro-dataflow parallel programming models

support more general task-graphs than nested fork/join models. The support for more

general task-graphs required us to address the granularity aspect of the underlying

runtime work-stealing algorithm, which we covered in chapter 4.

Work-stealing algorithms for series-parallel graphs do not only have inherent gran-

ularity benefits, but also locality benefits. Let us recap the discussion on the gran-

ularity benefits of restricting task-graphs to series-parallel graphs and stealing the

oldest task first, from section 4.1. A thread exploring the task graph traverses the

data structure in a depth-first fashion and enables unexplored paths to be stolen by

idle threads. Series-parallel task graphs are declaring control dependences between

tasks because of their imperative nature. Since data dependences have to have been

satisfied for a child task at creation time, the control dependence graph is also a

superimposed data-dependence graph. So as tasks get further decomposed deeper

on the tree, these tasks’ input data are also getting decomposed, and therefore the

memory footprint is anticipated to get smaller. As data footprint gets smaller, the

data is likelier to fit in the closest hierarchy in memory. As a thread traverses the task

graph in depth-first fashion, and leaving a last-in first-out (youngest to oldest) trail
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of unexplored paths, the thread is executing tasks that are closest on the task graph

topology. If the data decomposition closeness matches the task decomposition, this

algorithm has tight locality bounds with a least-recently-used eviction policy. Ad-

ditionally, since stolen tasks are also sources of series-parallel graphs (i.e. roots of

task-trees), the properties hold for stolen sub-trees of tasks recursively.

We also talked about divide-and-conquer algorithms being a good fit for series-

parallel models. A thread with a private cache using divide-and-conquer recursion

(considering it is executing the non-stolen part of its task graph serially) can also be

classified as a cache-oblivious algorithm [40].

Locality benefits of executing tasks that are closer in an execution graph on the

same processor for work-stealing runtimes have been covered in [41] and in [42]. Blu-

mofe, in [42] shows that the subset of computation graphs that are series-parallel

(nested fork/join) incur better locality. A detailed theoretical discussion on the lo-

cality properties of series-parallel task graphs can be found on [43, 44, 45, 46].

In our discussions in chapter 4, we argued stealing oldest task has granularity

benefits and it is expected on average to have the tasks available for stealing from a

thread are implicitly ordered from coarse to fine grain. The same property can be

extended to locality. The newest tasks are likelier to consume data that is close to

their sibling task’s data that have left the cache favorably dirty for the newest tasks.

If the cache holds more data and uses least recently used eviction policies, the cache

is likelier to hold data from closer levels of their pedigree than further ones.

As macro-dataflow models utilize data dependence as a first-level construct, ap-

plication programmers can declare computations that are unstructured DAGs, which

are a superset of nested series-parallel graphs. Optimizing locality is more challenging

in the more general context of DAG parallelism, relative to fork-join parallelism [47].
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This follows from the fact that is also covered in section 4.2. We discussed for fig-

ure 4.4 that we can not statically deduce the availability of predecessors for a task,

since in our model there can be more than one successor per task. A task can only

become ready when all of its dependences are satisfied; the order these dependences

may be satisfied is schedule dependent and can only be deduced at runtime. This

impacts locality, because now the closeness in the task graph is also schedule depen-

dent. Additionally the distance to a single predecessor, a constant, is sufficient for a

locality metric for series-parallel graphs, where the distance metric is n-dimensional

for a task with n predecessor tasks.

We will explore data-structures and policies adopted by work-stealing runtimes

and propose ameliorations for better locality results for event-driven runtimes using

work-stealing.

5.2 Task queues

Task queues, in conjunction with policies for local work extraction and work stealing,

impose an implicit ordering as we discussed. We will observe the implications of data

structure choices for task queues for locality optimizations.

5.2.1 Deques

As discussed before, double ended last-in first-out queues (deques) have been the data

structure of choice [25, 35, 48] when it comes to implementing task queues for work

stealing runtimes.

We will be re-using the figure 5.1 to make the locality discussion clearer for work-

stealing using deques. Here we observe a divide-and-conquer benchmark’s task graph

unfolding, and the state of the worker (and therefore the deque) doing the unfolding.
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poppush

Figure 5.1 : Task graph of a divide-and-conquer application run under work-first
policy

On this state, we expect taskE to have the most data locality as taskD and taskC ’s

executions may have brought its data to the closest memory hierarchy. The data

brought in for taskB is likelier to be evicted than taskD or taskE’s data, so taskE

is a better candidate for locality than taskF . One can inductively build the same

argument for all the explored paths’ root tasks. Additionally, this tree could have

been a stolen task subtree, and therefore the properties also hold for stolen tasks.

B

A

I

C F J M

D E G H K L ON

N

J

B steal

poppush

Figure 5.2 : Task graph of a divide-and-conquer application run under help-first policy

We can also observe the impact of a help-first policy on figure 5.2, which is the

mirror image of the work-first picture with the same properties. It is the depth-

first traversal, not the left-most child exploration that matters. Help-first policy is
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likelier to behave like a breadth-first traversal when tasks have higher fan-out and

the task-graph is not recursively-decomposed.

BA C

ED F

B
steal
poppush

HG I

BA C

ED F

steal
poppush D

HG I

Figure 5.3 : Non series-parallel task graphs

Now, let us observe a non series-parallel task graph as in figures 5.3, left for work-

first and right for help-first policies. On the left side of the figure, we can see the

scheduler picked taskA, then taskD and lastly taskG to be executed. The data that is

freshest to be consumed on the memory is taskG’s, then taskD’s and lastly taskA’s.

To take advantage of better locality, one might want to schedule taskH , but because

of this particular runtime schedule, that task is not yet available to be executed and

the least local task, taskB, will be chosen. This is not the only possible runtime

schedule, as can be observed from the graph on the right for figure 5.3.

We can conclude that a deque does not provide the same implicit locality or

granularity orderings because of the schedule dependent nature of the task frontier
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and the not taking multiple paths converging being taken into account. Since we do

not want to constrain our runtime to divide-and-conquer like programs, we need task

queues besides deques for when the assumptions that make deques favorable do not

hold anymore.

5.2.2 Explicitly prioritized data-structures

In section 5.2.1, we argued that deques do not implicitly order tasks for locality and

granularity for non-series-parallel graphs. Therefore, we postulate that we need task

graphs where the ordering, or classifying, of tasks are more explicit and schedule

dependent since locality metrics are schedule dependent for DAG parallelism.

One possible locality measure for tasks, is the dynamically calculated cost of

bringing the data to consumer task. As our models have explicit producer/consumer

relationships through dependences, and since shared data objects among tasks are also

explicitly expressed, we can keep track of these dynamically at the runtime system.

Therefore we can estimate where the data, that a task depends on, are and how much

it would cost to bring all that data in at scheduling time for that task. If we employ

a priority queue, instead of a deque, and use the cost of data movement per task as

the priority, we will have a task queue that has a most local to least local ordering of

tasks. These costs are computed when a task becomes ready and remains constant

as long as it stays on the same queue. This simplifies the implementation at the cost

of accuracy, but saves us from the cost we would incur from simulating caches.

One major assumption here is knowing where dependences have been satisfied

and where the data that satisfies the dependence is located. Since dependences are

monotonic structures that can be satisfied only once, we can deduce where the de-

pendences have been provided. However, what matters is knowing where the data
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that satisfied the dependence lives. For simplicity, a one-to-one correspondence can

be assumed initially, as if the ‘producer’ of the data is also the ‘creator’ or ‘allocator’

(or ‘over-writer’ if the dependence is a storage dependence). On a cache-architecture,

if a data is consumed in two separate contexts, the data can be replicated to live in

more than one place, making the placement tracking more complicated. For simplic-

ity, we will initially focus on the intrinsic data transfer effects of locality and assume

that each worker thread runs on a core with an unbounded eviction-free cache. This

ignores the impact of capacity and conflict misses. Additionally, since caches are not

of infinite size, data eventually gets evicted which should also be taken into account.

This locality ordering for a task per thread is ‘dynamic’, as it is delayed until

creation time. However, another policy decision to make is to decide if the costs (and

therefore priorities) should also change dynamically. One option is to simplify the

design at the cost of inaccuracy and not update the cost of a task based on data

eviction and replication, the other is to simulate a cache in software to update costs

accordingly at runtime. Initially, we opt for not updating cost of a task once it is

enqueued.

Another possibility we are exploring is prioritizing the tasks on the critical path

and reducing the risk of exposing the task graph in a fashion that would introduce

bottlenecks. Figure 5.3 features two example of exposures of the task graph that are

not favorable to parallelism. However, we should note that the runtime exposes the

task graph dynamically during runtime, so it has no way of knowing where the critical

path lies. We would require the programmer to hint or annotate tasks accordingly to

utilize this feature.
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5.2.3 Recursive data structures

Though deques are linear structures, as we discuss on section 5.2.1, when we are

working on a recursive decomposition task graph, the tasks on the deques are roots

of task trees that grow exponentially. Hence, when a task is stolen roughly half the

amount of computation is actually stolen are actually stolen, since the left over work

is
Pdepth−1

i=1 = 2depth − 1 − depth and the stolen work is 2depth − 1, as we argued in

chapter 4.

Let us recap some of the points we made on how to employ granularity optimiza-

tions. Once we work with non-series-parallel graphs, tasks have descendants rather

than children and those descendants may have many predecessors. So stealing a task

may not lead to a sub-tree of tasks to be stolen. We introduced descendance heuris-

tics in the previous chapter to help steal half of the estimated work on a ready queue.

For example, computations with intricate dependence structures lead to pessimistic

descendance to estimate no descendant tasks as we have shown in the previous chap-

ter. That implies that to steal half the work, we may need to steal half of the ready

tasks on the task queue.

We postulate that we may alleviate the granularity problem that non-series-

parallel task graphs may introduce, with recursive data structures for task queues

without losing the locality prioritization. Recursive data structures would make steal-

ing half of the structure easy to implement and would require less synchronization to

consider. Moreover, if the relevant property for the data structure (e.g. priorities)

also hold recursively, we benefit from stealing a set of tasks which can be utilized as

task queue by the thief without additional manipulation.

If we employ a priority-queue of tasks for better locality, coarse granular stealing

should work in tandem with this ordering. For example, if a task queue is implemented
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as a binary heap, the task that would incur the best locality would be at the root for

the owner thread to exploit. The likely least local tasks would be at leaf level, for the

thieves to exploit. On a balanced heap, the number of leaves is almost equal to all the

non-leaf nodes. However stealing all the leaves may increase contention (new tasks

are pushed at the leaf level and then heap property is fixed) and the heap may not

necessarily just have the worst of the worst tasks with respect to locality. Stealing a

child of the root node would give almost half the number of tasks that are likely to

have the distribution of locality of the original heap has, which maybe favorable if

the thief is topologically adjacent to the victim. A self-balancing binary search tree

would have the task that would incur the best locality as the left-most leaf, where

the right child of the root node would have the worst of the worst locality incurring

tasks, that is almost half the task queue. All these choices should be made in the

context of the steal policy heuristics chosen for the runtime. We will elaborate further

on these on section 5.4.2. Binary heap implementation for priority queues provides

a partial order to the tasks and this lack of precision can be used to achieve better

performance [49].

5.3 Task scheduling heuristics

Series-parallel programming models that constrain the task graphs expressed to trees,

have a clear parent-child relationship between the tasks. They may employ eagerly

executing a child task and leaving the continuation pending; this is aforementioned

as work-first work-stealing policy and is a left-most depth-first traversal of the task

graph. Alternatively, child tasks may be left pending as the continuation is being

executed; this is the right-most depth-first traversal of the task graph, as formerly

discussed, help-first strategy.
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In our work, we explore the effect of non-parent/child predecessor/successor rela-

tionships and the challenge of scheduling tasks with these more general relationships.

In our previous work [21], we did not provide an implementation to utilize work-

stealing on non-series-parallel graphs. The implementation for work-stealing support

for tasks with multiple predecessors is analogous to currying. Every predecessor of a

tasks perform a partial function application till all the dependences are met. The last

predecessor changes the descendant task to a zero arity function, making it ready.

We treat this as if the last predecessor created a child task. Since we use a help-first

policy on OCR, the descendant task gets pushed into the local ready task queue.

The task graph frontier for execution is schedule-dependent because this currying is

schedule dependent.

This simplification provides an implicit scheduling heuristic, namely most recent

satisfied dependence first. When a task satisfies a dependence, for that dependence

it walks through all the awaiting tasks synchronization frontiers. If all other depen-

dences are satisfied for a task, that task is enabled and scheduled to be executed.

Hence the last satisfied dependence is the enabling one, it leads to the enabled task

to be enqueued on the same worker. Though this may help with simplifying the im-

plementation and synchronization concerns, it may not necessarily provide the best

performance, as this choice may not provide minimal data retrieval cost, and therefore

locality performance. For example, a task with n dependences may have its first n−1

dependences met at threadi, where the last one is met at threadj, where i �= j. If

this task is executed on threadj, all the necessary data may be replicated on threadj,

may incur possible cache misses and may evict data that is local to tasks waiting to

be executed on threadj.
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5.3.1 Alternative push policies

Let us formulate the push heuristic of a locality-aware work-stealing runtime as a

function p. This function p takes the places of a task’s predecessors as arguments and

returns a place for the successor task to be pushed. As discussed above, for tree like

task graphs p is a unary function, that is the identity function, ∀pl∈places, p(pl) = pl.

Simply put, child tasks get placed in their parent’s queue.

Our initial implementation for work-stealing support, chooses the function p to

be a n-ary function for tasks with n dependences, where it returns the ith element,

∀pl1,pl2,··· ,pln∈places, p(pl1, pl2, · · · , pln) = pli, where ith thread is where the last depen-

dence is satisfied on this particular schedule. We postulate that a push heuristic

should not be a function where n− 1 arguments are ignored.

We employ a group of push heuristics that are more cost aware, based on varying

definitions of cost that we will elaborate further in this chapter. One simple heuristic

is to run the task on the thread with the largest number of input arguments for the

task. The hypothesis is temporal locality of data to be consumed, will increase if a task

is run where most of its predecessors have run. This function can be further refined

to take into account the dynamicity of work-stealing and the underlying memory

hierarchy of the machine. Tasks that ran at a thread may have had predecessors that

were stolen to be run at another thread, which results in their produced data to be

copied to the thief thread. Further, if we are working on a cache-based machine, it

is possible for the data to exist in more than one cache at once. Therefore we may

further refine our push heuristic to take replication and eviction of data into account.

Cache-based machines are hierarchical in nature and so is the cost of bringing

data in is hierarchical and uniform within a hierarchy. However the cost may be

non-uniform, as on a distributed memory machine. The cost of bringing data may
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be dependent on how far are machines on the network topology. So when scheduling

task with n dependents, rather than counting predecessor threads, we may utilize

calculating a centroid thread, that minimizes the variance on the set of predecessor

threads.

5.4 Task stealing heuristics

The differentiator of work-stealing runtimes from the rest, as the name implies, is

utilizing the idle workers to do the load balancing by letting them steal tasks from

busy workers. There are two-tiers of heuristics to stealing; first, victim selection (from

where) and secondly, which tasks to extract from the selected victim.

5.4.1 Victim selection

A common implementation choice for a victim selection heuristic is the random vic-

tim selection [42], under the observation that a uniform random distribution reduces

the average number of steal attempts to find work and is used to also to prove the

theoretical bounds of work stealing. Though random victim selection has proven

guarantees for load balance, it fails to address locality concerns. On a machine with a

deep memory hierarchy, it may be favorable to prioritize the most local tier of work-

ers to be the first set of victims. Then, the workers that are further in the memory

hierarchy can be traversed as potential victims with lower priority.

Hierarchical traversal

As we suggested before, cache-based machines are mostly hierarchical, e.g. multiple

threads sharing a cache, on a multi-cache socket, on a multi-socket machine. We

can take this into account on our traversal to replicate the locality inherent to this
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hierarchy by traversing bottom-up for better locality as covered in [50]. Following

the aforementioned sample machine, initially, a thread would try to steal from the

threads it shares a cache with, then it would traverse threads it only shares a socket

with and then explore threads on other sockets.

5.4.2 Task extraction

Once a victim is chosen, the second policy aspect to pin down is to decide which

tasks to steal. We have argued for granularity optimizations for DAG parallelism

on chapter 4, in the absence of locality concerns. Taking locality optimizations into

account does not invalidate the case for granularity. So for now, let us assume that

we are employing the steal-half policy that we have been advocating.

Given that we are pursuing locality optimizations by classifying and ordering tasks

in ready task queues, which changes task queue choices, which in turn changes how a

steal-half heuristic would work. We have offered the initial discussion on section 5.2.3.

Secondly, another policy to consider is which half to steal. Granularity optimiza-

tions offered before did not differentiate between subsets of tasks, as long as they are

half the size of the queue. With locality optimizations, we have an opportunity to

decide which half.

Let us initially introduce the two extremes of which half to extract policies:

altruistic stealing

Locality optimizations are pursued through ordering (partially or totally) ready tasks

by how much data retrieval cost they would incur. By default and historical conven-

tion, in order to reduce the synchronization cost on the task queue, stealing is done

from the alternate end of the queue, rather than the end the owner thread uses. So
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when a thief extracts half the work from the other end of an ordered queue, they are

likely to get the tasks with high data retrieval costs to the victim, hence the name

altruistic. This policy is achieved by implicitly, just by using ordering for locality and

by stealing with a coarse grain.

There are multiple pitfalls to this approach. Firstly, let us assume that the victim

selection policy used is hierarchical. So an idle thread may randomly try to steal from

a thread that it may be sharing a cache or a socket. What was deemed costly for the

victim, will also be costly for the thief, because of their mutual proximity. One might

argue that the idle worker is a better place to incur cache misses than a busy worker.

However, when the idle worker and the busy worker are close-by, this increases the

chances of capacity misses in the lowest common ancestor memory and burden the

busy worker. In this case parallelism for load balance is favored over locality.

Another problem is the possible nature of the tasks that are deemed costly to

execute. It is possible the reason that a task is costly for one thread, is the same

reason it is costly for all other threads. If a task’s input is scattered across the

machine, the task is not local to any thread. So when these kinds of tasks are stolen

by a thief, it is likelier to be re-stolen and re-stolen, as it is costly for every thread.

This will not lead to starvation as every task will eventually have to get executed, but

it may lead to significant delays. It is not unlikely for these tasks’ delay in execution

to constrain the width of the parallelism available, since they are likely to have high

fan-ins or be tasks on the critical path. This may lead to less parallelism and increased

contention.
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selfish stealing

Ideally, every thread would benefit from executing what is local to them. So the

natural extension to this idea is that thieves would benefit from stealing tasks that

are most local to them.

However an implementation of this idea is non-trivial. Firstly, for the ideal case,

every thread would need to know what is local and not-local to every other thread, to

maintain locality orderings for the thieves. This would lead to quadratic increase in

task queues to maintain, which would introduce significant overhead and invalidate

the decentralization property that allows work-stealing runtimes to scale.

One solution is for the thieves to calculate on-the-fly what to steal from victims

by calculating how much every task would cost to them. This would complicate

proper synchronization of the task queues and introduce contention, the higher the

granularity of stealing is.

Just like altruistic stealing covered above, selfish stealing may suffer from topology

obliviousness. A thief, threadA, stealing what is best for itself from threadB, is

analogous to threadB stealing what is worst from threadA, if these threads are sharing

a cache. One thread in both cases gets the best for both, when the other gets the

worst for both subsets of tasks. Additionally, the close-by threads may ping-pong the

same subsets back and forth, just like altruistic stealing might, for the same reason.

For both these algorithms, we can argue the policy for what is being stolen, is

not an orthogonal decision to the victim selection policy. We are exploring victim-

selection (or topology) aware policies that compromise between these two extremes.

One possible compromise policy is using these extremes when the victim and thief are

far apart. When the victim and thief are close to one another, a neither selfish nor
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altruistic policy may be employed that approximately splits (clusters) a partial order

of locality, into multiple partial orders that are preferably acyclic. This way both

threads may get a partially-ordered set of tasks, that reflects their mutual locality

properties without favoring one over the other.

5.5 Results

We explore the impact of the heuristics covered above by observing their effect on

caches for today’s machines. The XeonPhi setup we used in the chapter above does not

support native hardware performance monitor observation through the performance

library, PAPI. As a result, we will focus on the the Xeon machine for the results

presented in this chapter.

The OCR setup is the same as the previous chapters, where there is a one to one

correspondence among cores, workers and ready task queues. We report results for the

maximum number of cores, since our goal is to increase locality without hampering

parallelism.

The benchmarks studied in this chapter are string alignment and cholesky decom-

position, since the fibonacci benchmark does not offer any opportunities for locality

optimization.

In the results below, we abbreviate hierarchical random work-stealing victim se-

lection policy, which attempts to steal randomly from its local socket and only steals

from neighboring sockets when the local socket is depleted, to hier. The default

socket oblivious random victim selection policy is abbreviated to flat. Stealing half

the work policy using a pessimistic descendance heuristic is labeled p.steal half, and

the optimistic dependence case is labeled o.steal half. A lock free deque is the default

ready task queue implementation with no ordering constraints. A locked deque, as
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we discussed in the previous chapter is a deque that is locked and has no ordering

constraints by default. For the cases of optimistic and pessimistic descendance rela-

tions, a locked deque is a partially ordered set of tasks where the ordering constraint

is the granularity of the tasks. For totally ordered granularity relations, we use the

sdeque label standing for a sorted deque.

We propose imposing an order on locality relations on this chapter and argue for

a case for priority queues of locality costs as ready task queues. These queues are

represented with a pqueue below, standing for priority queues. The implementation

choice for the priority queues is a binary min-heap, so the order is partial, by which

we mean that the lowest cost task is known as it is the root of the min-heap and the

rest of the tree follows the min-heap property. For a total ordering of priority queues,

we use the label s.p.queue referring to sorted priority queues.

5.5.1 Sequence Alignment

In figure 5.4, we establish a baseline by observing the cache effects of the results for

the heuristics we covered in the previous chapter. The rows contain performance data

for different scheduling choices — lock-free vs. locked deque vs. sorted deque, flat vs.

hierarchical stealing, and steal-last vs. pessimistic-steal-half vs. optimistic-steal-half.

We performed 10 measurements for each scheduling choice, and report the minimum

and median values of these 10 runs in each case.

We can observe the impact of introducing hierarchical random victim selection

work stealing on the number of L3 cache miss reductions on alternating rows. For

unsorted deques, we observe L3 misses reduced by at least 17% where sorted deques

benefit from 0% to 13% reduction in L3 misses for the median values.

The L2 miss ratio appears to drop when sorted queues are utilized, however that
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L2 data L2 data miss L3 total
misses access ratio misses steals time

lockfree deque min 3961740 4146312 0.889 209030 631289 1.536
flat, steal last median 4040297 4209262 0.963 247837 690540 1.564

lockfree deque min 4007210 4124778 0.898 183466 895368 1.505
hier, steal last median 4012403 4204810 0.956 206250 1027575 1.528

locked deque min 3989099 4172655 0.949 199792 439645 1.521
flat, steal last median 4065830 4234069 0.955 239945 596349 1.537

locked deque min 4028405 4197683 0.933 164433 457668 1.513
hier, steal last median 4078118 4221260 0.966 197755 576095 1.525

locked deque min 4004833 4187854 0.924 233280 470282 1.518
flat, p.steal half median 4062672 4206718 0.963 254890 580783 1.528

locked deque min 4016425 4170637 0.904 169152 496685 1.507
hier, p.steal half median 4084773 4240647 0.963 209467 589514 1.531

locked deque min 4003390 4158241 0.926 220509 479642 1.518
flat, o.steal half median 4078677 4218641 0.966 254098 629529 1.538

locked deque min 3961523 4455386 0.836 179469 469462 1.514
hier, o.steal half median 4027014 4499770 0.895 209721 590770 1.527

locked sdeque min 3973913 4419083 0.859 200345 1203363 1.498
flat, steal last median 4005206 4496290 0.888 227931 1453144 1.506

locked sdeque min 3978392 4483611 0.859 178696 1295590 1.493
hier, steal last median 4020066 4549422 0.886 198602 1500658 1.501

locked sdeque min 3931867 4418742 0.870 198756 1210280 1.494
flat, p.steal half median 3985705 4545424 0.876 220885 1343976 1.502

locked sdeque min 3973680 4473707 0.869 179236 1237609 1.496
hier, p.steal half median 4027519 4546635 0.884 203924 1428324 1.501

locked sdeque min 3969911 4454106 0.873 190414 1207591 1.493
flat, o.steal half median 3995193 4545009 0.878 209667 1323835 1.501

locked sdeque min 3969510 4475363 0.850 183276 817220 1.494
hier, o.steal half median 3988439 4586385 0.876 209287 1327407 1.499

Figure 5.4 : Locality implications of former heuristics on matching strings of size
135K with tile size 576 for the Xeon machine using OCR v0.7
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is because the maintenance of the sorted queue introduces more accesses without

introducing more misses, which implies the ratio is smaller not because the dividend

is smaller but the divisor is bigger.

We observe the impact of ordering tasks with ready queues based on where we their

data dependence have been satisfied and how many cycles it would take to acquire

those data in figure 5.5. Using hierarchical victim selection provides less benefit in

this case, where the reduction in L3 misses are dropped to the range of -1% to 8%.

As in the previous figure, maintenance of partial orders seem to drop the miss

ratio because the accesses increase in numbers. However, for the minimum of 10

runs cases, the L2 misses drop 0% to 2% where for the median results the L2 misses

drop 1% to 2% for unsorted and 0% for the sorted ready queues. These results

lead to 2% reduction for the median values in execution time when compared to the

corresponding rows in figure 5.4 for partially order queues and no impact on execution

time for sorted queues.

Figure 5.6 showcases the impact of pushing tasks to workers which the runtime

decides to be the most local based on our aforementioned heuristics. The base case

for this chart is figure 5.4 where the tasks are always pushed to the worker that

enabled the task, meaning the satisfier of the last data dependence. Looking at

the alternating multirows of the figure, we see that hierarchical victim selection for

work-stealing leads to 4% to 10% reduction in L3 misses. The reduction in execution

times in comparison to figure 5.4 for corresponding rows are between 1% and 2%

for unsorted queues and 0% for sorted queues. Likely, the reductions in L2 misses

compared to the corresponding base cases are between 1% and 2% for unsorted queues

and 0% for sorted queues.

Figure 5.7 brings all heuristics together, so all previous results constitute base
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L2 data L2 data miss L3 total
misses access ratio misses steals time

locked p.queue min 3965157 4454415 0.839 166542 359932 1.497
flat, steal last median 4017174 4542283 0.884 198118 468172 1.504

locked p.queue min 3938413 4507467 0.815 172085 378375 1.497
hier, steal last median 3998391 4553583 0.876 188456 516626 1.503

locked p.queue min 3983990 4544617 0.844 174217 355238 1.492
flat, p.steal half median 4017416 4595117 0.876 205265 462273 1.503

locked p.queue min 3980735 4489431 0.823 149785 369341 1.496
hier, p.steal half median 4006032 4564679 0.878 190688 446628 1.507

locked p.queue min 3957944 4455062 0.852 175971 382596 1.497
flat, o.steal half median 4024404 4602258 0.878 204388 421792 1.506

locked p.queue min 3961632 4492619 0.840 163716 373093 1.498
hier, o.steal half median 4001604 4564037 0.873 193512 418829 1.505

locked s.p.queue min 3976570 4441373 0.801 160734 343259 1.496
flat, steal last median 4021907 4545132 0.881 190285 514355 1.504

locked s.p.queue min 4006683 4500475 0.871 167119 417964 1.500
hier, steal last median 4027992 4585915 0.881 193695 511459 1.504

locked s.p.queue min 3931415 4428195 0.871 139284 332428 1.496
flat, p.steal half median 3994173 4491047 0.888 194168 413279 1.505

locked s.p.queue min 3980761 4529721 0.831 144066 359555 1.498
hier, p.steal half median 4004123 4587243 0.874 191278 467018 1.504

locked s.p.queue min 3953450 4449080 0.825 163010 354653 1.497
flat, o.steal half median 3976404 4529913 0.882 193357 440884 1.506

locked s.p.queue min 3994240 4494735 0.845 177097 387211 1.494
hier, o.steal half median 4029481 4563155 0.885 191203 501298 1.501

locked s.p.queue min 3963260 4486559 0.843 159392 363973 1.492
flat, steal selfish median 3988234 4549839 0.876 187054 447960 1.502

locked s.p.queue min 3976541 4456562 0.841 163387 375656 1.497
hier, steal selfish median 4041027 4544906 0.890 185159 411942 1.500

Figure 5.5 : Locality implications of former heuristics using locality priorities on
matching strings of size 135K with tile size 576 for the Xeon machine using OCR v0.7



101

L2 data L2 data miss L3 total
misses access ratio misses steals time

locked deque min 3997770 4550288 0.872 214308 293191 1.496
flat, steal last median 4032251 4585604 0.879 232257 310383 1.506

locked deque min 3988617 4431366 0.799 190595 367534 1.498
hier, steal last median 4027629 4489296 0.901 222678 417285 1.509

locked deque min 3981744 4410640 0.854 199884 295292 1.496
flat, p.steal half median 4046180 4563015 0.891 230229 345537 1.506

locked deque min 4004453 4467461 0.838 196891 376274 1.501
hier, p.steal half median 4035035 4553008 0.890 219524 419710 1.507

locked deque min 3991518 4483301 0.844 194065 274180 1.496
flat, o.steal half median 4034749 4536417 0.886 230589 301566 1.503

locked deque min 3970344 4502150 0.846 182953 334501 1.500
hier, o.steal half median 4021132 4567093 0.880 214258 375279 1.505

locked s.deque min 4017469 4503902 0.781 198343 279381 1.495
flat, steal last median 4067165 4586374 0.888 231799 330596 1.500

locked s.deque min 3984854 4486738 0.877 163585 406665 1.495
hier, steal last median 4042608 4546363 0.884 212981 422243 1.503

locked s.deque min 3984251 4500767 0.862 198284 279775 1.494
flat, p.steal half median 4036458 4611317 0.875 225320 307802 1.501

locked s.deque min 3987264 4492472 0.815 191023 368049 1.495
hier, p.steal half median 4034855 4551000 0.889 213751 401752 1.501

locked s.deque min 3991462 4485367 0.851 212645 273095 1.494
flat, o.steal half median 4027071 4585708 0.880 232130 311268 1.503

locked s.deque min 3984717 4475191 0.837 179611 366688 1.498
hier, o.steal half median 4037279 4505785 0.892 207987 421077 1.505

Figure 5.6 : Locality implications of former heuristics using non-local locality aware
pushing on matching strings of size 135K with tile size 576 for the Xeon machine
using OCR v0.7
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L2 data L2 data miss L3 total
misses access ratio misses steals time

locked p.queue min 4002473 4486906 0.826 188182 280978 1.497
flat, steal last median 4032585 4544679 0.888 223822 341701 1.501

locked p.queue min 3994843 4530513 0.825 181474 355502 1.499
hier, steal last median 4046991 4571646 0.884 215473 420436 1.503

locked p.queue min 3980370 4543591 0.829 200048 281201 1.514
flat, p.steal half median 4041297 4557836 0.883 228236 319772 1.524

locked p.queue min 3995541 4502688 0.814 176514 364902 1.501
hier, p.steal half median 4031577 4570562 0.883 207313 414442 1.513

locked p.queue min 3984171 4426682 0.832 192981 304022 1.497
flat, o.steal half median 4036413 4537555 0.886 230228 335928 1.509

locked p.queue min 3975385 4534347 0.870 174173 366916 1.495
hier, o.steal half median 4031788 4596895 0.878 209522 414605 1.504

locked s.p.queue min 4012209 4570087 0.850 200909 317256 1.495
flat, steal last median 4048095 4594060 0.878 234579 338139 1.505

locked s.p.queue min 3999196 4449433 0.832 193558 383307 1.500
hier, steal last median 4032714 4530555 0.888 211706 413048 1.505

locked s.p.queue min 4014261 4501533 0.845 189279 299224 1.495
flat, p.steal half median 4060964 4600986 0.882 241164 338929 1.507

locked s.p.queue min 3995269 4511145 0.826 208381 376913 1.504
hier, p.steal half median 4031154 4572741 0.879 222634 398187 1.509

locked s.p.queue min 4007668 4524055 0.827 189048 286846 1.497
flat, o.steal half median 4051543 4610721 0.875 227177 325166 1.503

locked s.p.queue min 3999160 4532694 0.835 183052 360799 1.500
hier, o.steal half median 4033249 4574738 0.881 209958 400934 1.505

locked s.p.queue min 4008827 4475872 0.818 200326 297538 1.501
flat, steal selfish median 4046080 4542383 0.887 226201 340212 1.504

locked s.p.queue min 4013419 4569530 0.829 187951 393139 1.500
hier, steal selfish median 4042182 4603067 0.876 213074 445185 1.510

Figure 5.7 : Locality implications of former heuristics using locality priorities and
non-local locality aware pushing on matching strings of size 135K with tile size 576
for the Xeon machine using OCR v0.7
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lines. First, using hierarchical victim selection for work-stealing reduces L3 misses on

median values 4% to 10%, as can be seen from the alternating multirows of this figure.

With respect to figure 5.4, these heuristics lead to 0% to 1% reduction in the median

values for L2 misses for unsorted queues and may cause 0% to 1% increase for the

median values for L2 misses for sorted queues. Median execution times are reduced

by 1% to 2% for unsorted queues when we compare this figure to figure 5.4. There

is no discernible difference in median L2 misses or median execution times compared

to figure 5.5 or figure 5.6.

The minimum result for the median values for L2 misses are achieved by using pri-

ority queues using data retrieval cost as the priority metric, with flat victim selection

for work-stealing and stealing half the work according to pessimistic descendance. The

minimum result for execution time is achieved by using sorted priority queues, with

hierarchical victim selection for work-stealing and stealing half the work according to

optimistic descendance.

5.5.2 Cholesky decomposition

Figure 5.8 establishes our base line for this benchmark by observing the cache effects

for heuristics used in the previous chapter. If we compare alternating multirow in

this figure, we observe an 8% to 11% reduction in the median values for L3 misses by

using hierarchical victim selection.

We introduce the prioritized queues into the heuristic mix on figure 5.9. First,

we observe a 0% to 6% reduction in the median values for L3 misses when hierar-

chical victim selection is employed for these results. When we compare figure 5.9 to

figure 5.8, we see a -2% to 2% reduction for the median values for L2 misses. We

also see a -3% to 3% reduction in median execution times for all cases besides the
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L2 data L2 data miss L3 total
misses access ratio misses steals time

lockfree deque min 56479198 77357889 0.730 4476847 1867811 0.672
flat, steal last median 65982683 87581564 0.754 5355228 2085100 0.687

lockfree deque min 62515538 83291122 0.740 4204448 1832666 0.655
hier, steal last median 65199230 86093914 0.754 4896860 2291411 0.676

locked deque min 64664460 85706262 0.751 5311622 960043 0.684
flat, steal last median 67055022 88742011 0.758 6376251 985031 0.707

locked deque min 61456100 82986600 0.741 4640087 1104829 0.672
hier, steal last median 66262543 86936130 0.756 5504041 1164188 0.684

locked deque min 64169480 84811670 0.748 4271766 1005384 0.658
flat, p.steal half median 64892687 85786820 0.763 4543411 1060247 0.665

locked deque min 62710538 83514545 0.738 3848072 1139751 0.650
hier, p.steal half median 64245948 84630021 0.759 4028503 1180511 0.659

locked deque min 57268550 78528255 0.729 3701032 947945 0.656
flat, o.steal half median 64510314 84896422 0.757 4676029 1036999 0.664

locked deque min 61841685 83100889 0.735 3963713 1070298 0.657
hier, o.steal half median 64442056 85215310 0.756 4370572 1106993 0.661

locked sdeque min 63839807 86725741 0.736 5928481 982453 0.696
flat, steal last median 67348680 88781621 0.760 6323505 1052263 0.705

locked sdeque min 62740318 84731648 0.737 4706805 1044886 0.664
hier, steal last median 65845420 86490305 0.759 5746650 1091283 0.684

locked sdeque min 67400255 89395654 0.744 4208819 1025338 0.683
flat, p.steal half median 69420265 90821130 0.765 4645269 1104725 0.691

locked sdeque min 66918863 88678071 0.750 4202282 1086424 0.681
hier, p.steal half median 68332968 89800004 0.761 4291617 1118648 0.686

locked sdeque min 66141018 87365929 0.749 5817665 987715 0.697
flat, o.steal half median 67581116 88989562 0.762 6357072 1025802 0.702

locked sdeque min 64067359 83927905 0.726 4512483 1097382 0.672
hier, o.steal half median 66281600 86631783 0.760 5799576 1139373 0.687

Figure 5.8 : Locality implications of former heuristics on Cholesky decomposition
results for a 12K by 12K matrix with 192 by 192 tiles using OCR v0.7 with Intel
MKL for the Xeon machine
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L2 data L2 data miss L3 total
misses access ratio misses steals time

locked p.queue min 61780914 84125634 0.734 4457889 1091619 0.702
flat, steal last median 65385843 87132894 0.753 5834939 1147944 1.018

locked p.queue min 58339157 77625722 0.741 4864810 1212497 0.689
hier, steal last median 65911044 86764557 0.755 5473246 1325933 1.133

locked p.queue min 64802523 85702459 0.747 3915679 928730 0.670
flat, p.steal half median 65964816 86989146 0.758 4608105 970456 0.674

locked p.queue min 63559531 83903928 0.742 4149305 1063418 0.663
hier, p.steal half median 66026099 86678104 0.758 4443322 1118832 0.670

locked p.queue min 64534933 84917161 0.747 4323762 1039577 0.676
flat, o.steal half median 65862872 87335070 0.756 5274937 1096355 0.690

locked p.queue min 64821775 84374477 0.746 4109133 1227114 0.673
hier, o.steal half median 65465694 86192564 0.760 5058932 1291287 0.679

locked s.p.queue min 64690033 86172170 0.746 4572610 1156449 0.673
flat, steal last median 66465338 87960118 0.755 4817474 1226355 0.683

locked s.p.queue min 64822367 85076811 0.745 4115348 1284869 0.674
hier, steal last median 66165280 87643961 0.756 4413690 1423245 0.683

locked s.p.queue min 65061382 87223948 0.743 4161802 953756 0.666
flat, p.steal half median 67284006 88167307 0.758 4502535 1060116 0.675

locked s.p.queue min 65557707 85644051 0.755 4156552 1135667 0.667
hier, p.steal half median 66528068 87272294 0.759 4321792 1183976 0.671

locked s.p.queue min 65326322 85962536 0.755 4636417 1010767 0.673
flat, o.steal half median 66668207 87792269 0.760 4918847 1066228 0.683

locked s.p.queue min 64337075 84335051 0.746 4096403 1208625 0.667
hier, o.steal half median 65677105 86928403 0.763 4926063 1327932 0.685

locked s.p.queue min 59620955 80260647 0.730 4011046 1094238 0.684
flat, steal selfish median 64880247 85740727 0.753 4792676 1173645 1.230

locked s.p.queue min 51230324 69022713 0.722 3783638 1258315 0.674
hier, steal selfish median 63603090 85434380 0.743 4595344 1333303 0.689

Figure 5.9 : Locality implications of former heuristics using locality priorities on
Cholesky decomposition results for a 12K by 12K matrix with 192 by 192 tiles using
OCR v0.7 with Intel MKL for the Xeon machine
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first 2 multirows. The overhead and contention introduced by priority maintenance

could not be amortized by stealing a single task, which has a 43% and 65% slowdown

impact on execution time.

Figure 5.10 showcase the introduction of locality-aware pushing, where the base

case is figure 5.8. Before comparing the two, the impact of hierarchical victim selection

is a reduction in median values of L3 misses between 3% and 11% for all but the sorted

queue, last steal case which introduces a 4% overhead. When we compare figure 5.10

and figure 5.8, we can conclude a -5% to 1% decrease in L2 miss median values

and a 1% to 11% increase in execution times. Pushing to non-local locked queues

introduces contention which is not amortized in these cases. We should note that the

first two multirows covering the unsorted queue with stealing the last task did not

reach completion and overflowed the ready task queues.

Figure 5.11 showcases all heuristics employed at once, and hence all previous

figures are base lines for this figure. Initially, we observe an 11% to -7% reduction in

L3 miss median values. When we compare figure 5.11 to figure 5.8, we see a 4% to

24% reduction in median values for L2 misses. The reduction in median L2 misses

are between 3% to 23% when we compare figure 5.11 and figure 5.9, and lastly the

differences are between 7% to 20% when figure 5.11 and figure 5.10 are compared.

As we hinted in previous graphs, stealing the last element for unsorted queues pro-

duce much worse results where the amortization does not occur. For the execution

time results we discuss we are ignoring these cases. For unsorted queues the median

execution times are slowed down between 27% to 49% when compared to figure 5.8,

25% to 45% when compared to figure 5.9, and 22% to 35% when compared to fig-

ure 5.10. The results where sorted queues and hence more precise locality priorities

are used, fare much better. We observe an increase in execution time between 1%
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L2 data L2 data miss L3 total
misses access ratio misses steals time

locked deque min
flat, steal last median

locked deque min
hier, steal last median

locked deque min 60499043 81908518 0.739 4028421 990277 0.683
flat, p.steal half median 68621228 91214465 0.751 4327623 1053234 0.689

locked deque min 61540277 83558472 0.724 3711949 1105963 0.680
hier, p.steal half median 65064538 88078108 0.736 4017041 1240928 0.690

locked deque min 61674559 82564150 0.732 6231571 1038679 0.720
flat, o.steal half median 65339118 88192868 0.739 6771704 1137472 0.741

locked deque min 62761863 84963990 0.725 5403835 1355301 0.716
hier, o.steal half median 64154253 87726598 0.734 6144285 1380391 0.726

locked s.deque min 67265768 97489140 0.687 7800891 1047056 0.768
flat, steal last median 69060654 99060484 0.696 8018829 1077304 0.770

locked s.deque min 68762892 98572881 0.695 7783951 1331277 0.756
hier, steal last median 70384734 99459960 0.703 8364294 1378597 0.762

locked s.deque min 67660979 91064636 0.736 4013780 978200 0.700
flat, p.steal half median 70700554 95623657 0.742 4348411 1109258 0.704

locked s.deque min 66082026 90693087 0.729 3931258 1147960 0.690
hier, p.steal half median 68052118 92345223 0.736 4208880 1182714 0.698

locked s.deque min 67054153 95792523 0.675 7322286 1032163 0.766
flat, o.steal half median 69119164 99381007 0.693 8077716 1095612 0.774

locked s.deque min 64714544 94158242 0.687 6803789 1264831 0.738
hier, o.steal half median 68698480 95653589 0.719 7150612 1343203 0.753

Figure 5.10 : Locality implications of former heuristics using non-local locality aware
pushing on Cholesky decomposition results for a 12K by 12K matrix with 192 by 192
tiles using OCR v0.7 with Intel MKL for the Xeon machine
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to 4% when compared to figure 5.8, 4% to 5% when compared to figure 5.9 and -1%

to 8% when compared to figure 5.10. For the unsorted queues cases(excluding the

aforementioned initial two), parallelism is hampered, and the execution is slowed for

the sake of locality. The reduction for the median case of L2 misses per second of ex-

ecution are between 36% to 38% percent. When we look at the sorted priority queue

cases, we observe that we reduce cache misses without a huge impact on execution

time. For these cases the reductions of median L2 miss values per second of execution

are between 7% and 23%.
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L2 data L2 data miss L3 total
misses access ratio misses steals time

locked p.queue min 48338243 73111757 0.661 4375783 1212715 0.895
flat, steal last median 58980442 85308167 0.686 5260438 1383337 1.908

locked p.queue min 41888290 65675431 0.563 4334807 1663443 0.726
hier, steal last median 50699313 76310404 0.668 4665925 1778911 1.605

locked p.queue min 48689987 75001214 0.630 3976237 994376 0.710
flat, p.steal half median 57236951 84844094 0.669 4548195 1077574 0.915

locked p.queue min 38854286 67513027 0.576 4379593 1150606 0.707
hier, p.steal half median 53919222 83479488 0.646 4880698 1203049 0.842

locked p.queue min 44953263 70159547 0.641 5000941 1185600 0.761
flat, o.steal half median 58160124 84083301 0.695 5348350 1364218 0.961

locked p.queue min 37081056 65927499 0.562 4062721 1569797 0.728
hier, o.steal half median 59203198 86078283 0.681 5082874 1693114 0.986

locked s.p.queue min 43969569 74347124 0.591 4652049 1228849 0.700
flat, steal last median 60682519 86979898 0.699 5324051 1364701 0.714

locked s.p.queue min 44981234 76265314 0.590 4484963 1734012 0.698
hier, steal last median 57825403 85588617 0.676 5199558 1862500 0.714

locked s.p.queue min 46320490 73171112 0.612 4479574 1059834 0.696
flat, p.steal half median 57539464 85230140 0.677 4726341 1103728 0.713

locked s.p.queue min 40801792 72909157 0.560 4442008 1247589 0.697
hier, p.steal half median 54900298 84206950 0.655 4848995 1358807 0.710

locked s.p.queue min 51957987 79609772 0.640 4798314 1213034 0.694
flat, o.steal half median 59846968 85125958 0.696 5501606 1338692 0.710

locked s.p.queue min 53273475 79982030 0.666 4941258 1540159 0.703
hier, o.steal half median 63858407 88980000 0.717 5320292 1642414 0.715

locked s.p.queue min 38276318 54529787 0.702 4658843 1145322 2.161
flat, steal selfish median 64518432 85696056 0.742 5290567 1207965 2.785

locked s.p.queue min 59516698 78886420 0.719 4979967 1378642 2.209
hier, steal selfish median 66170853 89969345 0.740 5467607 1404574 3.975

Figure 5.11 : Locality implications of former heuristics using locality priorities and
non-local locality aware pushing on Cholesky decomposition results for a 12K by 12K
matrix with 192 by 192 tiles using OCR v0.7 with Intel MKL for the Xeon machine
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Chapter 6

Conclusions & Future Work

6.1 Conclusion

We should remind we stated:

Macro-dataflow parallelism and event-driven runtime systems offer pro-

grammability and performance benefits for applications with complex de-

pendence structures. These runtime systems can also be extended to ad-

dress new granularity and locality concerns for programs with dependence

structures that are more general than fork-join parallelism.

We propose macro-dataflow models as an intuitive way to program in order to

address exposing parallelism by declaring dependences between tasks explicitly. This

unconstrained parallelism does not have the tight bounds that can be achieved by

models that support constrained subsets. In our former work, we built our model on

top of work-sharing systems which may suffer from contention because of its central-

ized approach.

In this work, we built our macro-dataflow model on top of a work-stealing run-

time which implies decentralized scheduling and load-balancing. First, we show our

macro-dataflow approach can declare programs both with simple dependence struc-

tures without a performance penalty, and also declare complicated dependence struc-

tures and surpass hand-coded parallel libraries in execution time tuned to the specific

application on chapter 3.
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We observe that the underlying assumptions of work-stealing runtimes on the

nature of a program’s task graph do not necessarily apply to complex dependence

graphs. On chapter 4, we address the granularity challenges by employing heuristics

on the schedule-dependent descendance relations. We show reductions on number of

steals to showcase better load balance and possible reduction in bandwidth for simple

micro-benchmarks and also reduction in execution time for cholesky decomposition.

Lastly on chapter 5, we propose heuristics to the default work-stealing runtime to

address locality concerns that arises with employing complex dependence structures.

For a simple benchmark, we show that L3 cache misses can be reduced by employing

a hierarchical work-stealing algorithm leading to a reduction in execution time. For

a more complex dependence graph like cholesky decompostion, using all heuristics

proposed on chapter 4 and chapter 5 we show that up to 22% reduction of total

L2 cache misses with only a 4% increase in execution time. We argue that these

optimizations would translate to energy savings that are becoming more and more

important as the energy budget is becoming a viable constraint.

6.2 Future Work

6.2.1 Less contentious task queues

We use a locked ready queue implementation to showcase the impact of our heuristics

and we observe reduction in throughput in some cases. Some of this can be attributed

to workers spinning on a queue to extract or inject tasks to a queue rather than doing

useful work. We intend to employ a finer grain locked version or multiple queues to

reduce this effect. Additionally, steal half queues [37] and priority queues [51] have

been implemented in a lock-free fashion and we are exploring their amalgamation and
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the tradeoff between contention and amortized queue manipulation cost.

6.2.2 Better cache simulation

Currently, our approach is to annotate futures with caches they originate from in the

runtime and do not take into account their replication and eviction. By extending our

runtime with a simple cache simulator, we expect to achieve better locality results.

6.2.3 Energy modeling

We looked into possible simulators to estimate energy use but for the ones that

can be collected from the user space were crude and we did not have root access

on the machines we collected our results. The XeonPhi architecture does not even

provide access to a set of hardware performance monitors that may provide a crude

estimation. Our last chapter can be extended to address energy usage as an objective

function so we can tune heuristics to optimize for energy through minimizing data-

movement/cache-misses per second.

6.2.4 Topology-aware stealing

For hierarchical work-stealing, the thief is oblivious to the victim’s place. This may

be extended to address different stealing heuristics based on the relationship the thief

and the victim share. Stealing the worse task of a worker on the same core may

not lead to a better execution than passing stealing those tasks and increasing their

change to be stolen by a more favorable execution unit for those tasks.
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6.2.5 Distributed memory support

We believe the contributions of this work can be observed better in an environment

where steal attempts and data movement are much costlier and saving these metrics

have a higher impact on execution time. Saving cache misses and steal attempts did

not result in drastic changes to execution times on our results but on a distributed

memory architecture the costs of the heuristic introduced would be better amortized

and bandwidth reduced could be better tracked. We initiated this work by introducing

futures to distributed Habanero-C[22].
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