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ABSTRACT

Enabling Distributed Reconfiguration in an Actor Model

by

Arghya Chatterjee

The demand for portable mainstream programming models supporting scalable,

reactive and versatile distributed computing is growing dramatically with the prolifer-

ation of manycore/heterogeneous processors on portable devices and cloud computing

clusters that can be elastically and dynamically allocated. With such changes, it’s be-

coming extremely difficult for distributed software systems and applications to achieve

scalability and programmability without complex coordination and synchronization

patterns.

In this dissertation, we address the dynamic reconfiguration challenges that arise in

distributed implementations of the Selector Model. We focus on the Selector Model

in this work because of its support for multiple guarded mailboxes, which enables

the programmer to easily specify coordination patterns that are more general than

those supported by the actor model. The contributions of this dissertation are demon-

strated in two implementations of distributed selectors, one for distributed servers and

another for distributed Android devices. Both implementations run on distributed

JVMs and feature the automated bootstrap and global termination capabilities in-

troduced in this dissertation. In addition, the distributed Android implementation

supports dynamic joining and leaving of devices, which is also part of the dynamic

reconfiguration capabilities introduced in this dissertation.
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Chapter 1

Introduction

1.1 Motivation

Distributed applications for today’s cloud and mobile platforms need more than mere

computing capacity. Without improvements in programmability, the ever-growing

complexity of interaction patterns in distributed applications can limit us from effi-

ciently exploiting a diversity of available computational resources. For modern cloud

services, the need for exploiting both multicore and multi-node parallelism is widely

acknowledged, but there remains a conceptual gap between programming models for

shared-memory parallelism and those for distributed concurrency. Mobile platforms,

such as Android devices, have seen an increasing trend in available hardware paral-

lelism but they remain resource constrained on the power consumption and thermal

dissipation fronts. Aggregating the computing capabilities of multiple such mobile

platforms in a distributed and dynamic setting opens the possibilites for both perfor-

mance improvements and novel dynamic and distributed applications.

The Actor Model(AM) [1, 2], represented by isolated processes (actors) that inter-

act solely via asynchronous message passing, is a natural fit for a unified concurrency

model for both cluster-level and multi-core parallelism. However, we believe that the

traditional Actor model poses certain limitations with respect to actor coordination

and synchronization patterns, which is why we aim to develop a distributed runtime

system for the more general Selector Model (SM) [3].
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To address dynamic reconfiguration challenges, in this dissertation we introduce

two implementations of the distributed selectors, one for distributed servers (HJDS:

Habanero Java Distributed Selectors) and another for distributed Android devices

(DAMMP: Distributed Actor Model on Mobile Platforms). HJDS features the au-

tomated bootstrap and global termination capabilities. In addition, the distributed

Android implementation allows programmers to react to the reconfiguration of mo-

bile devices and adapt to dynamic changes in device availability. DAMMP is a cross-

platform runtime system that can span distributed servers and mobile devices. We

built the HJDS runtime as an extension to the single-node shared-memory Habanero

Java Runtime Library (HJlib) [4].

The Selector Model (SM) [3] is an extension of the Actor programming model [1]

that supports multiple guarded mailboxes (which can be enabled or disabled inde-

pendently) and combined with priority-based processing of messages. It overcomes

known difficulties in implementing synchronization and coordination patterns using

the pure actor model. SM offers a promising approach for building distributed con-

current applications with both productivity and scalability.

Although the Actor Model (AM) has been successfully used for many concur-

rent computations, not all concurrent problems are most effectively solved using this

model. In some concurrent programming patterns, preserving the integrity of the

objects requires synchronization protocols to control the order in which messages are

processed in the mailbox [5]. Since AM forces all communication to be asynchronous,

concurrent coordination involving multiple actors might be harder than using non-

actor concurrency constructs such as locks [6]. The Habanero Java Distributed Selec-

tor (HJDS) model acts as an abstraction to support synchronization and coordination

mechanisms among multiple selectors across multiple devices / cluster-nodes. The
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multiple guarded mailboxes in the Selector Model allows efficient coordination and

synchronization patterns such as:

• synchronous request-response,

• join patterns in streaming applications, and

• producer-consumer with bounded buffer

The mobile platform extension, Distributed Actor Model for Mobile Platforms

(DAMMP) can be instrumental in improving the efficiency of parallel and distributed

applications on modern mobile devices through aiding the on-device computation by

harnessing the processing power of the available mobile devices in the ad-hoc net-

work. While power and performance constrained resources such as mobile devices are

not usually associated with distributed and high-performance computing, projects

including distributed peer-to-peer file sharing in mobile applications [7] and off-the-

grid agricultural distributed mobile applications [8] motivate real-world impact of

distributed mobile applications. However, while most such projects are based on spe-

cialized hardware or specific models, we aim to provide a portable and more extensible

framework with DAMMP. Some popular scenarios in image recognition [9, 10] and

GPS triangulation [11, 12, 13, 14] illustrate the usability of the model in a dynamic

and heterogeneous settings:

• Law enforcement agencies in the field may not have access to a secure and

high-performance computing resource to run a facial-recognition application,

but may instead have to rely on the combined computing power of their hand-

held mobile devices. These compute intensive jobs may not be possible to run

within the energy and computation limitations of a single device, but with the
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use of DAMMP they can create a distributed network of multiple devices to

collaboratively execute the face-recognition algorithm [9].

• Hikers are at a remote location trying to locate each other without Internet

connection and with a set of devices with different computing power, battery

states and temperatures. A DAMMP application can allow them to share the

GPS data among their devices and triangulate their position using the collec-

tive computing power of their devices, while at the same time managing the

power consumption and heat dissipation to maximize the collective usability

and longevity of their ad-hoc distributed system of heterogeneous devices [11].

Scenarios such as these illustrate a need for a programming model and system that

would allow an easy distribution and redistribution of work that needs to be done,

a convenient mechanism for the application to adapt to dynamic changes in network

topology (such as devices leaving or joining the group), and an effortless model for

offloading computation to another device. DAMMP combines the flexibility of Actor

runtimes (e.g., weak message ordering support for migration), the expressiveness of

the Selector model (with multiple guarded mailboxes), distributed execution on ad-

hoc networks using Wi-Fi Direct, support for Actor-friendly interface between the

runtime and adaptation mechanisms that reach to the dynamic changes in the system

(devices joining/leaving). In the remainder of this dissertation, we will use the term

Selector, for user-defined entities, and the term, Actor, for entities internal to the

DAMMP runtime (which happen not to require the multiple-mailbox functionality

available in selectors).
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1.2 Thesis Statement

The actor/selector model can be used to enable a cross-platform runtime system that

can span both distributed servers (with support for automatically bootstrapping the

system and global termination) and mobile devices (with support for dynamic joining

and leaving of devices).

1.3 Contributions

This thesis makes the following contributions:

• Two implementations of a distributed runtime that supports the Selector Model,

one for distributed servers (clusters) and another for distributed Android devices

(developed jointly with co-authors [15, 16]).

• Support for Automated Bootstrap and Global Termination of the runtime on

cluster platforms.

• Support for Dynamic Joining and Dynamic Leaving of devices on Android plat-

forms.

• Introduces a standalone and seamless offload model for computation offloading

on to nearby mobile devices.

• Experimental evaluation of performance benefits of using the Selector Model on

clusters and heterogeneous Android devices (obtained jointly with co-authors

[15, 16]).

1.4 Organization

This thesis is organized as follows:
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• Chapter 2 contains background on the Selector Model, and on the Akka [17] and

SALSA [18] distributed configuration modules for cluster-based applications.

• Chapter 3 discusses how we address the challenges of reconfiguration in dis-

tributed applications on the cluster platforms (HJDS). This chapter focuses on

the Automated Bootstrapping and Global Termination services provided by our

runtime.

• Chapter 4 discusses how we address the challenges of reconfiguration in dis-

tributed applications on the Android platforms (DAMMP), and focuses on the

Dynamic Joining and Dynamic Leaving features of our runtime.

• Chapter 5 evaluates our runtime on cluster and Android devices.

• Chapter 6 discusses related work for both cluster and Android platforms.

• Chapter 7 wraps up by summarizing the thesis and potential areas for future

research.
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Chapter 2

Background

2.1 Habanero-Java Library (HJlib)

Habanero-Java (HJ) is a parallel programming model developed at Rice University.

HJ is based around four orthogonal core concepts [19] :

• Lightweight dynamic task creation and termination using async, finish, future,

forall, forasync constructs

• Collective and point-to-point synchronization using phasers

• Mutual exclusion and isolation

• Locality control using the “place” abstraction.

The Habanero-Java library (HJlib) is a library implementation of the HJ model

in Java 8 [20]. HJlib is a parallel programming library that combines several parallel

programming concepts. HJlib runtime uses Java threads as workers. The runtime

creates small number of worker threads in a thread pool, typically one per core. Fig-

ure 2.1 shows a sample HJlib program that splits up a large input data into nchunks

asynchronous tasks.

2.2 Selector Model (SM)

Selectors are an extension of the Actor model [3]. A Selector is an execution unit that

has the capability to process incoming messages. Similar to actors, selectors encapsu-
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Figure 2.1 : Sample HJlib program

late their local state and process incoming messages, one message at a time. Figure 2.2

shows the key components of the Selector model. The modularity and data locality

of the Actor model are still preserved when using selectors.

Selectors differ from the conventional actor design in two ways:

a) Selectors have multiple mailboxes to receive messages, which allows messages

with priority or purpose to be concurrently and asynchronously added to dif-

ferent mailboxes, eliminating the need for blocking coordination and reduce

contention,

b) Each mailbox has a guard that can disable or enable the mailbox while pro-
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Figure 2.2 : Selector Model with multiple guarded mailboxes, local state and a mes-

sage processing unit

cessing a message. This guard does not affect the mailbox’s ability to receive

messages; it only controls whether the messages in the mailbox can be processed

or not.

An actor can be viewed as a selector with an always enabled, single mailbox.

The Distributed Selector life cycle (Figure 2.3) is very similar to its shared-memory

counterpart [3], and displays the complete encapsulation and state isolation found in

most Actor model interpretations. The Selector life cycle consists of the following

three stages:

• created: A new selector is asked to be created, its location in the distributed

runtime is hidden unless specified by the user. At this point, the selector object

is not guaranteed to have been instantiated, but an access handle is immediately
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created and passed to the caller and any entity holding this handle can start

sending messages to the selector. Initially, all mailboxes are enabled, and the

runtime will buffer all incoming messages for the selector.

• started: A selector has started processing messages. It processes messages one

at a time from any enabled mailbox. During the processing of a message, the

selector can choose to enable or disable some of its mailboxes, thus changing

its own behavior. Since the mailboxes have priorities, the selector will try to

process messages in mailboxes of higher priority first, however such priorities

are not strict. To guarantee fairness among all mailboxes, the Selector rotates

between mailboxes when processing messages (we use this feature to address

join patterns in Streaming Applications when using the “round-robin” approach.

See Section 2.2.1 for details).

• terminated: A selector terminates when it calls exit(). A Selector in such

a state will not process any messages in its mailbox and ignores all incoming

messages, aside from some special cases. The distributed runtime does not

terminate a selector until all new operations requested by that selector are ob-

served to have completed, and no outgoing message remains in the local buffer.

A Selector in such a state cannot be restarted, and a system-wide termination

of all selectors will signal the global termination of the application.

The multiple guarded mailboxes in a selector allows the programmer to optionally

implement the following actions (each of these selector features are explored in our

applications, used for evaluating our HJDS model [ Section 5.1] ):

• Mailbox determined by sender : The message sender can directly specify the

mailbox to send a message to.
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Figure 2.3 : Life cycle of a Selector instance

• Mailbox determined by receiver : A message can be sent without a target mailbox

and the receiver can either choose to put the message in a default mailbox, or

introduce processing logic to inspect the message and determine the mailbox

it should be put in. Such approach can be extremely useful in dynamic load

balancing and dynamic updates in many interactive or reactive systems.

The idea of guarded mailboxes in selectors is inspired by classical condition vari-

ables, in which a thread checks whether a condition is true before continuing execution

in a critical section. The results in [3] show that Selectors can also be implemented ef-

ficiently, since that work includes performance comparisons with Scala, Akka, Jetlang,

Scalaz, Functional-Java and Habanero actor libraries. However, the implementation

described in [3] focused on a single-node (shared-memory) implementation of the

Selector Model.

2.2.1 Coordination and Synchronization patterns with the SM

In this section, we briefly explain the motivating examples discussed in Chapter 1

to show how the multiple guarded mailboxes in the Selector Model allow efficient

coordination and synchronization patterns, and how the patterns are transparently
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applied to our HJDS model. We demonstrate the Distributed Selector(HJDS) model’s

programmability by contrasting our pattern with a traditional actor-based solution.

• Synchronous Request-Reply Pattern. We can observe a synchronous request-

reply pattern [21, 22] when a requestor sends a message to the replier, which

receives and processes the message, and eventually sends a reply in response

to the requestor. Using the Actor Model one may implement this pattern with

either a non-blocking or a blocking approach. With a non-blocking mechanism

approach, this pattern requires separate messages for request and reply. The in-

coming messages before the response message must be stashed and unstashed to

the mailbox after processing the reply message. While it can be cumbersome for

a user to manually code the non-blocking approach, Akka provides the become

and unbecome constructs and the Stash trait to enable this pattern [23]. Using

the blocking mechanism, implementation can be less complicated but it limits

scalability since the worker thread executing the actor is blocked between the

request and reply messages.

Figure 2.4 shows how the computation differs in the Selector Model from the

Actor Model. Using the SM, we can define two separate mailboxes, one to re-

ceive regular messages including all the request messages (label: REQUEST)

and another mailbox to receive only synchronous response messages (label: RE-

SPONSE). Whenever a selector is expected to process a synchronous response

message, it disables the REQUEST mailbox, which ensures that the next mes-

sage to be processed will be from the RESPONSE mailbox. We assume that

all response messages from the responder are sent to the RESPONSE mailbox

of the selector. The requestor selector stays in the reply-blocked state until a

response is received, and after processing the message from the RESPONSE
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Figure 2.4 : Computation of a synchronous request-reply pattern using an Actor

Model and a Selector Model

mailbox, it enables the REQUEST mailbox and starts processing other mes-

sages.

Such a pattern translates seamlessly to distributed applications, hides long mes-

sage passing latencies, and can be a large contributor to improving efficiency

in interactive applications and service-oriented architectures where a request-

response pattern is commonly used.

• Join Patterns in Streaming Applications. Join patterns in any streaming

application are usually blocking as they need to match the data from all sources

and wait for all the data to arrive before processing the messages. The left im-
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age in Figure 2.5 shows an aggregator, where the Adder actor is consuming data

from the Source actors and adding streams of corresponding values. In general,

Figure 2.5 : Left: Complex implementation of the join pattern using the Actor Model.

The Adder actor aggregates the data items from each of the three sources and sums

them up. Right: Similar join pattern, using the Selector Model for the Adder. Each

mailbox in the Adder corresponds to a sequence number. Sources send messages to

the mailbox which matches the sequence number.

one would expect the Actor model to be an excellent choice for streaming appli-

cations since actors can be connected in a data flow chain of producer-consumer

pairs with pipeline parallelism, and ensure that messages are processed in FIFO

order. However, when using actors, it becomes difficult to mimic a join pattern

where messages from two or more data streams are combined into a single mes-

sage since the order of processing messages is not guaranteed with respect to

the sender actors. Further complexity is added when we need to keep track of

all the in-flight messages, since the actor model is push-based rather than pull-
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based. To aggregate the results from the sources we also need to tag messages

with source and sequence number. Akka provides support for the aggregator

pattern that allows match patterns to be dynamically added to and removed

from an actor from inside of the message processing logic. However, this imple-

mentation does not allow matching the sender (Source) of the message during

aggregation which is a key part of the join pattern.

Figure 2.5 (Right) shows how the computation differs in the Selector Model,

using this approach we need to make sure that the senders send their messages

to the correct mailbox of the aggregator(Adder selector). We can achieve this in

two ways: a) Any order: wrapping the send logic in the selector to forward

messages from sources to a specific mailbox (label: sequence number) in the

aggregator or b) Round robin order: configuring (initialization) the sources

with different mailbox names so that the sources send only to specific mailboxes.

– For the first approach (“any order”, see Figure 2.6, lines 1-19), ordering

is not preserved when sending data from the sources to the aggregator’s

corresponding mailbox. As items are received the corresponding mailbox

is disabled, and the pool of active mailboxes decrease [line 10]. When

items from all sources have been received for the current sequence number,

the result is computed and pushed to the consumer network, and all the

mailboxes are enabled for the next sequence number [lines 12 -18].
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1 // proce s s i tems in any order

2 pub l i c c l a s s AdderAnyOrder ( . . . ) extends DistributedSelector {

3 i n t [ ] items = new in t [ numSrcs ] ;

4 i n t srcMatched = 0

5 pub l i c void process ( MessageType theMsg ) {

6 i f ( theMsg i n s t an c e o f ItemMesssage ) {

7 ItemMessage im = new ItemMessage ( theMsg ) ;

8 items [ im . sourceId ) = im . intValue ( ) ;

9 // d i s ab l e the cur rent mailbox

10 t h i s . mailbox . d i s a b l e ( im . sourceId )

11 srcMatched += 1 ;

12 i f ( srcMatched == numSrcs ) {

13 SomeValue joinResult = computeJoin ( items ) ;

14 nextInChain . send ( joinResult ) ;

15 // r e s e t l o c a l s

16 items = new in t [ numSrcs ] ; srcMatched = 0 ;

17 // enable a l l mai lboxes f o r next seq

18 t h i s . mailbox . enab l eA l l ( ) ;

19 } }}}

Figure 2.6 : Using Selectors to solve the Join Pattern problem of Figure 2.5. The

aggregator selector version: Adder Any Order maintains one mailbox for each source.

For simplicity, we assume sources are identified by consecutive integers starting at 0.

– For the second approach (“round robin”, see Figure 2.7, lines 1-22), the

aggregator selector disables all mailboxes except the first one, which cor-

responds to messages from the first source [line 7]. As each message is

received by a mailbox, that mailbox is disabled, and next mailbox is en-

abled in a round-robin fashion [line 13]. When one message from each of

the sources has reached the aggregator, the join operation is commenced

and forwarded to the next consumer in the network [lines 15-19]. The first
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mailbox, corresponding to the first source is then enabled to process items

for the next sequence number.

1 // proce s s i tems in round−rob in order

2 pub l i c c l a s s AdderRoundRobinOrder ( . . . )

3 extends DistributedSelector{

4 i n t [ ] items = new in t [ numSrcs ] ;

5 i n t srcMatched = 0 ;

6 // expect item from f i r s t source

7 t h i s . mailbox . d i s ab l eA l lExcept (0 ) ;

8 pub l i c void process ( theMsg : AnyRef ) {

9 i f ( theMsg i n s t an c e o f ItemMessage ) {

10 ItemMessage im = new ItemMessage ( theMsg ) ;

11 items ( im . sourceId ) = im . intValue ( ) ;

12 // d i s ab l e the cur rent mailbox

13 t h i s . mailbox . d i s a b l e ( im . sourceId ) ;

14 srcMatched += 1 ;

15 i f ( srcMatched == numSrcs ) {

16 SomeValue joinResult = computeJoin ( items ) ;

17 nextInChain . send ( joinResult ) ;

18 // r e s e t l o c a l s

19 items = new in t [ numSrcs ] ; srcMatched = 0 ;

20 }

21 // enable round−rob in mailbox f o r next seq

22 t h i s . mailbox . get ( srcMatched ) . enable ( ) ;

23 } } }

Figure 2.7 : Using Selectors to solve the Join Pattern problem of Figure 2.5. The ag-

gregator selector version: Adder Round Robin maintains one mailbox for each source.

For simplicity, we assume sources are identified by consecutive integers starting at 0.
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2.3 Distributed configuration in Akka and SALSA

Akka is an open-source toolkit and runtime for building highly concurrent, fault-

tolerant and distributed systems on the JVM, based on the Actor Model [17]. Akka

implements a unique hybrid model of the aforementioned charecteristics [24]:

• Use of actors provide a simple and high-level abstractions for distribution, con-

currency, and parallelism. Actors are very lightweight event-driven processes,

asynchronous, non-blocking and highly performant message-driven program-

ming model.

• Akka achieves fault-tolerance by using supervisor hierarchies with “let-it-crash”

semantics. Akka actors can span over multiple JVMs to provide truly fault-

tolerant systems, effective for writing highly fault-tolerant systems that self-heal

and never stop.

• Location transparency is achieved since everything in Akka is designed to work

in a distributed environment and all interactions of actors use pure asynchronous

message passing.

• Akka allows actors to recover their state even after a JVM crashes, or when

being migrated to another node.

Setting up the Akka system. Akka.cluster is a module dedicated to aiding

actor-based distributed application programming and provides a fault-tolerant decen-

tralized peer-to-peer based cluster membership service with no single point of failure/

bottleneck [17]. Akka achieves this using the gossip protocol [25] and their failure de-

tector [26]. A node in the Akka system is a logical member of a cluster, there could
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be multiple nodes on a physical machine with unique hostname:port:uid tuple. A

cluster is a set of nodes joined through their membership service.

Akka applications can be distributed over a cluster with each node hosting some

part of the application. For a node to join a cluster, one must initiate the process by

issuing a join command to one of the nodes in the cluster to join. Akka uses the UID

to be able to reliably trigger remote death watch. Death watch is a feature provided

by Akka to register an actor for reception of the Terminated message dispatched

by the other actor upon termination [27]. The registered actor will only notify the

parent actor when it terminates (i.e. stops permanently, not a temporary failure and

restart). Since Akka uses the UIDs the same actor can never join a cluster again once

it’s been removed, the system must be stopped and started again with a new UID for

that actor to join the cluster.

Managing the Akka system. Akka based its cluster membership management

on Amazon’s Dynamo system [28], in which membership is communicated to other

nodes in the cluster using the well know Gossip Protocol [29]. The information about

the cluster converges locally at a node at certain points in time, using the Gossip

convergence protocol where a node can prove that the cluster state it is observing

has been observed by all other nodes in the cluster. The convergence cannot be

reached when a node is unreachable, this will delay the convergence protocol, but

Akka claims that the computation running on the cluster will not be affected [17].

After the convergence, a leader for the cluster is determined, based on the first node

in sorted order of the UID. The leader is used to to shift members in and out of the

cluster by changing joining members to the up state and exiting members to the

removed state. The leader may “auto-down” a node if the failure detector considers

a node to be unreachable (Note: For a leader to be selected, convergence from the
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gossip protocol is needed).

Akka uses a failure detector model to detect failure when a node is unreachable.

Specifically, they use an Accrual Failure Detector [30] that keeps a history of failure

statistics for heartbeats from different nodes and generate a ϕ value representing the

likelihood that the node is down. Heartbeats are sent out every second in a request-

reply handshake with the replies which is used as an input to the failure detector.

When all nodes, monitoring the unreachable node detects it as reachable, the detector

will declare the node as reachable.

Termination of the Akka system. All actors in the Akka system are created

in a hierarchical fashion (parent-child relation). A System guardian actor in the Akka

system (created during initialization of the Akka System), is responsible for an orderly

shut-down sequence where logging remains active while all normal actors terminate.

Upon receiving the ActorSystem.terminate message the System guardian actor ini-

tiates its own shut-down, but before the guardian can initiate shutdown all actors in

the system must be terminated. Actor termination is done in two steps: first, the

actor suspends its mailbox processing and sends a stop command to all its children.

Using the Death-watch protocol [27], the actor keeps processing termination messages

from all its children. If any of the child actors don’t respond to the stop message, the

entire termination process halts. This procedure ensures that actor system sub-trees

terminate in an orderly fashion, and hierarchically move up to the supervisor. Actors

in a system can also be terminated using either the Poison Pill message, which is

processed like a regular message [31] and stops the actor after the Pill message is

processed or use the graceful termination method [32], if one needs to wait for the

termination based on some computation or termination of another set of actors.
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SALSA (Simple Actor Language, System and Architecture) is a Java-

based actor programming language developed at RPI [18]. The language targets

open, dynamically re-configurable Internet and mobile applications. SALSA provides

active objects, asynchronous message passing, universal naming, migration, and ad-

vanced coordination constructs for concurrency as a part of their abstraction module.

A SALSA program consists of universal actors that can be migrated around dis-

tributed nodes at runtime. Distributed SALSA programming involves universal nam-

ing, theaters, service actors, migration, and concurrency control [33]. The distributed

language supports the World-Wide Computing architecture (harnesses underutilized

resources in the Internet by providing various Internet users a unified interface that

allows them to distribute their computation with location transparency and its also

platform agnostic) [34].

The World-Wide Computing(WWC) architecture implementation of SALSA con-

sists of the following key components:

• Universal naming service. which allows actors to become universal actors,

and can migrate to other nodes during runtime. Every universal actor has a

Universal Actor Name (UAN) and Locator (UAL). UAN is unique throughout

the lifetime of the system, and the UAL provides the location of the node on

which the actor currently resides.

• Run-time environment. defines and executes the theaters (programming

construct of SALSA) and the naming service (protocol that defines how to

interact with the WWC services)

• Migration support. migrates universal actors to desired location (UAL) set
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by the user. SALSA migration also supports, multiple migration of a single

actor if a set of UAL’s are passed to the migrate<ual>.

Setting up the SALSA system. Distributed computing in SALSA is achieved

using the concept of theaters, which serves as a separate process in which multiple

actors perform on a set of stages [35]. Stages are heavyweight actors that simulate

the execution of many concurrent lightweight actors in parallel. Each stage consists

its own mailbox and thread control to handle all the lightweight actors running on

that stage. SALSA actors are implemented as Java objects containing their state as

an object field and a reference to the stage that the actor is performing on. One must

note, that since multiple lightweight actors are hosted on the same stage, if any of

the messages has an unbounded processing time, all actors on that stage will starve.

The authors of SALSA claim that one of the solutions to avoid this problem is to host

each actor on its own stage [35]. The distributed runtime system of SALSA consists

of background daemon servers that host each stage, and these must be started and

terminated by the user before and after the computation is completed.

Managing the SALSA system. The distributed implementation of SALSA-

Lite introduces a new type of actors, mobile actors [33]. Mobile actors are defined

as two objects (reference and state). Defining mobile actors as a single object

would generate significant challenges since references to the migrating actor must

be modified at each actor holding a reference to the migrating actor. The state

of a mobile actor is stored in a MobileActorStateRegistry which is the only ob-

ject with a reference to the actorâĂŹs state. Any invocation on the reference will

trigger a lookup in the MobileActorStateRegistry which invokes the message on

the state if the actor is present. On migration of any mobile actor the state ob-

ject is put in a message to the OutgoingTheaterConnection it is being sent over,
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and the MobileActorStateRegistry for that actor is replaced with a reference to

the OutgoingTheaterConnection actor that sends messages to the theater the actor

migrated to.

Termination of the SALSA system. The distributed implementation of

SALSA Lite provides no support for the proper termination of the runtime. The

user is responsible for terminating all the actor instances at a stage, and once the

stage is no longer hosting any active actors the user may terminate the stages and

the theaters they are running on.

2.4 Distributed Communication in Clusters and Mobile Plat-

forms

Communication in Cluster Platform. All communications between the user-

defined selectors are done using the Proxy Actor. To communicate between any two

selectors, we must use a Selector-Handle as the access point. These Selector-Handles

are lightweight and can easily be sent across the network. It contains a globally

unique identifier or the selector object and method handle for sending messages to

the selector. Since we do not differentiate between selectors that are created to reside

locally or on remote places, the selector needs an identifier that can encode both

scenarios. The identifier is constructed upon a request for selector creation and is

unique across the entire distributed system, and stays alive throughout the execution

time of the application.

A selector object’s, globally unique identifier is currently a 32-bit integer that

encodes three pieces of information:

• an 8-bit value encoding the place p on which the selector is created;



24

• an 8-bit value encoding the place q on which the selector instance resides; and

• a 16-bit integer value representing a unique identifier for the selector on p.

For serialization we use the Kryo serialization framework [36]. As a Java–oriented

framework, it is better suited for the Distributed Selector model than other high-

performance serialization tools such as Google’s Protocol Buffers [37], Apache Avro [38],

or Apache Thrift [39], which works across multiple languages and platforms and have

more restrictions on the data that can be sent [40].

The Proxy Actor acts as a routing point between local and remote selectors.

When a message is sent to a non-local selector, the SelectorHandle’s destination ID

is decoded to extract the destination of the message:

• If the destination place matches the local place then the Proxy Actor looks up

its local registry to find the selector and forwards the message.

• If local registry doesn’t have an entry yet, then the Proxy Actor buffers any

message to the non-existing selector.

• If the destination place is remote then the Proxy Actor forwards the message

to that specified place.

When a user-defined selector sends a special message, there are two ways a new

selector is created depending on its location:

• If the new selector to be created is at the same place (local) then we use java

reflections to create a new selector at the current place; the Proxy Actor is not

involved in the process.
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• If the new selector to be created is at a different place, the Proxy Actor sends

over the selector parameters to the destination place to create it locally at that

place.

Communication in Android Platform. The user-defined selectors can only

communicate with each other and the runtime system of the Android device(place)

that hosts the selectors. Communications to other handheld devices (places) must be

managed by the Mobile Communication manager.

A fully decoupled interface, IMobileCommunicationManager uses a runtime -

userspace callback system based on the actor model to communicate when any change

in network status is observed.

When a new selector system instance is created in the network, the selector system

will call start() to initiate the communication manager, and the communication

manager will call ISystemCallback.onConnectionReady once the device is ready to

join a network. When a connected device leaves the network, the communication

manager invokes ISystemCallback.onPlaceLeft() to notify the selector system,

which in turn will alert the application of a network change via a system message.

New devices joining the network does not affect the selector system until an Actor

message is exchanged. The onPlaceJoined callback only gets invoked if the applica-

tion desires to be notified of such topological changes. On the other hand, a device

leaving the network can cause a known remote selector reference to be invalid and is

immediately reported to the application through the callback system. non-blocking

data transmission in a selector system instance is guaranteed by forcing the commu-

nication manager to run on separate threads.

For any given message to a selector B from selector A, where A and B both reside

on the same physical device, the message is passed by reference as a regular object
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without performing a communication operation. For any given message to a selector

D from selector C, where C and D reside on different physical devices (places), the

message must be passed through the Mobile Communication Manager. The selector

system of D’s residence will decode the Global Unique Identifier of selector C to obtain

its residence place ID, and invoke the send method on its communication manager

to deliver the message. Upon receiving a message at the communication manager on

C’s residence, the communication manager will deliver the message to selector D.
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Chapter 3

Cluster Platform

3.1 HJDS Design

Figure 3.1 shows the decomposition of the Habanero Java Distributed Selector (HJDS)

system. We refer to each process in our runtime as a place. For our Java-based run-

time, a place corresponds to a single instance of Java Virtual Machine (JVM). It

is possible (an in some cases may be desirable) to deploy multiple places on a node.

Unless otherwise specified, our default assumption will be the common case of deploy-

ing exactly one place per node, and we will use “place” and “node” interchangeably

in those cases. A selector runtime system instance on one place consists of multiple

user- defined selectors and two service actors: the System Actor and the Proxy Actor.

Section 3.2 explains how these actors are initialized and used for bootstrapping

the system. The user can choose to denote a specific place in the configuration

file as the Master Node. In a situation where a Master Node is not defined in the

configuration file, our runtime selects the first node in the file as the Master.

In this diagram, the distributed selector system refers to the system on which an

HJDS program is executed. The system is composed of several components:

• Place. A place refers to an individual Habanero Java(HJ) runtime instance.

This concept is inherited from the place abstraction in HJlib to describe affinity

among selector objects [4]. The place constructs in HJ provides a way for the

programmer to specify affinity among the asynchronous tasks. Data locality
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Figure 3.1 : The Distributed Selector System

can be controlled by assigning selectors with the same data affinity to execute

in the same place. The management of individual worker threads within a place

is not visible to the user. When a physical computing node contains multiple
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places, each place needs a distinct port for message passing (See, Config File

in Figure 3.3). The term selector system refers to the HJ runtime instance on

a single place.

• System Actor. The System Actor is a service actor that maintains the internal

state of its Selector System, also communicates such information to the rest of

the distributed system. The System Actor on the Master Node maintains the

internal state of the entire HJDS system. During the automatic bootstrap

process (See Section 3.2 for details) the System Actor plays a critical role in

setting up the system and updating all the other System Actors in the network

with the relevant information about the network settings (location of each Proxy

Actor with respect to their places and which places are live) The System Actor

is also responsible for managing the system termination process for the Global

Finish Scope(See, Section 3.3 for details). The System Actor on the Master

Node initiates the termination process for the entire Selector System and is the

final actor to be terminated before the application gracefully exits.

• Proxy Actor. The Proxy Actor is responsible for coordinating the messages

between local and remote selectors, including remote selector creation and ter-

mination requests, as well as remote message passing. The end-user view of the

Selector System includes instances of local user-defined selectors throughout the

program execution as in [3]. Each Proxy Actor maintains a local registry of all

the selectors that are located in the same place for easy communication be-

tween local selectors. As shown in Figure 3.1 the local registry can also contain

remote references (S5 has a remote reference to S1). Remote references can

only be obtained by a selector if, a) the selector holding the reference (S5 in
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this case), created the selector (S1) at a remote location (place 1 ), or, b) any

other selector in the system provided the selector(S5) with a remote handle

of the selector (S1). Any message to a non-local selector will be sent to the

Proxy Actor of the remote selector (whose location is encoded in the selector

handle), and the Proxy Actor forwards the message directly to local selector

instances(see Figure 3.2). Migration of selectors and dynamically updating the

selector handle is a potential area for future research.

Figure 3.2 : Proxy Actor forwarding messages to local selectors and remote selectors

at each place. The underlying message forwarding protocol is transparent to the

application programmer.

• User Defined Selectors. In the end-user view of the HJDS system, a user-

defined selector refers to any Distributed Selector object created in user code.
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These selectors are responsible for any computation in the user’s code and

are not a part of our runtime. The user has full control over the initializa-

tion and termination of the selectors using the selectorName.start() and

selectorName.stop() constructs respectively. The start() and stop() con-

structs can only be called by a selector on itself. These primitive constructs are

provided by the shared memory selector model [3]. The user-defined selectors

created at each place are recorded in the local registry of the Proxy Actor,

and upon creation of new selectors the registry gets updated with the selector

handle of the new selector. In our current implementation, the unique handle

for a selector object consists of: a) an 8-bit value encoding the place p on

which the selector is created (Source ID); b) an 8-bit value encoding the place q

on which the selector instance resides (Destination ID); and c) a 16-bit integer

value representing a unique identifier for the selector on p (USID).

• Master Node. In our HJDS system, Master Node refers to the place that

controls system bootstrap and the global termination sequence. The user des-

ignates one of the available computing nodes to be the Master Node. It is

responsible for managing the state of the entire Distributed Selector program,

including the initiation and termination of the distributed system.

• Global Finish Scope. The system defines its Global Finish Scope as the

enclosing join operation around the user program. Derived from the finish

construct in AFM [4, 41], the single Global Finish Scope for the entire DS pro-

gram waits for all tasks created by user code to finish and then automatically

terminates the distributed system. The process for system termination is ex-

plained in detail in Section 3.3.
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The HJ runtime fully encapsulates the bootstrap and termination of the entire dis-

tributed system for the user program, thereby requiring minimal user involvement

to enable distributed execution of a selectors program. In fact, the same application

code can be executed in local mode or distributed mode simply by modifying the

configuration file.

3.2 Automatic Bootstrap

The design of our HJDS model is based on the Habanero Java Runtime Library

(HJlib) [4]. We extended the shared-memory implementation of the Selector Model

to support remote message passing, remote selector creation and bounded global

termination in a transparent manner.

To set up the HJDS system, users provide a configuration file (see Figure 3.3)

in which the IP addresses (or hostnames) and ports for all computing nodes are

specified. If two places are assigned the same node, the system will run on multiple

JVM instances (using different ports) on the same node (see port entries for place

p1 and p2, lines 11 and 16). The init keyword specifies the bootstrap master node,

while the remote keyword indicates other predefined places in the bootstrap. The

bootstrap master node will be responsible for initiating the bootstrap process and

will stay live until the entire application has successfully completed. Our runtime

reads information from the configuration file and boots up the system. The current

implementation requires the user to set the username and password for remote hosts

as environment variables. The runtime can be extended to support more configuration

parameters, like memory usage limit and the thread count, in the bootstrap config

files.

Each application using our HJDS framework is considered as a single distributed
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1 selectorSystem {

2 i n i t {

3 place : p0 ,

4 hostname : cn16 . davinci . rice . edu ,

5 port : 5000 ,

6 }

7 remote : [

8 {

9 place : p1 ,

10 hostname : cn20 . davinci . rice . edu ,

11 port : 5000 ,

12 } ,

13 {

14 place : p2 ,

15 hostname : cn20 . davinci . rice . edu ,

16 port : 5002 ,

17 }

18 ]

19 }

Figure 3.3 : Sample configuration file, nodes are on Rice University’s DAVinCI cluster.

system by the Habanero Java runtime. The usual practice of launching distributed

application is to run server daemons on each computing node and host user program.

Each HJDS application may be modeled as a single service and seamlessly integrated

into a larger system. Using our approach the application developer doesn’t need to

worry about whether the application will be running as a distributed system or a

shared-memory model.

In a single HJDS program, each computing node is set up with a configuration

file (Figure 3.3) and SSH access for the initial master node. The programmer can

adjust the number of places used in the program by modifying the configuration
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files, the dynamic addition of a place is currently supported in our Android extension

(DAMMP) of this model. For a detailed explanation on dynamic joining of places

(Android devices) see Section 4.2, in Chapter 4. On the Master Node, as specified in

the configuration file, the HJ runtime will stage the program executable on all remote

places and start up a process on each to initiate the application.

Figure 3.4 demonstrates the bootstrap process in a distributed selector program.

The Master Node (Place 1 in this example), waits for all other places in the con-

figuration file to be ready before any user application code can be processed. Upon

Figure 3.4 : Bootstrap process of the Distributed Selector program.

receiving messages labeled ‘PlaceNumber.up’ from all places in the network, the

System Actor logs into each remote location (Place 2, 3 and 4 in our case) through

SSH, and starts up an HJ selector system on that place. The execution of any appli-
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cation code will remain in a stalled state until all remote places are up and running

a HJ selector system.

Upon successful bootstrap, the System Actor on the Master Node obtains infor-

mation for all other places in the system from the configuration file. The system

actors on each place will identify the Master Node from the configuration file. When

initialized successfully, these system actors send periodic heartbeat messages to the

Master Node to indicate their state. The Master Node collects ready messages for all

known remote places and informs each place’s proxy actor to start program execution.

Optionally, users can choose to manually start up each place when it is correctly set

up in accordance with the HJDS system requirement. This choice does not affect the

automated global termination of the system.

3.3 Global Termination

An HJDS program waits for all the tasks and the selectors that the user code created

to finish and then terminates the distributed system. The Master Node initiates the

global termination process and is performed in three stages. The System Actor at

each place is responsible for the graceful termination of that place and the System

Actor at the master place guarantees the successful termination of the entire HJDS

system. Each stage is discussed below in detail:

• Stage 1: Initiate Termination. A System Actor detects its place to be idle

if its local user-defined selectors have all been terminated by the user, and no

pending selector creation is in the system. The System Actor communicates

such information to the Master Node as a periodic heartbeat, which will be

reset by any new incoming request. When Master Node collects idle state from

all places in the system, it attempts to initiate the termination process and
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moves to Stage 2. During this Stage, every node is either idle or active. Fig-

ure 3.5 shows the stage 1 of the termination process where the master node is

collecting state information from the remote nodes.

Figure 3.5 : Stage 1: Termination process initiated when each of the remote nodes

and the master node is in idle state.

For a place to be considered idle (See Figure 3.6):

– all user-defined selectors on a place are terminated by the application pro-

grammer,

– there are no more buffered messages ∗ for selectors that have not been

created yet, and,

∗During remote creation of selectors, if messages are sent to the remote selector before the selector



37

– there are no more messages to be processed in any of the user-defined

selectors i.e., empty mailboxes.

Figure 3.6 : Decomposition of the runtime and user-level view during the termination

process. a) Before initiating the termination process(Stage 1) b) Places 1 and 2 are

considered as ‘idle’ in this phase

Figure 3.6 shows the runtime and user-level view of our distributed system

when the termination process is initiated. The image on the right depicts the

has been initialized on the remote place or ready to process any incoming message, the proxy actor

at that place will buffer those messages. Note: There cannot be any selector creation messages in

flight when a place is idle
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scenario where both places (Place 1 and Place 2 in our case) can be considered

as idle.

• Stage 2: Ready To Terminate. The System Actor at the Master Node

passes a signal to prepare termination to any place, along with an order in

which the signal should be passed around. Figure 3.7 shows how the signal

sequence is implemented as a conceptual place-ring with the Master Node at

the end of the sequence, but other arrangements can be used. The signaled

place confirms its idle state by passing the signal down the ring. A signal with

confirmation from all places to the Master Node will trigger Stage 3.

Figure 3.7 : Stage 2: Termination signal passed around the network in a conceptual

place-ring fashion with the Master Place at the end of the sequence.
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During this stage, a signaled place can short-circuit the ring and declare its

active state directly to the Master Node to return the distributed selector system

to the active state thus canceling the global termination process. Only if none

of the places short-circuit the ring, and the Stage 3 signal completes the round

trip around the ring, the global termination process moves on to the next stage.

During this stage, every node is either idle, active, or in Stage 2. Stage 2 will

capture any in-flight messages in the network as well since all Proxy Actors

sending messages to remote places for new selector creation must wait for an

acknowledgment from the remote selector.

• Stage 3. Terminate All Nodes. In the final stage of the global termination

process, the Master Node knows all places are ready to exit and sends a ter-

mination signal down the place-ring (see Figure 3.8). Each place shuts down

after forwarding a final shutdown message to the next place in the ring. The

system gracefully exits by terminating each place and when the termination

signal finally the reaches the master node, the System Actor at the master node

terminates itself (graceful termination of the HJDS system). During this stage,

every place is either in Stage 2, or it has been shut down.
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Figure 3.8 : Stage 3: Terminate all nodes. Send termination signal around the

network in a conceptual place-ring fashion.
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Chapter 4

Android Platform

4.1 DAMMP Design

The Distributed Actor Model for Mobile Platforms (DAMMP) extends the HJDS exe-

cution model and cluster-based implementation (as described in Chapter 3) to mobile

platforms. There are several challenges that had to be addressed in this extension in-

cluding dealing with unpredictable periods of unavailability for different devices, and

ensuring that a reliable runtime system can be implemented across mobile devices.

Our mobile implementation supports the lightweight location-transparent actor cre-

ation and actor-based runtime control mechanisms described in Chapter 3 and [15],

with the extensions to mobile devices we limit a single physical device to host exactly

one place ∗. Our approach extends HJDS’s non-resilient high-performance runtime

to obtain more decentralized mobile platforms, through the following contributions:

• To support the distributed actor runtime on volatile mobile networks, we have

replaced the automated bootstrap and global termination feature in HJDS that

assume stable network connectivity by a new communication manager that is

more suitable for mobile computing,

• We introduce dynamic joining (Section 4.2) and leaving (Section 4.3) of these

mobile devices, and, finally,

∗As defined in Chapter 3, a place is the logical unit for a shared-memory runtime instance that

can host multiple actors.
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• We can optionally expose and delegate some of the runtime control (e.g.: of-

floading computation based on memory usage of an application, handling com-

putation when a device joins / leaves the network of mobile devices) to the

application level.

The cluster-based implementation of HJDS assumes network stability and low

communication costs. However, those assumptions usually do not hold on volatile

mobile platforms such as the one we considered in this work. Over-the-air data

transmission is a far more expensive than that of wired connections, and the volatile

nature of mobile networks due to devices leaving, joining, dropping out, going out

of range or running out of power makes the automated bootstrap and global termi-

nation features in HJDS to be of limited use for the mobile platforms that we are

considering. Also, automated bootstrap and global termination require a monolithic

application model that limits the expressibility of the Actor model in many peer-to-

peer applications. Instead, our mobile-oriented approach encourages a decentralized

programming pattern, that we further enhance by the delegation of limited runtime

control to applications through a publish-subscribe model on single devices.

An overview of a single place (device) in the selector system is shown in Figure 4.1.

One may consider each device to be a local selector system. A local selector system

in a single place (or device) consists of:

• a runtime system with a System Actor, a Proxy Actor, and Mobile Communi-

cation manager, and,

• a developer view with one or more user-defined selectors.

As shown in Figure 4.1, the user-defined selectors can only communicate with each

other and the runtime system of the place that hosts the selectors. All communica-
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Figure 4.1 : Overview of the distributed selector system. On each hand-held de-

vice, we have a single selector system with the Mobile Communication Manager of

each device exposed to the entire distributed network. All communications to exter-

nal handheld devices are performed by the Mobile Communication Manager in the

runtime.
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tions to other handheld devices (places) must be managed by the Mobile Communi-

cation manager.

The Mobile Communication Manager is modeled as a runtime-userspace call-

back system based on the actor model as shown in Listing 4.1. The communica-

tion manager includes a system callback handle that is invoked after any change

in the network status. Upon creation of any new selector in the DAMMP sys-

tem, the selector system will call start() to initiate the communication manager.

Once the device is ready to join the network, the communication manager calls the

ISystemCallback.onConnectionReady() method.

1 pub l i c i n t e r f a c e IMobileCommunicationManager {

2 i n t e r f a c e ISystemCallback {

3 void onConnectionReady ( Place localNode ) ;

5 void onMessage ( Message message ) ;

7 void onPlaceJoin ( Place place ) ;

9 void onPlaceLeft ( Place place ) ;

10 }

11 void start ( ) ;

12 void stop ( ) ;

13 boolean send ( Place place , Message message ) ;

14 void setSystemCallback ( ISystemCallback callback ) ;

15 }

Listing 4.1: The communication API for mobile platform.

For any given message to a selector B from selector A, where A and B both reside

on the same physical device, the message is passed by reference as a regular object

without performing a communication operation. For any given message to a selector

D from selector C, where C and D reside on different physical devices (places), the
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message must be passed through the communication manager†. The selector system of

C’s residence will decode the Global Unique Identifier (GUID) of selector D, to obtain

its residence place ID, and invoke the send method on its communication manager

to deliver the message. Upon receiving a message at the communication manager on

D’s residence, the communication manager invokes a callback upon message receive

and the selector system will deliver the message to selector D.

4.2 Dynamic Joining

Past implementations of distributed actors and distributed selectors [15, 17, 18] tar-

geted cloud-like distributed servers, and did not account for the fact that devices can

frequently join and leave a mobile network. Due to this volatile nature of mobile

platforms, we have decided to extend our distributed implementation to (optionally)

allow user-level control of adaptation to network changes to application-level actors.

As shown in Listing 4.2, applications can subscribe to specific message types (in-

cluding runtime-generated alerts) through designated mailboxes in a selector. Using

the publish-subscribe model one can be notified of any android runtime supported

events (e.g.: Battery Usage, Network bandwidth), and based on the notification, each

event can be handled differently. Since the Selector model is a asynchronous message

passing model, these events are processed as messages, when a selector subscribes

to a specific topic mailbox. On subscribing to these topics, the mobile devices can

be notified about android system events about itself and all the mobile devices that

are connected in the ad-hoc network with Wi-Fi Direct. Using other methods such

as broadcasting all system messages to all mobile devices connected in the network

may cause an added overhead, or redundant information on devices that need not

†See Section 2.4 for details on the Android communication manager
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handle such messages. But with our puplish-subscription model, and with annotat-

ing classes, only devices that want to be notified of certian topics will receive such

runtime information.

1 @Subscription ( topics = {

2 @Topic ( messageClass = NodeJoined . c l a s s , mailbox = 0) ,

3 @Topic ( messageClass = NodeLeft . c l a s s , mailbox = 0)

4 })

Listing 4.2: A selector class can subscribe to different alerts from runtime.

Applications can choose to react to different categories of run-time and commu-

nication events in different ways. By assigning mailbox priorities, developers can im-

plement application-specific resilience models without changing the underlying actor-

based program semantics.

As an example, Figure 4.2 shows a dynamic join protocol implemented in on of our

DAMMP applications. When a new device wishes to connect and join the network

of devices, it first connects to the Group Owner (GO). Upon successful connection

with the GO, the GO sends information about all the other devices that are already

connected to the network. The new device can then connect to the other devices in the

network as needed. The Wi-Fi direct layer is used to establish any new connections

before any computation is processed using our selector model.

As an example of adaptation, the application can designate different priority val-

ues to different system alerts, choose to give higher priorities to topological changes

for handling partial failures, and thereby avoid waiting for work-related messages

to complete before topological changes are handled. Messages with higher priority

values are then sent to higher priority mailbox, and using the selector models pro-

cessing logic, messages in the higher priority mailbox get executed first before it looks

for messages in the lower prioirty mailboxes. The subscription mechanism also al-
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Figure 4.2 : Dynamic join protocol for new handheld devices.

lows the communication manager to communicate directly with the application if a

specific implementation calls for user input/interaction. Finally, the communication

manager can send custom messages through the selector’s system callback and have

the messages delivered to any selector subscribed to the custom message class.

Resilient offloading across mobile devices. In this work, we also use the

dynamic join protocol to introduce a seamless offload model for computation of-

floading to other heterogeneous devices. The master-worker pattern is a common

building block for parallel and distributed applications, and multiple workers in a

single master-worker pattern can be composed hierarchically when there’s a danger
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of a single master actor becoming a bottleneck.

Typically, the main computation in the master will generate multiple sub-problems

that can be delegated to multiple workers for parallel processing, for example in

divide-and-conquer parallel algorithms (one master selector divides the work among

multiple worker selectors which in turn can create new worker selectors and dividing

up the computation among those newly created selectors ). However, an applica-

tion written using the DAMMP framework can easily offload sub-problems to other

devices. A master-worker based paradigm should allow easy computation offloading

through creating workers on more powerful devices (relative to smartphones), such

as tablets. Each of these devices can further offload partial computations to clus-

ters, and aggregating such layers of devices, DAMMP can handle memory or power

intensive in a seamless fashion.

4.3 Dynamic Leaving

Due to the volatile nature of mobile networks, an application may experience devices

leaving, dropping out, going out of range or running out of power. At the application

level, the user program should be able to handle resilience and, in some cases might

have to perform redundant computation on these handheld devices to address the

resilience issue. At the runtime level, we support a resilient runtime system when any

handheld device voluntarily leaves the ad-hoc network or drops out of the network

due to running out of battery or going out of range. We need to address the following

four scenarios when a device leaves the Wi-Fi Direct ad-hoc network. The scenarios

are based on whether the leaving device is a group member (GM) or a group owner

(GO), and whether its corresponding place is playing the role of a master place or a

worker place.
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• Group Member leaves the network and its a worker place

• Group Member leaves the network and its a master place

• Group Owner leaves the network and its a worker place

• Group Owner leaves the network and its a master place

In the first scenario, lets say a device leaves the ad-hoc group of phones connected

with Wi-Fi Direct due to unrealiable network and the device is a group member (GM)

in the Wi-Fi Direct layer:

• If the device is a worker place the master place will resend the work, either to

the same worker (if the device is up and running), or our runtime will forward

the computation to any other devices connected in the ad-hoc network.

• All master places are periodically backed up, and snapshots of the master place

are sent to other worker places. In the event where the device, dropped out is

a master, the runtime selects a worker place to become the new master device.

The new master place, resumes computation. Some work performed by the new

master place can be redundant work.

In the second scenario, where the device leaving the ad-hoc network is a group owner

(GO) in the Wi-Fi Direct layer:

• Althought the Wi-Fi Direct specification allow recovery for this scenario, but

currently Wi-Fi Direct implementation does not support re-establishment of the

network when the GO leaves the network. To handle this scenario we restart

our devices and use our dynamic join protocol to re-establish the network, and

resume computation.
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Our runtime supports a resilient master-worker pattern by periodically backing

up program snapshots of the master selector (a selector instantiated locally with-

out a parent, and have only outward dependencies to worker selectors on the same

device/remote devices) on other nodes in the network. Upon a network change, selec-

tors can continue execution as normal as the runtime will buffer all outgoing messages

and restore a master copy once the network is re-established. The runtime will halt

selector message processing by disabling any non-subscription mailbox once the out-

going buffer is full. This is to prevent any further outgoing application-level message

being generated. The runtime will alert the application through subscription mail-

boxes that a device has left the network, and all selectors that are subscribed to the

topic may take any additional action needed by that application. Upon network re-

establishment, if a copy of the master selector is present in the network, the runtime

will restore master selector processing, if not, the runtime notifies the application-level

and restarts with a fresh copy of the master selector.

Since there are no direct dependencies between application-level selectors and the

network layer, the application can maintain its resilience control mechanism, if needed,

so as to further reduce redundancy of storing the selector messages. Worker selectors

can buffer most recent processed messages in the event of network re-establishment

with an older copy of the master, and can directly return processed results to the mas-

ter. Similarly, the master can record delegated work and may resend work based on

network change alerts if subscribed to a topic supported by the publish- subscription

model.

We performed some additional evaluation on the Android devices using our DAMMP

runtime, to demonstrate how the computation is not affected upon a device leaving

the ad-hoc network and seamlessly distribute the work to the remaining devices in
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the network. We use a benchmark that approximates the integral function over an

interval [a, b] by using the trapezoidal approximation [42, 18]. We approximate the

integral of the function:

f(x) =
1

x+ 1
×
√

1 + e
√
2x × sin (x3 − 1)

See, Section 5.2.2.1 for detailed explanation on the benchmark and experimental

evaluation. In Figure 4.3 we are computing the area enclosed by the aforementioned

Figure 4.3 : Showing the dynamic leaving of devices while calculating a trapezoidal

approximation of the function. We start with one device, and join upto three de-

vices. Each of the colors depict which device contributed to the computation of that

trapezoid in the function.

function using the trapezoidal approximation method. The interval is divided up into

approximately 100, 000, 000 trapezoids, and each color represents the device that con-

tributed to the computation of that area in the function. We start the computation
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with one Nexus 5 (device 1), and join 2 more Nexus 5’s (devices 2 and 3) to divide the

computation. As shown in the figure when the devices leave the network, remaining

devices in the network seamlessly pick up the computation. The trapezoidal bench-

mark is implemented as a request-reply model, where work is sent to devices piece by

piece, and upon getting a result, the master will generate another piece of work and

send to the replying device when work is available.
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Chapter 5

Experimental Evaluation

5.1 Cluster based implementation (HJDS)

Selectors can act naturally as a programming primitive in distributed setting, and

more efficiently support the coordination patterns (as discussed in Section 2.2.1)

than with an actor model explicitly implementing multiple guarded mailboxes [3].

The Selector Model, as a more generalized form of actors, also supports any read-

ily available actor-based programming patterns. To demonstrate the scalability and

programmability of selectors, we show results of some actor-based micro-benchmarks

chosen from the SAVINA benchmark suite [43].

5.1.1 Hardware Setup

The benchmarks were run on a 12 core (two hex cores), 2.8GHz Westmere nodes with

48GB of RAM per node (4 GB per core), running Red Hat (RHEL 6.5). We used up

to 16 nodes in our studies.

5.1.2 Benchmarks

For benchmarking, we use the number of workers equal to twelve times the number

of nodes. On each node an equal number of selectors are created. Each benchmark

was run 20 times, and we report the mean and the best execution times across these

runs for a given number of nodes. The selected benchmarks use the master-worker
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parallelism to achieve both intra-node and inter-node parallelism. Each computing

node is designated as a single place, with 12 workers on each place to minimize

the effect from task scheduling on computation time. All implementations feature

multiple mailboxes to differentiate control messages, and actual computational tasks,

with control messages of higher priority. The master selector in computation is located

on the Master Node of the HJDS system in all benchmarks.

5.1.2.1 NQueens First K Solutions

The NQueens K Solutions benchmark finds the first K solutions to placing N queens

on the chessboard of size N × N in a way that no queen can threaten each other.

This benchmark uses the classic master-worker programming model with a depth-first

search to exhaustively enumerate through all solutions and prematurely terminates

at finding the first K solutions. The master selector initiates computation by passing

an empty N × N board (as a partial solution) to each worker. Each time a worker

successfully place a non-attacking queen on the partial solution, the worker reports

the partial board back to master as a new work item. Each time a worker reports a

board configuration to the Master Node selector, the master either assigns the partial

solution to a worker in a round-robin fashion or records that a valid solution is found.

This algorithm exploits the priority feature in our Distributed Selector implemen-

tation for more than the purpose of progress control, and places a higher priority

on work items that contain complete partial solutions (i.e. with more safely placed

queens). The priority restriction on partial solutions reduces the process on duplicate

work items and supports early termination of the program by putting complete so-

lution at highest priority to process aside from control messages. When K solutions

have been found, the master will send out a termination message (of highest priority)
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to all workers.
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Figure 5.1 : NQueens : Shows strong scaling of computing the NQueens problem on a

17×17 board using the described algorithm. Workers compute solutions sequentially

when given a partial solution with six placed queens. The number of workers per

node is constant (12). The solution limit is set to 1_477_251, which is a tenth of the

size of a complete solution set. Mean Execution time in seconds from 20 iterations.

The error bar on mean execution time plot shows the standard deviation of the 20

iterations.

With a naive actor-based implementation, a solution limit to allow termination

has no effect on the program, and the program has to exhaustively compute the

solution space. Without using priority, depth-first search with a divide-and-conquer

style, as shown above, is hard to implement, since messages are processed in their

received order, and no guarantee is made on processing partial solutions deeper in the
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search tree. While the priority feature can be emulated in an actor model through

explicit pattern matching on its mailbox, the overhead generated for each message

can be collectively large for a significant amount of message exchange, like in the

NQueens K case.

This benchmark exhibits complicated interaction pattern between the master and

its workers. In this algorithm, the master node becomes a bottleneck when the number

of workers increases, as all communication about partial results routes through the

master selector. The abundance of worker selectors when we use more nodes also

poses the problem of extra duplicate partial solutions, we approach this by having

workers to filter through work items they’ve worked on, but the master node still

receives more items as the system size grow. Observing the results in Figure 5.1

showing, we can see that as the amount of (duplicate) partial solutions grows super-

linearly with the number of nodes deployed, the bottleneck of processing messages

takes over, resulting in decreased speedup as the number of nodes increase from 4 to

12.

5.1.2.2 Pi Precision

This benchmark computes the value of π to a pre-configured precision using a digit

extraction algorithm. The following formula can be used to compute π:

π =
∞∑
n=0

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)(
1

16

)n

The Pi Precision Computation represents a master-worker style parallelism. In

this scenario, the amount of communication between the master and its workers are

frequent, though still with a small message body. In the Pi Precision implementation,

the master selector incrementally finds work and allocates fragments of the work to the

worker selectors, while it collects partial results until reaching the desired precision.
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Figure 5.2 : Precise Pi : Shows strong scaling for the calculation of Pi with a precision

of 80_000. Number of workers per node is constant (12). Work is evenly distributed

among all selectors. Mean Execution time in seconds from 20 iterations. The error

bar on mean execution time plot shows the standard deviation of the 20 iterations.

In this benchmark, we explore distributed selector scalability when message ex-

change grows with the expansion of the system. We observe a general linear strong

scaling trend, with a slow decrease in speedup as the number of nodes used increase,

as shown in Figure 5.2. Both the increased message amount from having more work-

ers and the increased average message delivery time from the physical span of the

computing nodes the system uses can attribute to overheads that prevent linear scal-

ability.

Both the micro-benchmarks show how the HJDS runtime perform under different

message exchange patterns. With the Pi Precision benchmark, where the amount
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of message exchange between master and workers grow with the number of places

in the system, we see the runtime perform with near linear strong scaling. With

the more complicated NQueens K Solutions benchmark, where the program exhibits

a bottleneck, we observe sub-linear strong scaling as expected from the super-linear

growth of message exchange as the number of places increase. Moreover, the NQueens

K benchmark displays a programming pattern less easily achievable with a general

actor model and shows better efficiency can be achieved with a traditional implemen-

tation. The system bootstrap and termination sequence for both the benchmarks take

an average of 20ms, constituting of less than 0.001% of program execution time. This

also confirms that the major limitation on scalability comes from the communication

patterns.

5.2 Android based implementation (DAMMP)

Our Android-based implementation of DAMMP currently supports two communi-

cation layers, one with standard Wi-Fi and the other with Wi-Fi Direct. We are

using the Android operating system as our research vehicle because of its open source

software stack and Linux kernel roots, as well as the availability of the Android

JVM — Android RunTime (ART) [44], an efficient and low memory footprint virtual

machine that provides a high-level managed runtime that is well suited for Actor im-

plementations. Our implementation was undertaken on Android 5.1.1 and complies

with available Wi-Fi and Wi-Fi Direct APIs at level 22. Under the Wi-Fi Direct

based communication layer, one device acts as group owner and broadcasts provided

service(s), while nearby devices may join through service discovery to act as group

member(s).
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5.2.1 Hardware Setup

Our tests platform includes five Nexus 5 devices, with a Quad-core 2260 MHz Krait

400 processor and a Qualcomm Snapdragon 800 MSM8974 system chip, and three

Nexus 4 devices, with a Quad-core 1500 MHz Krait processor and a Qualcomm Snap-

dragon S4 Pro APQ8064 system chip.

5.2.2 Benchmarks

We provide experimental results and analysis for two benchmarks:

1. A micro-benchmark that measures message passing throughput and the impact

of communication overhead on application scalability in different communica-

tion environments ( Section 5.2.2.1)

2. A distributed actor benchmark that measure scalability of our distributed mo-

bile platform ( Section 5.2.2.2)

Since these are standard actor benchmarks, they all use a single mailbox as in the

standard actor model. The benchmark execution times exclude Android application

startup and termination times. To reduce variability due to system and environ-

mental factors, we minimize log output, disable background processes, and utilize a

temperature controlled testing environment (a refrigerator freezer) for all results.

5.2.2.1 Trapezoidal Approximation

The Trapezoidal benchmark approximates the integral function over an interval [a, b]

by using the trapezoidal approximation [42, 18].

We approximate the integral of the function:

f(x) =
1

x+ 1
×
√

1 + e
√
2x × sin (x3 − 1)
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The parallelism is achieved by dividing up the integral approximation into a fixed

number of intervals, by using a master-worker pattern. The original algorithm is

obtained from [15], in which each worker is remotely created by the master actor,

work is sent to each worker, and the completed results are returned to the master.
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Figure 5.3 : Trapezoidal Approximation: Shows the best and average time (over 20

executions) with 4 Nexus 5 devices to compute an approximation with 100, 000, 000

intervals for the integration. The x axis (in log scale) shows the number of work

messages sent by the master to workers, and the y axis shows the best and average

times. The total work remains the same for all experiments. For each work message,

a reply message is sent back to the master with the result.

The DAMMP implementation has been modified to use a request-reply model,

where work is sent to workers piece by piece, and upon getting a result, the master

will generate another piece of work and send to the replying worker when work is
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available. The workload distribution in this benchmark remains fixed. The reason for

a fixed distribution is because we use this benchmark to evaluate the impact of the

number of messages on performance, without considering the impact of dynamic load

balancing. Since the workload is statically distributed, this benchmark is an excellent

candidate for examining the tradeoff between the number of messages and workload

size in each message. Note that each interval results in two messages exchanged

between the master and a worker, a work message sent from the master to the worker

and a reply message sent from the worker to the master.

In our experiments, we use a static network of four Nexus 5 devices, and increase

the total number of work messages by powers of two, starting with one work message

(serial execution). Figure 5.3 shows the number of work messages on the x-axis on a

log scale, and shows the corresponding execution time in its y-axis.

We can observe that for a constant workload, the execution time becomes con-

sistent once all four devices are involved (4 or more work messages are sent). The

communication overhead does not affect the 4x speedup until the point when 104 to

105 work messages are sent. This benchmark demonstrates the robustness of the sys-

tem to effectively hide latency from communication and shows that ideal parallelism

can be achieved even with a relatively large number of communication messages.

5.2.2.2 Pi Precision

The Pi Precision benchmark computes the value of π to a specified precision using a

digit extraction algorithm. We use the same formula as in Section 5.1.2.2 to calculate

the value of π:

π =
∞∑
n=0

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)(
1

16

)n
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Unlike the static work distribution in Section 5.2.2.1, this benchmark uses a

master-worker pattern with dynamic work distribution, where the master sends more

work (if available) to a worker that sends a reply with results.

Figure 5.4 shows the execution time of calculating Pi to the 15,000 decimal place

for an increasing number of devices. Each device contains two worker actors, while the

total amount of work remains constant as the number of devices is increased (strong

scaling). These results were obtained using the Wi-Fi Soft AP based communication

layer, and only a Nexus 5 device (not a Nexus 4 device) was used as the Soft AP for

all configurations.

The data-point in Figure 5.4 starts with a single Nexus 5 device running the Pi

precision approximation, and each data point shows the execution time after adding

one more device. After five Nexus 5 devices are added, we add one Nexus 4 device

incrementally for each of the remaining data points. We can observe the near linear

scaling effect with the first five Nexus 5 devices, with the scaling effect slowing down

after that. This is because Nexus 4 devices are only half as powerful as Nexus 5

devices, adding modest increase in computing power, while still increasing the com-

munication traffic to the AP host device. In spite of the limited computing capability

of Nexus 4s, due to the dynamic nature of the generated work and the effective load

balancing technique implemented by the application, the total execution time is still

improved by adding slower Nexus 4’s to the computation.
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Figure 5.4 : Pi Precision Computation: Shows the best and average time (over 20

executions) to compute the value of Pi to 15,000 decimal points. The x-axis shows

the number of devices used for the computation, the y-axis shows the execution time.

Each device runs two worker actors, and only one of the devices also runs a master

actor. From single device to five devices the results are obtained using Nexus 5, from

six to eight devices the additional devices are Nexus 4.
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Chapter 6

Related Work

Ever since its inception, the logical isolation, and asynchrony inherent in the actor

model have made it an attractive candidate for distributed computing for decades,

with more recent explorations of the actor model for distributed mobile platforms.

We briefly summarize some related work on using the actor model for both cluster

based computing and distributed mobile computing in recent years.

6.1 Akka

Akka is an open-source toolkit and runtime for building highly concurrent, fault-

tolerant and distributed systems on the JVM based on the Actor Model [17]. The

toolkit can be used as library similar to our HJ library. The Akka runtime arranges

the user-defined actors in an ancestral tree, mainly for the purpose of recovery from

single point failures. The Akka runtime requires users to explicitly shutdown a system

of actors and relies on the user to ensure termination of the whole system.

Akka.cluster is a module dedicated to aiding actor-based distributed application

programming and its significant contribution is to maintain location transparency

that follows its previous strict adaptation of AM [45]. Using their gossip protocol [25]

and the accrual failure detector [26] Akka provides a fault-tolerant decentralized peer-

to-peer based cluster membership service with no single point of failure/bottleneck.
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Akka actors support priority-enabled mailbox to some extent: the Akka priori-

tized mailboxes associate a specific message class or value to a predefined priority.

Although still maintaining a single mailbox, Akka runtime arranges the received mes-

sage order based on these predefined priorities. The HJDS, on the other hand, is more

flexible and allows the user to pass the same message type with different priorities by

making no predefined association between mailboxes and the messages it hold. The

distributed selector model is capable of more efficient and easier implementation of

complex synchronization patterns [3].

6.2 SALSA: Simple Actor Language, System and Architecture

SALSA is a Java-based actor programming language developed at RPI [18]. The lan-

guage targets open, dynamically re-configurable Internet and mobile applications. It

focuses on the mobility of actors in distributed system and features universal naming,

active objects, and actor migration. SALSA introduces three language mechanisms

to aid coordination between actors: token-passing continuation, join continuation,

and first-class continuation. With a major focus on providing reconfigurable sub-

components at runtime, SALSA provides daemon programs for host universal actors

named Theaters and supports universal actor with the Naming Server [35]. Together

these universal actors can host distributed SALSA programs and provide services

such as migration and message forwarding for remote actors.

The SALSA programming model differs from HJDS in several ways. By allowing

migration of actors, the SALSA runtime directs all remote reference lookups to the

Naming Server. The HJ runtime encodes places for remote selectors in their references

and deals with message forwarding locally. Exiting an actor can be explicitly called
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in HJ while being implicit in SALSA. HJ allows system boot-up and termination by

the program, unlike the background daemon servers that make up the distributed

SALSA system. In HJ the user decides the duration of keeping the server running.

The distributed implementation of SALSA Lite provides no support for the proper

termination of the runtime. The user is responsible for terminating all the actor

instances at a stage, and once the stage is no longer hosting any active actors the

user may terminate the stages and the theaters they are running on.

HJ does not have an explicit construct to wait on multiple actor message returns

like the join continuations in SALSA, but the functionality can be easily achieved by

using the join pattern with selectors. Finally, a key difference between SALSA and HJ

is that our HJDS model supports selectors with multiple mailboxes in a distributed

setting. We were unable to include any performance comparisons with SALSA in

this dissertation because of running into JVM OutOfMemory errors for the SALSA

versions of the benchmarks when using the same conïňĄgurations that we use for

HJDS.

6.3 AmbientTalk

The language AmbientTalk is an actor-based programming language designed specif-

ically for mobile ad hoc networks [46]. It features λ calculus based functional el-

ements with local and remote actor-based reductions, and object-oriented elements

with both parameter pass-by-value (isolated objects) and pass-by-reference “regular”

objects) semantics. It utilizes the Actor model for its concurrency and distributed

computation. Actors in the AmbientTalk VM are used as containers to hold a set

of regular objects, rather than regular “active objects”. The virtual machine hosts
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multiple actors that can execute concurrently, while each actor itself represents a

communicating event loop that uses the run-to-completion semantics for method in-

vocation on its host objects.

While the AmbientTalk model has similarities with the traditional actor model,

one difference is that it can break the pure message-passing model through the use

of far references introduced in the the E language [47]. The AmbientTalk language

has both cluster-based and early Android implementations that focus on high-level

abstractions for distributed programming with both message passing mechanisms

and remote accesses through far references. In our work, on the other hand, the

focus is on supporting a pure actor/selector model at the high-level, with distributed

mechanisms supported in configurations that are decoupled from the programming

application logic. Further, our model, DAMMP does not limit ourselves to mobile

ad-hoc networks since it can also support communications within and across mobile

devices and server devices with a single model. Finally, to the best of our knowledge,

AmbientTalk’s implementation targets an outdated version of Android (prior to An-

droid 4.0) that is no longer supported on current mobile devices, thereby preventing

us from performing experimental comparisons with Ambient Talk.

6.4 ActorDroid

The ActorDroid project is based on SCALA actors and focuses on a distributed

application framework which follows the stream processing paradigm inherited from

SCALA [48]. The framework’s basic units are services, each independently a SCALA

actor that runs in its own execution environment. It uses a publish-subscribe model

for service discovery and join, while each mobile device can host one-to-many services.
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The ActorDroid work described an implementation based on external Wi-Fi Access

Points with dynamic network maintained by a Master-Worker scheme. We also use

a decentralized structure in our runtime to enable support for dynamic topologies.

However, unlike ActorDroid, the hardware dependent communication layer is com-

pletely decoupled from the application-level actor communication in our approach.

Instead of relying on a pre-defined strategy for dynamic topological changes, we ex-

pose a minimal amount of information to application-level actors that can provide the

user-level application with the ability to adapt to runtime events. As with Ambient

Talk, to the best of our knowledge, ActorDroid’s implementation targets an outdated

version of Android (prior to Android 4.0) that is no longer supported on current mo-

bile devices, thereby preventing us from performing experimental comparisons with

ActorDroid.

6.5 ActorNet

The ActorNet project is an actor-based mobile agent platform for wireless sensor

networks (WSNs) [49]. This project aims to create a high-level abstraction for con-

current and asynchronous programming for WSNs to adapt to the limited hardware

resources available on mobile sensors. The ActorNet project implements a Scheme

interpreter that is assumed to be better suited to the limited processing power and

memory available on wireless sensors than stack-based virtual machines and intro-

duces new language primitives that enable actor-based message passing, queries, and

access to program continuation. The ActorNet project also focuses on higher level

language abstractions to aid parallel and asynchronous programming on mobile net-

works. Compared to the emphasis on optimization for limited hardware specifically
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for wireless sensors, our work focuses more on adaptability on a wider range of mobile

devices by creating a more general distributed runtime system.

Our design DAMMP goes beyond sensor networks and supports rich combinations

of mobile devices and cluster-based services. Compared to ActorNet, our design

is better suited for use with more powerful consumer mobile devices such as high-

end tablets and smartphones. Finally, since ActorNet provides an implementation

specific to wireless sensors, we were unable to perform an experimental comparison

with ActorNet.
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Chapter 7

Conclusion & Future Work

7.1 Conclusion

In this dissertation, we address the dynamic reconfiguration challenges that arise in

distributed implementations of the Selector Model, by providing two implementa-

tions of distributed selectors, one for distributed servers and another for distributed

Android devices.

The Habanero Java Distributed Selector (HJDS) model is a novel programming

model for shared memory and distributed memory parallel applications. The Dis-

tributed Selectors on the clusters allows programmers to focus on implementing the

algorithm for solving the problem their application is trying to solve, without wor-

rying whether their application will run on a shared-memory or distributed-memory

system. Our runtime implementation supports Selectors (a strictly more powerful

version of Actors) on both shared-memory and distributed-memory systems. This

framework provides automated system bootstrap and global termination, unlike any

other distributed approaches.

To address reconfiguration challenges on Android devices, we have developed a

mobile platform based Java runtime library, DAMMP (Distributed Actors Model on

Mobile Platforms) by extending the HJDS implementation. Using the DAMMP run-

time we focus on decentralized distributed applications using the actor/selector model

by supporting a highly decoupled and customizable communication middleware and
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publish-subscribe enabled application-level runtime event handling. We provide a

hierarchical, heterogeneous concurrency and distribution model by extending the ac-

tor model in Habanero Java Distributed Selectors for shared-memory and distributed

parallelism. We presented a task offloading pattern based on the selector model and

the Master-Worker paradigm.

We evaluated the performance of our selector-based distributed implementation

on both clusters and Android devices using benchmarks from the Savina benchmark

suite [43].

• For the cluster-based implementation our results show promising scalability per-

formance for various message exchange patterns. We also demonstrate high pro-

gramming productivity arising from high-level abstraction and location trans-

parency in the Habanero Java Distributed Selector runtime library (as evidenced

by minimal differences between single-node and multi-node implementations of

a selector-based application), as well as the contribution of automated system

bootstrap and global termination capabilities. Our experimental evaluation

makes a strong case for the HJDS model as a viable alternative to the existing,

much harder to program and port, parallel programming models.

• For the Android based implementation we evaluated the DAMMP framework

under ideal usage conditions to show promising scalability and performance,

and analyze the communication overhead of both Wi-Fi Soft AP and Wi-Fi Di-

rect when used as the communication layer for DAMMP. We demonstrated the

scalability of computationally intensive applications using distributed mobile

platforms, examined the message passing overheads with two promising off-the-

grid wireless communication technologies (Wi-Fi Soft AP and Wi-Fi Direct).
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Our empirical results expose some of the limitations of the current state-of-the-

art in device-to-device wireless connectivity. Our DAMMP runtime provides

network researchers an intuitive and easy to use platform for connectivity ex-

periments.

7.2 Future Work

For future directions on our cluster-based platform, we plan to explore automated

program quiescence detection that does not rely on the user explicitly exiting each

user-level Selector. We plan to look into dynamic load-balancing by allowing features

like the migration of Actors. Extensions on the current work is to include dynamic

joining and leaving of nodes from the cluster for a better fault tolerance mechanism.

With the empirical results in mind for our DAMMP runtime, we plan to explore

real-world heuristics in thermal-aware dynamic distribution on heterogeneous mobile

networks that involve devices with various computing powers, including wireless sen-

sors, tablets, and laptops. We plan to explore dynamic load-balancing across devices

by having the runtime automatically migrate Actors when needed for various reasons

(maximizing overall performance, maximizing combined system battery life etc.).

We also plan to explore high-level abstraction for distribution by supporting

shared-memory parallel construct (DataDriven Futures, Phasers) in the Habanero

Execution model in distributed mobile peer-to-peer networks. Support for multiple

master nodes for increased fault tolerance and scalability is also of future interest.

We will also study more closely the performance tradeoffs between traditional Actor-

based libraries (such as Akka and SALSA) on traditional static networks and our

DAMMP model implementation.
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