

ABSTRACT

Debugging, Repair, and Synthesis

of Task-Parallel Programs

by

Rishi Surendran

Parallelizing sequential programs to effectively utilize modern multicore architectures

is a key challenge facing application developers and domain experts. Therefore, it is a

need of the hour to create tools that aid programmers in developing correct and efficient

parallel programs. In this thesis, we present algorithms for debugging, repairing, and syn-

thesizing task-parallel programs that can provide a foundation for creating such tools. Our

work focuses on task-parallel programs with both imperative async-finish parallelism and

functional-style parallelism using futures.

First, we address the problem of detecting races in parallel programs with async, fin-

ish and future constructs. Existing dynamic determinacy race detectors for task-parallel

programs are limited to programs with strict computation graphs in which a task can only

wait for some subset of its descendant tasks to complete. In this thesis, we present the first

known determinacy race detector for non-strict computation graphs generated using fu-

tures. The space and time complexity of our algorithm degenerate to those of the classical

SP-bags algorithm when using only structured parallel constructs such as spawn-sync and

async-finish. In the presence of point-to-point synchronization using futures, the complex-

ity of the algorithm increases by a factor determined by the number of future task creation

and get operations as well as the number of non-tree edges in the computation graph.

Next, we introduce a hybrid static+dynamic test-driven approach to repairing data races

in task-parallel programs. Past solutions to the problem of repairing parallel programs have

used static-only or dynamic-only approaches, both of which incur significant limitations in

practice. Static approaches can guarantee soundness in many cases but are limited in pre-

cision when analyzing medium or large-scale software with accesses to pointer-based data

structures in multiple procedures. Dynamic approaches are more precise, but their pro-

posed repairs are limited to a single input and are not reflected back in the original source

program. Our approach includes a novel coupling between static and dynamic analyses.

First, we execute the program on a concrete test input and determine the set of data races

for this input dynamically. Next, we compute a set of static “finish” placements that repairs

these races and also respects the static scoping rules of the program while maximizing

parallelism.

Finally, we introduce a novel approach to automatically synthesize task-parallel pro-

grams with futures from sequential programs through identification of pure method calls.

Our approach is built on three new techniques to address the challenge of automatic paral-

lelization via future synthesis: candidate future synthesis, parallelism benefit analysis, and

threshold expression synthesis. In candidate future synthesis, our system annotates pure

method calls as async expressions and synthesizes a parallel program with future objects

and their type declarations that are more precise than those from past work. Next, the sys-

tem performs a novel parallel benefit analysis to determine which async expressions may

need to be executed sequentially due to overhead reasons, based on execution profile in-

formation collected from multiple test inputs. Finally, threshold expression synthesis uses

the output from parallelism benefit analysis to synthesize predicate expressions that can

be used to determine at runtime if a specific pure method call should be executed sequen-

tially or in parallel. These algorithms have been implemented and evaluated on a range

of benchmark programs. The evaluation establishes the effectiveness of our approach with

respect to dynamic data race detection overhead, compile-time overhead, and precision and

performance of the repaired and synthesized code.

Acknowledgments

First, I would like to express my deepest gratitude to my thesis advisor Prof. Vivek Sarkar

for his guidance, support, and encouragement academically as well as personally through-

out my life as a graduate student. I thank him for providing me the opportunity to attend

graduate school at Rice and be a part of the Habanero group. He has been a wonderful

mentor and a facilitator. He has always accommodated me in his extremely busy schedule

whenever I needed his guidance or support. It has been an honor and pleasure to have him

as my advisor.

I would like to thank Prof. Swarat Chaudhuri for being part of my thesis committee and

providing me guidance and feedback. I have had the pleasure of collaborating with him on

the program repair work which is part of this thesis. His inputs on syntax-guided synthesis

has also helped in synthesis of futures. His knowledge and insights on program synthesis

and program repair have been extremely valuable and have greatly enriched this work.

I would like to thank Prof. Lin Zhong for agreeing to be on my thesis committee. His

feedback and insights have greatly improved this thesis.

I express my sincere gratitude to Prof. John Mellor-Crummey for providing me guid-

ance on the program repair work presented in this thesis. A major part of the program repair

work was done as part of COMP 522 project during which I made significant progress. His

constant feedback and suggestions helped in improving the algorithms used for repair.

I would like to thank all members of the Habanero group for all their feedback, support

during my PhD. In particular, I would like to thank Shams Imam, Vincent Cave, and Jisheng

Zhao for helping me with Habanero Java infrastructure. I am grateful to Raghavan Raman

for the collaborative work on data race detection and program repair. I would like to thank

Rajkishore Barik for collaborating with me on the scalar replacement work and providing

v

me an internship opportunity at Intel Labs.

I thank my Masters thesis advisor Prof. Vineeth Paleri for kindling interest in compiler

optimizations and programming languages. His guidance and inspiration has helped me

through out my graduate student years.

I express my deepest gratitude to my friends, mentors, and colleagues at Hewlett Packard,

Sandya Mannarswamy and Vidya Praveen for encouraging me to pursue PhD and helping

me with the PhD application. I would also like to express my gratitude to my colleagues at

Hewlett Packard, Eddie Gornish and Teresa Johnson for helping me by providing recom-

mendations for my PhD application.

I would like to thank my friends at Rice, Etienne Ackermann, Apoorv Agarwal, Ku-

mud Bhandari, Calvin Charles, Prasanth Chatarasi, Arghya Chatterjee, Tiago Cogumbreiro,

Shams Imam, Rahul Kumar, Deepak Majeti, Karthik Murthy, and Sri Raj Paul for all the

support and encouragement.

My sincere thanks to my parents, sister, and in-laws who have been very supportive and

encouraging all along during my graduate course. I am grateful for the unconditional and

unquestioning support from my loving wife Priyanka throughout my work.

Contents

Abstract ii

Acknowledgments iv

List of Illustrations x

List of Tables xii

1 Introduction 1
1.1 Thesis Statement . 4

1.2 Contributions . 4

1.3 Outline . 5

2 Programming and Execution Model 6
2.1 Async-Finish Parallelism . 6

2.2 Futures . 7

2.3 Computation Graphs . 9

2.4 Properties of Async-Finish-Future Programming Model 11

2.4.1 Serial Elision . 12

2.4.2 Data Race Freedom and Deadlock Freedom 12

2.4.3 Data Race Freedom and Functional and Structural Determinism . . 15

3 Debugging Parallel Programs with Futures 17
3.1 Problem Statement . 19

3.2 Contributions . 19

3.3 Determinacy Races in Programs with Futures 20

3.4 Determinacy Race Detection Algorithm 21

vii

3.4.1 Dynamic Task Reachability Graph 22

3.4.2 Shadow Memory . 27

3.4.3 Algorithm . 27

3.5 Theoretical Results . 34

3.6 Experimental Results . 41

3.7 Related Work . 46

3.8 Summary and Future Wrok . 47

4 Test-Driven Repair of Data Races in Task-Parallel Programs 49
4.1 Problem Statement . 51

4.2 Contributions . 53

4.3 Overview . 54

4.4 Data Race Detection . 56

4.4.1 Multiple Reader-Writer ESP-Bags 56

4.4.2 Scoped Dynamic Program Structure Tree 57

4.5 Dynamic Finish Placement . 60

4.5.1 Dynamic Dependence Graph Construction 61

4.5.2 Algorithm . 62

4.5.3 Correctness and Optimality . 68

4.6 Static Finish Placement . 69

4.6.1 Algorithm . 69

4.6.2 Correctness & Conditions for Optimality 71

4.7 Experimental Results . 71

4.7.1 Repairing Programs . 74

4.7.2 Time for Program Repair . 75

4.7.3 Comparison of SRW and MRW ESP-Bags 76

4.7.4 Student Homework Evaluation . 76

4.8 Related Work . 77

viii

4.9 Summary and Future Work . 79

5 Automatic Parallelization via Synthesis of Futures 80
5.1 Problem Statement . 82

5.2 Contributions . 84

5.3 Overview of Approach . 85

5.4 Candidate Future Synthesis . 87

5.4.1 Inter-procedural Future Analysis 88

5.4.2 Future Transformation . 92

5.4.3 Candidate Future Identification . 94

5.4.4 Preserving Data Dependences . 97

5.5 Parallelism Benefit Analysis . 97

5.5.1 Weighted Computation Graph . 98

5.5.2 Classification of Pure Function Calls 101

5.6 Threshold Expression Synthesis . 104

5.7 Final Future Synthesis . 109

5.8 Experimental Evaluation . 110

5.8.1 Experimental Setup . 110

5.8.2 Experimental Results . 112

5.9 Related Work . 116

5.9.1 Futures . 116

5.9.2 Parallelism and Performance Profiling 118

5.10 Summary and Future Work . 120

6 Putting It Together 122
6.1 Data Race Detection and Manual Repair 122

6.2 Data Race Detection and Automatic Repair 123

6.3 Synthesis of Futures . 124

6.4 Synthesis, Data Race Detection and Automatic Repair 125

ix

7 Conclusions and Future Work 126
7.1 Conclusions . 126

7.2 Future Work . 127

Bibliography 129

Illustrations

2.1 Example program with HJ futures . 8

2.2 Example program with futures. 10

2.3 Computation graph of the program in Figure 3.1. 10

2.4 Example program that may deadlock . 11

2.5 Illustration of Lemma 1. 13

3.1 Example program with futures. 21

3.2 Computation graph of the program in Figure 3.1. 22

3.3 A computation graph with non-tree joins. 25

4.1 Mergesort program with data races. 50

4.2 Quicksort program with data races. 50

4.3 Example async-finish program with execution times 52

4.4 Example finish placements . 53

4.5 Async-finish code which demonstrates the scoping issues in finish insertion 53

4.6 High level view of test-driven repair . 55

4.7 Async-finish code with multiple data races 57

4.8 Incorrectly synchronized Fibonacci program 59

4.9 Subtree of S-DPST for Fibonacci . 60

4.10 A subtree rooted at NS-LCA for Fibonacci 61

4.11 Dependence graph constructed from the subtree in Figure 4.10 62

4.12 Optimal substructure of finish placement 63

xi

4.13 Earliest start time computation . 63

4.14 Subtree in Figure 4.10 after inserting finish 67

4.15 Fibonacci program from Figure 4.8 after finish insertion 70

4.16 Performance of repaired programs . 72

5.1 Sequential binary tree program . 81

5.2 Binary tree program from Figure 5.1 after parallelization 83

5.3 High level view of synthesis . 85

5.4 Binary tree program after method purity analysis 87

5.5 Examples of normal flow function for computingM (may-be-future) 89

5.6 Examples of normal flow function for computing N 91

5.7 Binary tree program after synthesis of futures 92

5.8 Weighted computation graph for binary bree program 99

5.9 Merge parent transformation on the computation graph 103

5.10 Conditional parallel execution of method call obj.f(a1, an) 105

5.11 Sequential recursive Fibonacci invocation 112

6.1 Debugging of parallel programs with async, finish, and future 122

6.2 Debugging and repair of parallel programs with async, finish, and future . . 123

6.3 Synthesis of futures in parallel programs 123

6.4 Synthesis of futures with profitability analysis 124

6.5 A workflow which includes synthesis, debugging and repair of

task-parallel programs . 125

Tables

3.1 Example of dynamic task reachability graph 26

3.2 Example of dynamic task reachability graph 27

3.3 Runtime overhead for determinacy race detection 42

4.1 List of benchmarks evaluated . 72

4.2 Time for program repair . 73

4.3 Comparison of SRW ESP-Bags and MRW ESP-Bags 74

4.4 Number of data races detected by SRW ESP-Bags and MRW ESP-Bags . . 75

5.1 Example transformation rules based on future-analysis results 93

5.2 List of benchmarks evaluated . 110

5.3 Result of parallelism benefit analysis . 112

5.4 Synthesis statistics . 113

5.5 Performance of synthesized programs . 114

5.6 Sensitivity of threshold values . 115

1

Chapter 1

Introduction

Today, inexpensive multicore processors are ubiquitous, and the demand for parallel pro-

gramming is higher than ever. However, despite advances in parallel programming models,

it is widely acknowledged that writing correct and efficient parallel programs is a challeng-

ing task. Therefore, it is a need of the hour to create tools that aid programmers in parallel

software development. In this dissertation, we present algorithms for debugging, repair,

and synthesis of parallel programs.

Debugging Parallel Programs. Many parallel programs are intended to be deterministic,

in that the program computes the same answer when given the same inputs. A program

execution contains a data race when there are two or more accesses to the same variable,

at least one of which is a write, and the accesses are unordered by either synchronization or

program order. A program may behave nondeterministically in the presence of data races.

That is, different runs of the same program may compute different answers when given

the same inputs. Data races are hard to detect and reproduce using traditional debugging

techniques such as breakpointing because they may occur in only some of the possible

schedules of a program.

Past work on dynamic detection of data races focused either on structured parallelism

or unstructured parallelism. For unstructured parallelism, vector clock algorithms serve as

a popular foundation for dynamic data race detection, e.g., [1, 2]. A drawback of vector

clock-based approaches is that the storage requirements for vector clocks grow directly

2

proportional to the degree of logical parallelism in the program. For programs with struc-

tured parallelism, prior work has identified more scalable solutions, e.g., [3, 4, 5]. These

algorithms do not support race detection for futures because the computation graphs in the

presence of futures are more general than the computation graphs handled by these ap-

proaches. In this dissertation, we present the first known sound and precise algorithm for

dynamically detecting races in task-parallel programs with async, finish and future con-

structs [6].

Repair of Parallel Programs. A major challenge in writing parallel programs is identi-

fying the right amount of synchronization for correctness and performance. Introducing too

little synchronization may cause data races that are hard to detect, and inserting too much

synchronization can reduce parallelism. Most mainstream programmers lack the level of

expertise required to develop high performance, data race free parallel programs. With

this premise in mind, we propose a novel algorithm for repairing data races in task-parallel

programs [7].

Past solutions to the problem of repairing parallel programs have used static-only [8]

or dynamic-only [9, 10] approaches, both of which have significant limitations in practice.

Static approaches can guarantee soundness in many cases but face severe limitations in

precision when analyzing medium or large-scale software with accesses to pointer-based

data structures in multiple procedures. Dynamic approaches are more precise than static

analyses, but their proposed repairs are limited to a single input and are not reflected back

in the original source program. Our approach spans the middle ground between these two

classes of approaches. As in dynamic approaches, we execute the program on a concrete

test input and determine the set of data races for this input dynamically. However, next,

we compute a set of finish placements that rule out these races but also respect the static

3

scoping rules of the program, and can therefore be inserted back into the static program.

Automatic Parallelization via Synthesis of Futures. Automatic parallelization is a very

challenging problem in general. As an example, the current state of the art in automatic

parallelization of loops with array accesses (including program dependence graphs [11] and

polyhedral frameworks [12]) was developed over four decades with many restrictions along

the way with respect to array subscript expressions and procedure calls in loops. The sem-

inal papers in this field (e.g. [13]) included results for simple loop nests, and it took many

years for the original ideas to be refined and applied to real-world programs. Our work

is the first to address the problem of automatic parallelization by generating futures [14],

which is different from past work on automatic loop/statement-level parallelization using

control and data dependences, since future references can be copied without waiting for the

result to be computed.

Futures are traditionally used for enabling functional style parallelism, and therefore,

are a natural fit for parallelizing pure method calls. They also have the advantage that

references to future objects can be freely copied without waiting for the future tasks to

have completed, thereby exposing more parallelism than in imperative-style task parallel

constructs. However, there remain significant challenges when using futures to manually

parallelize programs with pure method calls. First, it is necessary to deal with potentially

conflicting write operations after the pure method call. Second, in strongly typed languages

like Java, C#, and C++, it is necessary to introduce type declarations for propagating future

references, as well as dereference (get) operations when the value returned by a future

task needs to be accessed. Finally, it is also important to identify what subset of available

parallelism is profitable for a given system. We introduce a novel approach for using futures

to automatically and efficiently parallelize the execution of pure method calls.

4

1.1 Thesis Statement

Current approaches for debugging, repair, and synthesis have known limitations in func-

tionality, performance or precision when applied to general task-parallel programs with

non-strict computation graphs. Our thesis is that debugging, repair, and synthesis can be

performed efficiently and precisely for task-parallel programs with async, finish and future

constructs, using a combination of static and dynamic techniques.

1.2 Contributions

This dissertation makes the following contributions:

• The first known sound and precise on-the-fly debugging algorithm for detecting races

in programs containing async, finish, and future parallel constructs. We show that the

algorithm can detect determinacy races by effectively analyzing all possible execu-

tions for a given input.

• A test-driven approach for repairing data races in parallel programs containing async

and finish constructs. Our approach takes as input an under-synchronized parallel

program with async and finish constructs and a test input and inserts finish constructs

to repair all data races for that particular test input while maximizing parallelism in

the resulting race-free program.

• A novel approach for synthesizing futures for automatically parallelizing the execu-

tion of pure method calls. Our approach synthesizes object clones when needed for

handling anti dependences, generates precise type information for future objects, au-

tomatically determines the profitability of executing a method call as future task and

synthesizes threshold expressions which determine dynamically whether a specific

method call should be executed sequentially or in parallel.

5

• An implementation of these algorithms as analyses and transformations on the Java

bytecode intermediate representation for Habanero-Java programs, and evaluation

on a range of benchmark programs. The evaluation establishes the effectiveness of

our approach with respect to dynamic data race detection overhead, compile-time

overhead, and precision and performance of the repaired and synthesized code.

1.3 Outline

The rest of this thesis is organized as follows:

• Chapter 2 summarizes the task-parallel programming model targeted by this thesis.

• Chapter 3 discusses how we address the problem of debugging parallel programs

with dynamic data race detection for async, finish, and future constructs.

• Chapter 4 presents our approach for repairing data races in parallel programs by

inserting finish constructs.

• Chapter 5 presents our approach for synthesizing futures in parallel programs.

• Chapter 6 describes how the techniques in Chapters 3-5 can be put together for dif-

ferent workflows using our toolchain

• Chapter 7 summarizes our conclusions and future work.

6

Chapter 2

Programming and Execution Model

Our work addresses task-parallel programming models that can support combinations of

functional-style futures and imperative-style tasks; examples include the X10 [15], Ha-

banero Java [16], Chapel [17], and C++11 languages. Section 2.1 presents the async-finish

task-parallel programming model and Section 2.2 presents the future construct. Section 2.3

summarizes the computation graph abstraction which models the execution of a parallel

program as a partial order, and Section 2.4 discusses the conditions for determinism and

deadlock-freedom for the async-finish-future task-parallel programming model.

2.1 Async-Finish Parallelism

We will use X10 and Habanero Java’s finish and async notation for task parallelism in this

thesis, though our algorithms are applicable to other task-parallel constructs as well. In

this notation, the statement “async { S }” causes the parent task to create a new child

task to execute S asynchronously (i.e., before, after, or in parallel) with the remainder of

the parent task following the async statement. The statement “finish { S }” causes the

parent task to execute S and then wait for the completion of all asynchronous tasks created

within S. Each dynamic instance TA of an async task has a unique dynamic Immediately

Enclosing Finish (IEF) instance F of a finish statement during program execution, where

F is the innermost finish containing TA. There is an implicit finish scope surrounding the

body of main(), so program execution will end only after all async tasks have completed.

7

2.2 Futures

A future [18] (or promise [19]) refers to an object that acts as a proxy for a result that may

initially be unknown, because the computation of its value may still be in progress as a par-

allel task. In the notation used in this thesis, the statement, “future<T> f = async<T>

Expr;” creates a new child task to evaluate Expr asynchronously, where T is the type of

the expression Expr. It also assigns to f a reference to a handle (future object) for the re-

turn value from Expr. The operation f.get() can be performed to obtain the result of the

future task. If the future task has not completed as yet, the task performing the f.get()

operation blocks until the result of Expr becomes available. Futures are traditionally used

for enabling functional-style parallelism and are guaranteed not to exhibit data races in their

return values. However, imperative programming languages allow future tasks to contain

side effects in the task bodies. These side effects on shared memory locations may cause

determinacy races if the program has insufficient synchronization. Another use case for

futures is that of future tasks with void return values, where the get() operation is used

purely for point-to-point synchronization and the tasks only communicate values through

side effects, just as with async and finish constructs.

Comparison with spawn-sync and async-finish. In the spawn-sync programming model,

a task is created using the spawn construct and a task can wait for its child tasks to com-

plete execution using the sync construct. At a sync construct, a task waits for all the pre-

viously created children to complete its execution. There is an implicit sync at the end of

every function. The async construct is similar to the spawn construct and the finish con-

struct waits for all descendant tasks in the scope of the finish to complete execution. In

both spawn-sync and async-finish programming models, a join operation can be performed

only once on a task (by the parent task in spawn-sync and by the ancestor task containing

the immediately enclosing finish in async-finish). The class of computations generated by

8

spawn-sync constructs is said to be fully strict [20], and the class of computations generated

by async-finish constructs is called terminally strict [21].

1 // Main task

2 Stmt1;

3 future<T> A = async<T> { ... }; // TA
4 Stmt2;

5 future<T> B = async<T>{ Stmt3;A.get();Stmt4;}; // TB
6 Stmt5;

7 future<T> C = async<T>{ Stmt6 ; A.get();

8 Stmt7; B.get();}; // TC
9 Stmt8;

10 A.get();

11 Stmt9;

12 C.get();

13 Stmt10;

Figure 2.1 : Example program with HJ futures. TA, TB, and TC are future tasks created by
the main program

The introduction of future as a parallel construct increases the possible synchronization

patterns. Task X can wait for a previously created task Y if X has a reference to Y by

performing the get() operation. Moreover, this join operation on task Y can be performed

by multiple tasks. As an example, consider the program in Figure 2.1, where the main

program creates three future tasks TA, TB and TC. There are three join operations on task

TA performed by sibling tasks TB, TC and the parent task. Here Stmt3, Stmt6 and Stmt8

may execute in parallel with task TA, where Stmt4, Stmt7 and Stmt9 can execute only after

the completion of task TA. Synchronization using get() can lead to transitive dependence

between tasks. For example, although the main task in Figure 2.1 did not perform an

explicit join on task TB, there is a transitive join dependence from TB to the main task,

because task TC performed a get operation on task TB due to which Stmt10 can execute

only after tasks TA, TB and TC complete their execution.

9

2.3 Computation Graphs

A computation graph [20] for a dynamic execution of a task-parallel program is a directed

acyclic graph, in which each node corresponds to a step which is defined as follows:

Definition 1. A step is a sequence of instruction instances contained in a task such that no

instance in the sequence includes the start or end of an async, finish or a get operation. 2

The edges in a computation graph represent different forms of happens-before relation-

ships. For the task-parallel constructs discussed in this thesis (async, finish, future), there

are three different types of edges:

1. Continue Edges capture the sequencing of steps within a task. All steps in a task are

connected by continue edges.

2. Spawn Edges represent the parent-child relationship among tasks. When task A

creates task B, a spawn edge is inserted from the step that ends with the async in task

A to the step that starts task B.

3. Join Edges represent synchronization among tasks. When task A performs a get on

future B, a join edge (also referred to as a “future join edge”) is inserted from the

last step of B to the step in task A that immediately follows the get() operation.

In addition, “finish join edges” are also inserted from the last step of every task in a

finish scope to the step in the ancestor task immediately following the Immediately

Enclosing Finish (IEF).

Definition 2. A step u is said to precede step v, denoted as u ≺ v, if there exists a path from

u to v in the computation graph.

10

1 S1 ;

2 future<T> A = async<T> { S2; // TA
3 future<T> B = async<T> { S3; }; // TB
4 S4; B.get(); S5; };

5 S6 ;

6 future<T> C = async<T>{ S7; A.get(); S8;}; // TC
7 S9 ;

8 future<T> D = async<T>{ S10; C.get(); S11;}; // TD
9 D.get();

10 S12 ;

Figure 2.2 : Example program with futures. TA,TB,TC and TD are future tasks. S1-S12 are
steps (sequential computations with no parallel constructs) in the program.

S2 S4 S5 S7 S8 S10 S11

S1 S6 S9 S12

S3

TM

TA

TB

TC TD

Continue

Spawn

Join

Figure 2.3 : Computation graph of the program in Figure 3.1. The circles represent the
steps in the program. The rectangles represents tasks. TM is the main task and TA, TB, TC

and TD are the tasks created during the execution of the program. The edges between the
steps in the same task are continue edges. The edges between steps in different tasks are
spawn edges or join edges

This precedence relation is a partial order, and is also referred to as the “happens-

before” relation in past work [22]. We use the notation Task(u) = T to represent that step

node u belongs to task T , and u ⊀ v to denote the fact that there is no path from step u

to step v in the computation graph. Two distinct steps, u and v may execute in parallel,

denoted as u ‖ v, iff u ⊀ v and v ⊀ u.

11

As an example, consider the program in Figure 2.2 which creates four future tasks: TA,

TB, TC, and TD. S1-S12 represent the steps in the program. The computation graph of the

program is shown in Figure 2.3. Here S2 ‖ S10 because there is no directed path from S2

to S10, or from S10 to S2, in the computation graph, and S2 ≺ S12 since there is a directed

path from S2 to S12.

2.4 Properties of Async-Finish-Future Programming Model

In this section, we discuss sufficient conditions for a program containing async, finish and

future constructs to be deterministic and deadlock-free. Figure 2.4 shows an example of

a program containing two future tasks which may deadlock in certain executions (or en-

counter a NullPointerException in other executions). Because of the data race, this program

can exhibit multiple possible computation graphs when executed with the same input, some

of which result in deadlock due to a cyclic dependence between tasks. Deadlock can occur

in the case when future tasks F1 and F2 wait for each other indefinitely via the a.get()

and b.get() operations.

1 future<T> a = null, b = null;

2 async { a = async<T> /*F1*/ { b.get(); ...}; }

3 async { b = async<T> /*F2*/ { a.get(); ...}; }

Figure 2.4 : Example program with shared locations a and b, and future tasks F1 and F2 that
may deadlock (or encounter a NullPointerException). F1 and F2 are themselves contained
within async tasks. The program has a data race, because the write of shared location a in
line 2 may execute in parallel with the read of a in line 3 (and similarly for shared location
b).

In Section 2.4.1, we describe the serial elision for a program containing async, finish

and future constructs, and in Sections 2.4.2-2.4.3 we show that a program with no data races

is guaranteed to be deterministic, deadlock-free and have the same semantics as the serial

12

elision of the program. As a result, and following past conventions (e.g., [4]), we will refer

to data races in programs containing async, finish and future constructs as determinacy

races.

2.4.1 Serial Elision

Similar to spawn-sync and async-finish programs, programs with futures have a well de-

fined serial elision version, which is the serial program obtained after removing all the

parallel constructs. To be specific, the serial elision of a program is obtained by removing

all async and finish constructs, and by replacing “future<T> f” by “T f”, “async<T>

Expr;” by “Expr;” and f.get() by f. The presence of a well-defined serial elision

version for any async-finish-future parallel program ensures that it is always possible to

execute that program sequentially in depth-first order on a single processor. Our race de-

tection algorithm makes use of this property to identify memory accesses that can logically

execute in parallel.

2.4.2 Data Race Freedom and Deadlock Freedom

In this section, we show that a program with async, finish, and future constructs can dead-

lock only if there are data races on references to futures. Let us first take a closer look at a

future task creation and a get() operation on a future task. When the parent task creates a

task using the statement “A = async<T> Expr;”, it performs two actions in sequence: 1)

it creates the child task which is represented in the computation graph as a spawn edge and

2) updates A with the reference to the child task. Any task performing a get() operation on

the child task must have the reference to the task. The following lemma (illustrated in Fig-

ure 2.5) shows that if a get operation on a future task executes in parallel with its creation,

the program has a data race on a reference to future object.

13

Si	 Sm	

Sj	

Ta

Tb

Sk	

Sn	

Continue Edge
Spawn Edge
Join Edge
Path

Sl	

Figure 2.5 : Illustration of Lemma 1. (si, s j) is the spawn edge for task Tb. (sk, sn) is a get()
operation on Tb. If sm , sl and sm ⊀ sl, the input program has a data race on a reference to
future object.

Lemma 1. Let (si, s j) be a spawn edge in computation graph G, where Task(si) = TA and

Task(s j) = TB (which must be distinct from TA), such that TB is a future task. Let (si, sm)

be a continue edge in task TA. Let sn be a step which is executed after a join operation on

TB and let (sl, sn) be a continue edge in G. Then, if sm , sl and sm ⊀ sl, the input program

has a data race on a reference to future object.

Proof. The edge (si, s j) corresponds to the creation of task TB. The continue edge (si, sm)

represents the sequencing of the two steps si and sm, where sm is the first step in G where

the creation of task TB is guaranteed to be complete. The get operation on TB occurs after

the execution of sl and before the execution of sn. Therefore, a reference to task TB must

be available at sl.

Let us assume that sm ‖ sl. Since the first step in G at which a reference to TB is

available is sm, the only possible way for sl to have a reference to TB is through a data race

(e.g. sm writing to a shared memory location and sl reading from the same memory location

in parallel).

Therefore, if sm ⊀ sl, the program has a data race on a reference to a future object. �

Next we establish a property for all edges in a race free computation graph, which in

14

turn proves that a race free program is deadlock free.

Lemma 2. Suppose that two steps s1 and s2 execute in order in a serial, depth-first execu-

tion of a program P, and suppose that there exists an edge (s2, s1) in a computation graph G

of P. Then, the program has a data race on a reference to a future object.

Proof. A continue edge cannot exist from s2 to s1 because a continue edge represents the

sequencing of steps within a single task. If s1 and s2 belong to the same task and s1 executes

before s2 in the serial depth-first execution, then edge (s2, s1) cannot be a continue edge.

Now, suppose there exists a spawn edge from s2 to s1. A spawn edge represents a

control dependence and therefore s2 ≺ s1. This implies that s2 must execute before s1

during the serial depth-first execution. This is a contradiction of our initial assumption that

s1 executes before s2 during the serial depth-first execution.

Let Task(s1) = Ta and Task(s2) = Tb and let us consider if it’s possible to have a join

edge from s2 to s1. There are four possible scenarios:

1. Ta is an ancestor of Tb: Here s1 ≺ s2 and therefore a join edge cannot exist from s2

to s1, because the task creation of Tb happened after the execution of s1.

2. Tb is an ancestor of Ta: Here the spawn of Ta precedes s2 because otherwise s2 will

execute before s1 during a depth-first execution. A join edge can exist from s2 to

s1 only in the presence of data race on a reference to a future object according to

Lemma 1.

3. Ta completes execution before Tb during the depth-first execution: In this case s1

either precedes the spawn of Tb or s1 can execute in parallel with the spawn of Tb. If

s1 precedes the spawn of Tb, a reference to Tb is not available during the execution

of s1. If s1 can execute in parallel with the spawn of Tb, then according to Lemma 1

the program execution has a data race on a reference to a future object.

15

4. Tb completes execution before Ta during the depth-first execution: In this case the

creation of Tb must happen in parallel with s1 and therefore, according to Lemma 1

the program execution has a data race on a reference to a future object. �

Lemma 2 proves that if the program is free of races, the program has no cyclic depen-

dences and is free of deadlocks.

2.4.3 Data Race Freedom and Functional and Structural Determinism

We say that a parallel program is functionally deterministic if it always computes the same

answer, when given the same inputs. By default, any sequential computation is expected to

be deterministic with respect to its inputs; if the computation interacts with the environment

(e.g., a GUI event such as a mouse click, or a system call like System.nanoTime()) then the

values returned by the environment are also considered to be inputs to the computation.

Further, we refer to a program as structurally deterministic if it always computes the same

computation graph, when given the same inputs. Finally, following past work [23, 24], we

say that a program is determinate if it is both functionally and structurally deterministic.

The presence of data races may lead to functional and/or structural nondeterminism

because a parallel program with data races can exhibit different behaviors for the same in-

put, depending on the relative scheduling and timing of memory accesses involved in a data

race. In general, the absence of data races in a parallel program is not sufficient to guarantee

determinism, e.g., it is possible to write data-race-free nondeterministic parallel programs

using locks. However, the parallel constructs that are the focus of this thesis (async, finish

and future) were carefully selected to ensure the following Determinism Property:

If a parallel program is written using only async, finish and future constructs,

and is guaranteed to never exhibit a data race, then it must be determinate,

i.e., both functionally and structurally deterministic.

16

Note that the determinism property states that all data-race-free programs written using

async, finish and future constructs are guaranteed to be determinate, but it does not imply

that all racy programs are non-determinate. For instance, a program with parallel writes of

the same value to a common memory location is racy, yet determinate.

The execution of a race-free program containing async, finish and future constructs is

also dag-consistent [25] because 1) the computation graph does not contain any cycles

and 2) a read can “see” a write only if there is some serial execution order of the dag in

which the read sees the write, thereby ensuring that the write seen by a read is always the

same for all executions with the same input. Such a program execution is guaranteed to be

deterministic. Therefore, verifying race freedom of parallel programs is an important step

in proving the correctness of those programs.

17

Chapter 3

Debugging Parallel Programs with Futures

Current dynamic race detection algorithms for task parallelism are limited to parallel con-

structs in which a task may synchronize with the parent task [4, 26], ancestor task [5, 27]

or with the immediate left sibling [28]. However, current parallel programming models in-

clude parallel constructs that support more general synchronization patterns. For example,

the OpenMP depends clause allows tasks to wait on previously spawned sibling tasks and

the future construct in X10, HJ, C# and C++11 enables a task to wait on any previously cre-

ated task to which the waiter task has a reference. Algorithms based on vector clocks [1, 2]

are impractical for these constructs because either the vector clocks have to be allocated

with a size proportional to the maximum number of simultaneously live tasks (which can

be unboundedly large) or precision has to be sacrificed by assigning one clock per proces-

sor or worker thread, thereby missing potential data races when two tasks execute on the

same worker.

The approaches in [4, 26, 5, 27] focus on a structured task-parallel model, in which

tasks communicate through side effects on shared variables. In contrast, our work focuses

on enabling the use of futures for functional-style parallelism, while also allowing futures

to co-exist with imperative async-finish parallelism. The addition of point-to-point syn-

chronization for futures makes the race detection more challenging than for async-finish

task parallelism since the computation graphs that can be generated using futures are more

general than those that can be generated by fork-join parallel constructs such as async-

finish constructs in X10 [15] and Habanero-Java [16], spawn-sync constructs in Cilk [29],

18

and task-taskwait constructs in OpenMP [30].

Existing algorithms for detecting determinacy races for dynamic task parallelism, do

not support race detection for futures. For instance, Cilk data race detectors [4, 26] han-

dle only spawn-sync constructs where the computation graph is a Series-Parallel (SP) dag.

Although the computation graphs for async-finish parallelism [5, 27] are more general

than SP-dags, whether two instructions may logically execute in parallel can still be de-

termined efficiently by a lookup of the lowest common ancestor of the instructions in the

dynamic program structure tree [5, 27]. Dimitrov et.al [28] extended the SP-bags algorithm

to work for 2D-lattices by formulating the race detection problem as the suprema (least up-

per bound) computation on the computation graph. The computation graphs in the presence

of futures may not have any of the structures discussed above, and therefore, the past ap-

proaches are not directly applicable to parallel programs with futures. However, parallel

programs written with futures enjoy the property that data race freedom implies determi-

nacy, i.e., if a parallel program is written using only async, finish, and future constructs,

and is known to not exhibit a data race, then it must be determinate [23, 24]. (Determi-

nacy includes functional determinism and structural determinism — repeated executions

of a determinate parallel program with the same input are guaranteed to always produce

the same output and the same computation graph.). Thus, a data race detector for programs

with async, finish, and future constructs, can be used as a determinacy checker for these

programs.

The remainder of the chapter is organized as follows. Section 3.1 states the problem

statement, and Section 3.2 presents our contributions. Section 3.3 defines determinacy

races for our programming model. Section 3.4 presents the algorithm for determinacy race

detection for parallel programs with futures, and Section 3.5 discusses the complexity and

correctness of our algorithm. Section 3.6 discusses the implementation and experimental

19

results for our race detection algorithm. Section 3.7 discusses related work, and Section 3.8

contains a summary of the chapter.

3.1 Problem Statement

The problem statement for debugging parallel programs containing async, finish, and future

constructs is given below:

Problem 1. (Debugging) Given a parallel program P with async, finish, and future con-

structs, and test input, ψ, either determine a memory location in the program that are subject

to data races when the program is run on test input, ψ, or else certify that the program is

race-free when run on ψ. The data race detector must satisfy the following properties:

1. it must only report input, ψ, as race-free if no race is possible for any schedule of P

for that input, and

2. it must not report any false positives or false negatives. 2

3.2 Contributions

The main contributions of this work are:

1. The first known sound and precise on-the-fly algorithm for detecting races in pro-

grams containing async, finish and future parallel constructs. Instead of using brute

force approaches such as building transitive closure, our algorithm relies on a novel

data structure called the dynamic task reachability graph to efficiently detect races

in the input program.

2. Correctness and complexity analysis of the race detection algorithm. We show that

the algorithm can be used to analyze all possible executions of the program on a

20

given input and detect determinacy races or certify that the program is free of races.

We also present a complexity analysis of the algorithm and show that the algorithm

performs similarly to other efficient algorithms such as SP-bags algorithm when us-

ing only structured parallel constructs such as async-finish and spawn-sync, or using

futures to express the same dependences. In the presence of future operations, the

complexity of the algorithm increases only by a factor determined by the number of

future operations, and the extent to which they go beyond strict computation graphs.

3. An implementation and evaluation of the algorithm on programs with structured par-

allelism and point-to-point synchronization. We implemented the algorithm in the

Habanero Java compiler and runtime system and evaluated it on a suite of bench-

marks containing async, finish and future constructs. The experiments show that the

algorithm performs similarly to SP-bags in the presence of structured synchroniza-

tion and degrades gracefully in the presence of point-to-point synchronization.

3.3 Determinacy Races in Programs with Futures

In this section, we formalize the definition of data races in programs containing async,

finish, and future constructs as a preamble to defining determinacy races. Our definition

uses the notion of a computation graph for a dynamic execution of a parallel program

presented in Section 2.3.

Definition 3. A data race may occur between steps u and v, iff u ‖ v and both u and v

include accesses to a common memory location, at least one of which is a write.

Next, we classify the join edges in computation graphs with async, finish, and future as

follows: A join edge from task B to task A is referred to as tree join if A is an ancestor of

21

B; otherwise, it is referred to as a non-tree join. Note that all finish join edges must be tree

joins, and some future join edges may be tree edges and some may be non tree edges.

As an example, consider the program in Figure 3.1 which creates four future tasks: TA,

TB, TC, and TD. S1-S12 represent the steps in the program. The computation graph of the

program is shown in Figure 3.2. Here S2 ‖ S10 because there is no directed path from S2

to S10, or from S10 to S2, in the computation graph, and S2 ≺ S12 since there is a directed

path from S2 to S12. The join edge from S3 to S5 is a tree join since TA is an ancestor of

TB. The edge from S5 to S8 is a non-tree join since TC is not an ancestor TA.

1 S1 ;

2 future<T> A = async<T> { S2; // TA
3 future<T> B = async<T> { S3; }; // TB
4 S4; B.get(); S5; };

5 S6 ;

6 future<T> C = async<T>{ S7; A.get(); S8;}; // TC
7 S9 ;

8 future<T> D = async<T>{ S10; C.get(); S11;}; // TD
9 D.get();

10 S12 ;

Figure 3.1 : Example program with futures. TA,TB,TC and TD are future tasks. S1-S12 are
steps (sequential computations with no parallel constructs) in the program.

3.4 Determinacy Race Detection Algorithm

In this section, we present our algorithm for detecting determinacy races in programs with

async, finish and future as parallel constructs. A dynamic determinacy race detector needs

to provide mechanisms that answers two questions: for any pair of memory accesses, at

least one of which is a write, 1) can the two accesses logically execute in parallel?, and

2) do they access the same memory location? To answer the first question, we introduce a

program representation referred to as dynamic task reachability graph which is presented

22

S2 S4 S5 S7 S8 S10 S11

S1 S6 S9 S12

S3

TM

TA

TB

TC TD

Continue

Spawn

Join

Figure 3.2 : Computation graph of the program in Figure 3.1. The circles represent the
steps in the program. The rectangles represents tasks. TM is the main task and TA, TB, TC

and TD are the tasks created during the execution of the program. The edges between the
steps in the same task are continue edges. The edges between steps in different tasks are
spawn edges or join edges

in Section 3.4.1. Similar to most race detectors, we use a shadow memory mechanism

(presented in Section 3.4.2) to answer the second question. Section 3.4.3 presents our

overall determinacy race detection algorithm.

3.4.1 Dynamic Task Reachability Graph

Since storing the entire computation graph of the program execution is usually intractable

due to memory limitations (akin to storing a complete dynamic trace of a program), we in-

troduce a more compact representation that still retains sufficient information to precisely

answer all reachability queries during race detection. Our program representation, referred

to as a dynamic task reachability graph, represents reachability information at the task-level

instead of the step-level. The representation assumes that the input program is executed se-

rially in depth-first order, and leverages the following three ideas for encoding reachability

information between steps in the computation graph of the input program:

23

Disjoint set representation of tree joins The reachability information between tasks

which are connected by tree join edges is represented using a disjoint set data structure.

Two tasks A and B are in the same set if and only if B is a descendant of A and there

is a path in the computation graph from B to A which includes only tree-join edges and

continue edges. Similar to the SP-bags algorithm, our algorithm uses the fast disjoint-set

data structure [31, Chapter 22], which maintains a dynamic collection of disjoint sets Σ and

provides three operations:

1. MakeSet(x) which creates a new set that contains x and adds it to Σ

2. Union(X,Y) which performs a set union of X and Y , adds the resulting set to Σ and

destroys set X and Y

3. FindSet(x) which returns the set X ∈ Σ such that x ∈ X.

Any m of these three operations on n sets takes a total of O(mα(m, n)) time [32]. Here α

is functional inverse of Ackermann’s function which, for all practical purposes is bounded

above by 4.

Interval encoding of spawn tree In order to efficiently store and answer reachability

information from a task to its descendants, we use a labeling scheme [33], in which each

task is assigned a label according to preorder and postorder numbering schemes. The values

are assigned according to the order in which the tasks are visited during a depth-first-

traversal of the spawn tree, where the nodes in the spawn tree correspond to tasks and edges

represent the parent-child spawn relationship. Using this scheme, the ancestor-descendant

relationship queries between task pairs can be answered by checking if the interval of one

task subsumes the interval of the other task. For example, if [x.pre, x.post] is the interval

associated with task x and [y.pre, y.post] is the interval associated with task y, then x is an

ancestor of y if and only if x.pre ≤ y.pre and y.post ≤ x.post. When task A performs a join

24

operation on a descendant task B, the disjoint sets of A and B are merged together and the

new set will have the label originally associated with A. Although, a label is assigned to

every task when it is spawned, the labels are associated with each disjoint set in general.

Compared to past work [33] which used labeling schemes on static trees, the tree is dynamic

in our approach since race detection is performed on-the-fly. This requires a more general

labeling scheme, where a temporary label is assigned when a task is spawned and the label

is updated when the task returns to its parent.

Immediate predecessors+significant ancestor representation of non-tree joins The

non-tree joins in the computation graph are represented in the dynamic task reachability

graph as follows:

• immediate predecessors: For each non-tree join from task A to task B, B stores A in

its set of predecessors.

• lowest significant ancestor: We define the significant ancestors of task A as the set

of ancestors of A in the spawn tree that have performed at least one non-tree join

operation. For each task, we store only the lowest significant ancestor.

Definition 4. A dynamic task reachability graph of a computation graph G is a 5-tuple R

= (N, D, L, P, A), where

• N is the set of vertices, where each vertex represents a dynamic task instance.

• D = {Di}
n
i=1 is a partitioning of the vertices in N into disjoint sets.

n⋃
i=1

Di = N. Each

partition consists of tasks which are connected by tree-join edges.

• L : N → Z≥0 × Z≥0 is a map from vertices to their labels, where each label consists

of the preorder and postorder value of the vertex in the spawn tree. A label is also

25

3	1	

2	 4	

5	

7	 9	 10	6	

8	 13	11	

12	

T0	

T1	 T3	

T4	

T6	

17	

14	 15	 16	

T2	

T5	

Continue
Spawn
Join

Figure 3.3 : A computation graph with non-tree joins. The join edges (2,9) and (4,6) are
non-tree joins because T1 and T2 are not descendants of T3.

associated with each disjoint set Di ∈ D, where the label for Di is same as the label

of u, where u ∈ Di and u is the node in Di that is closest to the root of the spawn tree.

• P : N → 2N represents the set of non-tree edges P(u) = {v1, .., vk} if and only if there

are non-tree join edges from tasks v1..vk to u.

• A : N → N represents the lowest ancestor with at least one incoming non-tree edge.

A(u) = v, if and only if w1,w2..wk..wm (where r = w1, v = wk and u = wm) is the path

consisting of spawn edges from the root r of G to u, and P(w j) = ∅,∀ j such that k +

1 ≤ j ≤ m − 1 and P(v) , ∅. v is referred to as the lowest significant ancestor (LSA)

of u.

All steps in a task T are represented using a single node in the dynamic task reachability

graph. The continue edges in the computation graph are not present in the dynamic task

26

reachability graph. For every spawn edges (x, y) in the computation graph there is a cor-

responding edge (u, v) in the task graph, where Task(x) = u and Task(y) = v. A join edge

from a task to its ancestor is not explicitly present in the task graph. When a task B joins

with its ancestor A, the disjoint sets corresponding to A and B are merged together. The

rest of the joins performed by task t are referred to as non-tree joins and are represented as

P(t). Section 3.4.3 presents our algorithm for race detection, which uses the dynamic task

reachability graph to answer if two steps may execute in parallel.

Disjoint Task L P A
Set (Label) (NT) (LSA)
0 T0 [0, MAXINT] () -
1 T1 [1, 2] () -
2 T2 [3, 4] () -
3 T3 [5, MAXINT-1] {T1,T2} -
4 T4 [6, 7] () T3

5 T5 [8, MAXINT-2] () T3

6 T6 [9, MAXINT-3] () T3

Table 3.1 : The dynamic task reachability graph for the computation graph in Figure 3.3
after execution of step 11. Task T3 performed join operations on T2 and T1. Therefore
P(T3) = {T1,T2}. The least significant ancestor of T4, T5 and T6 is T3 because T3 is their
lowest ancestor which performed a non-tree join.

Table 3.1 shows the dynamic task reachability graph for the computation graph in Fig-

ure 3.3 after the execution of step 11. Here the postorder values assigned to T0, T3, T5 and

T6 are temporary values (See Section 3.4.3). All tasks are in a separate disjoint sets, be-

cause no tree joins have been performed yet. Table 3.2 shows the dynamic task reachability

graph for the computation graph in Figure 3.3 after the execution of step 17.

27

Disjoint Task L P A
Set (Label) (NT) (LSA)

T0 [0, 13]
T3 [5, 12]

0 T4 [6, 7] {T1, T2} -
T5 [8, 11]
T6 [9, 10]

1 T1 [1, 2] () -
2 T2 [3, 4] () -

Table 3.2 : The dynamic task reachability graph for the computation graph in Figure 3.3
after execution of step 17. T0, T3, T4, T5 and T6 are all in the same disjoint set because they
are connected by tree join edges.

3.4.2 Shadow Memory

As in past work [5, 27], our algorithm maintains a shadow memory Ms for every shared

memory location M. Ms contains the following fields

• w, a reference to a task that wrote to M. Ms.w is initialized to null and is updated at

every write to M. It refers to the task that last wrote to M.

• r, a set of references to tasks that read M. Ms.r is initialized to ∅ and is updated at

reads of M. It contains references to all future tasks that read M in parallel, since the

last write to M. It also contains a reference to one non-future (async) task which read

M since the last write to M.

3.4.3 Algorithm

The overall determinacy race detection algorithm is given in Algorithms 1-10. As the

input program executes in serial, depth-first order the race detection algorithm performs

additional operations whenever one of the following actions occurs: task creation, task

return, begin-finish, end-finish, get() operation, shared memory read and shared memory

28

write. The race detector stores the following information associated with every disjoint set

of tasks.

• pre and post together form the interval label assigned to the disjoint set.

• nt is the set of incoming non-tree edges.

• parent refers to the parent task.

• lsa represents the least significant ancestor.

Next, we describe the actions performed by our race detector:

Algorithm 1 Initialization
Require: Main task M

1: dfid ← 0
2: tmpid ← MAXINT
3: S M ←Make-Set(M)
4: S M.pre← dfid
5: dfid ← dfid + 1
6: S M.post ← tmpid
7: tmpid ← tmpid − 1
8: S M.parent ← null
9: S M.lsa← null

Initialization: Algorithm 1 shows the initialization performed by our race detector when

the main task M is created. The set S M is initialized to contain task M. It assigns [0,

MAXINT] as the interval label for the main task. Since the postorder value of a node is

known only after the full tree has unfolded, we assign a temporary postorder value MAXINT

(the largest integer value). The parent and lsa fields are initialized to null.

Task Creation: Algorithm 2 shows the actions performed by our race detector during task

creation. Whenever a task P spawns a new task C, C is assigned the preorder value and

29

a temporary postorder value. Our algorithm assigns temporary postorder values starting at

the largest integer value (MAXINT) in decreasing order. This assignment scheme maintains

the interval label property, where the label of an ancestor subsumes the labels of descen-

dants. The set S C is initialized to contain task C. The least significant ancestor for task C is

initialized at task creation time based on whether task P has performed any non-tree joins.

Algorithm 2 Task creation
Require: Parent task P, Child task C

1: S C ←Make-Set(C)
2: S C.pre← dfid
3: dfid ← dfid + 1
4: S C.post ← tmpid
5: tmpid ← tmpid − 1
6: S C.parent ← S P

7: if S P.nt = {} then
8: S C.lsa← S P.lsa
9: else

10: S C.lsa← S P

11: end if

Task Termination: When task C terminates, the postorder value of C is updated with the

final value. This is shown in Algorithm 3.

Algorithm 3 Task termination
Require: Terminating task C

1: S C.post ← dfid
2: dfid ← dfid + 1
3: tmpid ← tmpid + 1

Get Operation: Algorithm 4 shows the actions performed by the race detector at a get()

operation. When task A performs a get() operation on task B, there are two possible cases:

1) A is an ancestor of B and there are join edges from all tasks which are descendants of

30

A and ancestors of B to A. In this case, the algorithm performs a union of the disjoint sets

S A and S B by invoking the Merge function given in Algorithm 5, and 2) there is a non-tree

join edge from B to A. In this case, B is added to the sequence of non-tree predecessors of

A.

Algorithm 4 Get operation
Require: Tasks A, B such that A performs B.get()

1: if Find-Set(A) =

2: Find-Set(B.parent) then
3: Merge(S A, S B)
4: else
5: S A.nt ← S A.nt ∪ {B}
6: end if

Algorithm 5 Merge tasks
Require: Disjoint sets S A, S B

1: procedure Merge(S A, S B)
2: nt ← S A.nt ∪ S B.nt
3: lsa← S A.lsa
4: S A ← S B ← Union(S A, S B)
5: S A.nt ← nt
6: S A.lsa← lsa
7: end procedure

Finish: Algorithm 6 and Algorithm 7 shows the actions performed by the race detector

at the start and end of a finish. At the end of a finish F, the disjoint sets of all tasks with

F as the immediately enclosing finish is merged with the disjoint set of the ancestor task

executing the finish.

Shared Memory Access: Determinacy races are detected when a read or write to a shared

memory location occurs. When a write to a memory location M is performed by step u,

31

Algorithm 6 Start finish
Require: Start of finish F in task A

1: F.parent ← A

Algorithm 7 End finish
Require: Finish F

1: A← F.parent
2: for B ∈ F.joins do
3: Merge(S A, S B)
4: end for

Algorithm 8 Write check
Require: Memory location M, Task A that writes to M

1: for X ∈ Ms.r do
2: if not Precede(X, A) then
3: a determinacy race exists
4: else
5: Ms.r ← Ms.r − {X}
6: end if
7: end for
8: if not Precede(Ms.w, A) then
9: a determinacy race exists

10: end if
11: Ms.w← A

32

Algorithm 9 Read check
Require: Memory location M, Task A that reads M

1: update = false
2: for X ∈ Ms.r do
3: if Precede(X, A) then
4: Ms.r ← Ms.r − {X}
5: update← true
6: else if IsFuture(X) or IsFuture(A) then
7: update← true
8: end if
9: end for

10: if not Precede(Ms.w, A) then
11: a determinacy race exists
12: end if
13: if update then
14: Ms.r ← Ms.r ∪ {A}
15: end if

the algorithm checks if the previous writer or the previous readers in the shadow memory

space may execute in parallel with the currently executing step and reports a race. It updates

the writer shadow space of M with the current task and removes any reader r if r ≺ u. This

is shown in Algorithm 8. When a read to a memory location M is performed by step u,

the algorithm checks if the previous writer in the shadow memory space may execute in

parallel with the currently executing step and reports a race. It adds the current task to the

set of readers of M and removes any task r if r ≺ u. Our algorithm differentiates between

future tasks and async tasks: async tasks can be waited upon by only ancestor tasks using

the finish construct and future tasks can be waited upon using the get() operation. Given a

task A as argument, IsFuture returns true, if A is a future task. The readers shadow memory

contains a maximum of one async task, but may contain multiple future tasks. During the

read of a shared memory location by step s of an async task A, the algorithm replaces the

previous async reader X by A, if X precedes s. This is shown in Algorithm 9.

33

Algorithm 10 Reachability check
Require: Tasks A, B

1: procedure Precede(A, B)
2: return Visit(A, B, {})
3: end procedure

1: procedure Visit(A, B,Visited)
2: if B ∈ Visited then
3: return false
4: end if
5: Visited ← Visited ∪ {B}
6: S A ← Find-Set(A)
7: S B ← Find-Set(B)
8: if S A.pre ≤ S B.pre and S A.post ≥ S B.post then
9: return true

10: end if
11: if S A.pre > S B.pre then
12: return false
13: end if
14: for all x in S B.nt do
15: if Visit(A, x,Visited)
16: then
17: return true
18: end if
19: end for
20: sa← B.lsa
21: while sa , null do
22: for all x in sa.nt do
23: if Visit(A, x,Visited) then
24: return true
25: end if
26: end for
27: sa← sa.lsa
28: end while
29: return false
30: end procedure

34

Given tasks A and B, Precede routine shown in Algorithm 10 checks if task A must

precede B by invoking routine Visit which is also given in Algorithm 10. Lines 6–11 of

Visit routine returns true if the interval corresponding to the disjoint set of B is contained in

the interval corresponding to the disjoint set of A. Lines 12–14 returns false, if the preorder

value of A is greater than the preorder value of B, since the source of a non-tree join edge

must have a lower preorder value than the sink of the non-tree edge. Lines 15–20 checks

if B is reachable from A along the immediate non-tree predecessors of B. Lines 21–29

traverses paths which include the non-tree predecessors of the significant ancestors of B

starting with the least significant ancestor of B. The routine returns true when a path from

A to B is found or returns false when all the non-tree edges whose source has a preorder

value greater than the preorder value of A are visited.

3.5 Theoretical Results

In this section, we present theoretical results for the computational complexity and correct-

ness of our determinacy race detection algorithms for async-finish-future parallel programs.

The following theorem presents the asymptotic complexity of the race detection algorithm.

Theorem 1. Consider a program with async, finish and future constructs that executes in

time T on one processor, creates a async tasks, f future tasks, performs n non-tree join

edges and references v shared memory locations. Algorithms 1–10 can be implemented

to check this program for determinacy races in O(T (f + 1)(n + 1)α(T, a + f)) time using

O(a + f + n + v ∗ (f + 1)) space.

Proof. The size of the dynamic task dependence graph is O(a + f + n) which includes

O(a + f) for the disjoint set, interval labels and LSA information and O(n) for the non-tree

joins. The size of the writer shadow memory is O(v) and the worst case size of the reader

35

shadow memory is O(v ∗ (f + 1)).

For every shared memory access, the Precede function may be invoked f + 1 times in

the worst case. The worst case complexity of a single invocation to Precede function is

O((n + 1)α(T, a + f)) because it may visit n non-tree edges in the worst case and each time

it involves a disjoint set operation. �

Here α is Tarjan’s functional inverse of Ackermann’s function which, for all practical

purposes is bounded above by a constant, 4.

When the input program has no future tasks and no non-tree joins, the complexity of the

algorithm is same as the SP-bags algorithm, because f and n are zero and the reader shadow

space for each shared memory location contains a maximum of one reader. One important

point to note is that the number of disjoint set union operations performed by our algorithm

is same as the number of disjoint set union operations performed by the SP-bags algorithm.

Although at a sync point, the SP-bags algorithm performs one union operation and our

algorithm performs multiple union operations at the end of a finish construct, the total

number of union operations is the same. This is because the SP-bags algorithm performs

a set union operation when a task returns to its parent task, whereas the union operation in

our algorithm is postponed until the end of finish corresponding to the IEF of the task.

We next present a proof sketch as to why a single run of Algorithms 1–10 correctly

detects races in programs with async, finish and future. The following two lemmas gives the

reasoning for storing one (async or future) task in the writer shadow memory and one async

task (and multiple future tasks) in the reader shadow memory. Lemma 3 was presented

in [4] for Cilk computation graphs with spawn and sync constructs, but it also holds for

computation graphs with async, finish and future constructs.

Lemma 3. Suppose that three steps s1, s2, and s3 execute in order in a serial, depth-first

36

execution of a computation graph, and suppose that s1 ≺ s2 and s1 ‖ s3. Then, we have

s2 ‖ s3.

Proof. Please refer to [4]. �

Lemma 4. Suppose that three steps s1, s2, and s3 execute in order in a serial, depth-first

execution of a computation graph, and let Task(s1) = TA, Task(s2) = TB, Task(s3) = TC,

where TA, TB and TC are async (non-future) tasks. Suppose that s1 ‖ s2 and s2 ‖ s3. Then,

we have s1 ‖ s3.

Proof. Since TA, TB and TC are async tasks, they can be waited upon using only finish

operations and not by get() operations. Let us assume s1 ‖ s2, s2 ‖ s3 and s1 ≺ s3. Since

s1 ≺ s3, a finish F must be executed by the task which is the lowest common ancestor of

TA and TC in the spawn tree. There are two cases:

1. TB is enclosed inside F. In this case F ensures that s2 ≺ s3, which contradicts our

assumption that s2 ‖ s3.

2. TB is not enclosed inside F. In this case F ensures that s1 ≺ s2, which contradicts

our assumption that s1 ‖ s2. �

The following Lemma explains why it is sufficient to represent the reachability infor-

mation at task level during a depth-first execution.

Lemma 5. Consider an execution of Algorithms 1–10 on a computation graph G. Suppose

sA1 ≺ sB1 and sB2 ≺ sC where Task(sA1) = TA, Task(sB1) = TB, Task(sB2) = TB and

Task(sC) = TC and let sC be the current step being executed and suppose that sA1, sB1 and

sB2 have executed before sC during the depth-first execution. Then, for all completed steps

sA such that Task(sA) = TA, we have sA ≺ sC.

37

Proof. We will consider four different cases based on whether the tasks are related by

ancestor-descendant relationships or not:

1. TA is an ancestor of TB and TB is an ancestor of TC: In this case, the completed steps

of TA are the steps before the spawn of TB (or an ancestor of TB). All such steps must

precede the steps of TC, due to the spawn edge from TB to TC.

2. TA is an ancestor of TB and TB is not an ancestor of TC: If TC is a descendant of TA,

then all completed steps of TA must precede the spawn of TC. Next, let us consider

the case where TC is not a descendant of TA. In this case, TA has completed the

execution before the execution of TC. Since TB is not an ancestor of TC and sB2 ≺ sC,

there must be a join operation on TB along the path from sB2 to sC. Since TA is an

ancestor of TB, there must also be a join operation on TA along the path from sB2 to

sC before the join on TB. This is based on the assumption that no data races have

been detected so far during the execution of the program (See Lemma 1).

3. TA is not an ancestor of TB and TB is an ancestor of TC: Since TA is not an ancestor

of TB, there must be a join edge from TA along the path to sB1. This means that for

all steps sC such that Task(sC) = TC, sA ≺ sC.

4. TA is not an ancestor of TB and TB is not an ancestor of TC: In this case TA must

have completed execution before TB and TB must have completed execution before

TC during the depth first execution. There must be a join edge from TA along the path

to sB1 and a join edge from TB along the path to sC. This ensures that sA ≺ sC. �

The next lemma discuss the correctness of the Precede function given in Algorithm 10.

Lemma 6. Consider an execution of Algorithms 1–10 on a computation graph G. Precede(

TA,TB) = true during the execution of s j, where Task(s j) = TB if and only if si ≺ s j,∀si

38

such that Task(si) = TA and si executes before s j during the depth first execution of G.

Proof. (⇒) We will prove this by induction. Let si = v1, ..vk, ..vn = s j be a path from si

to s j in the computation graph. Let n = 1 in which case there is an edge (si, s j) in the

computation graph.

1. (si, s j) is a continue edge: In this case, si and s j belong to the same task and are

represented in the dynamic task reachability graph by the same node.

2. (si, s j) is a spawn edge: In this case, TA is the parent of TB in the spawn tree and

therefore TB will have a higher preorder value and a lower postorder value than TA.

3. (si, s j) is a join edge: TA and TB will belong to the same disjoint set, if it is a tree join.

If (si, s j) is a non-tree join edge, then TA ∈ P(TB), the non-tree predecessors of TB.

In all three cases Precede(TA,TB) = true. Let us assume that if si ≺ s j with a path length

of n = k, then Precede(TA,TB) = true. Now, consider the case where si ≺ s j with a path

length of n = k + 1. Let (sl, s j) be the last edge along the path from si to s j. Consider the

following cases:

1. (sl, s j) is a continue edge: In this case there is a path of length k from si and sl, where

Task(sl) = TB. Therefore, by our induction hypothesis Precede(TA,TB) = true.

2. (sl, s j) is a spawn edge: If TA is an ancestor of TB in the dynamic task reachability

graph, then TB will have a higher preorder value and a lower postorder value than TA

and therefore Precede(TA,TB) = true. If TA is not an ancestor of TB, then there is a

path from TA to TC and a path from TC to TB both of length less than or equal to k,

where TC is an ancestor of TB. There are two possible cases: 1) TC is the LSA of TB,

in which case Precede(TA,TC) = true by our inductive hypothesis and 2) TA and TC

are in the same disjoint set, in which case the label of TA subsumes the label of TB.

39

3. (sl, s j) is a join edge, where Task(sl) = TC: If (sl, s j) is a tree join edge, TB and TC are

in the same disjoint set and Precede(TA,TC) = true according to our inductive hy-

pothesis. If (si, s j) is a non-tree join edge, then TC ∈ P(TB), the non-tree predecessors

of TB and Precede(TA,TC) = true according to our inductive hypothesis.

(⇐) Since Precede(TA,TB) returned true, there must be a sequence of calls to Visit with

arguments (TA,TB), (TA,TX1) .. (TA,TXn) where (TA,TXn) returned true. Here, TA and TXn

must be in the same disjoint set or the label of TA must subsume the label of TXn . (TA,TXk+1)

is invoked from (TA,TXk) if and only if TXk+1 is an immediate predecessor of the LSA of TXk

or if TXk+1 is an immediate predecessor of TXk . Therefore according to Lemma 5, si ≺ s j. �

Theorem 2. Algorithms 1–10 detect a determinacy race for a given parallel program and

data input if and only if a determinacy race exists.

Proof. (⇒) Suppose Algorithms 1–10 detect a determinacy race when executing a step s2.

The three possible cases are

1. s2 performs a write and Precede(TA,TB) = f alse, where Task(s2) = TB and TA ∈

readers(l)

2. s2 performs a write and Precede(TA,TB) = f alse, where Task(s2) = TB and writer(l)

= TA

3. s2 performs a read and Precede(TA,TB) = f alse, where Task(s2) = TB and writer(l)

= TA

In the first case, TA is added to readers(l) by step s1 when s1 performed a read of l (where

Task(s1) = TA). Here s1 executes before s2 during the depth first execution. Since Precede(

TA,TB) = f alse, s1 and s2 can logically execute in parallel according to Lemma 6 and

therefore a determinacy race exists. The other two cases are similar.

40

(⇐) We now show that if a program contains a determinacy race on a location l, our

race detection algorithm reports a determinacy race on location l. Let s1 and s2 be two

steps involved in a determinacy race on location l, where if there are multiple races on l, we

choose the determinacy race for which the second step executes earliest in the depth-first

execution order of the program. There are three possible ways the determinacy race could

occur:

1. s1 writes l and s2 reads l: Suppose writer(l) = T when s2 is executed. If T = TA where

Task(s1) = TA, then since s1 ‖ s2, according to Lemma 6 Precede(TA,TB) = f alse

and the algorithm will report a race. If T , TA, then writer(l) was last updated

by step s such that s executed after s1 but before s2. If s1 ‖ s, there must exist a

write-write determinacy race between s1 and s since they access a common memory

location l in parallel. This contradicts our assumption that s2 executes earliest during

a depth-first execution among all second steps that are involved in a determinacy

race on l. If s1 ≺ s, then we have have s ‖ s2 by Lemma 3. According to Lemma 6,

Precede(TA,TB) = f alse and the algorithm will report a race.

2. s1 writes l and s2 writes l: This case is similar to write-read race.

3. s1 reads l and s2 writes l: Suppose TA ∈ readers(l), where Task(s1) = TA when s2 is

executed. Then since s1 ‖ s2, according to Lemma 6 Precede(TA, TB) = f alse and

the algorithm will report a race. Now let us consider the case TA < readers(l). If s1

adds TA to readers(l), then TA was removed from readers(l) by a step s such that

s executes after s1 but before s2 during the depth-first execution. This implies that

s1 ≺ s. Let us assume that there is a sequence of steps s′1, s
′
2..s

′
n which reads l before

s2 such that s′1 ≺ s′2 ≺ .. ≺ s′n, where s = s′1. By transitivity, we have s1 ≺ s′n.

By Lemma 3, it follows that s′n ‖ s2, since s1 ‖ s2 and therefore a race between s′n

41

and s2 will be reported. Now let us consider the case where s1 does not add TA to

readers(l). In this case, TA must be an async task and during the execution of s1,

readers(l) contains T ′, where Task(s′) = T ′. Here s′ performed a read of l and s′ ‖ s1

and T ′ also must be an async task. Since s1 ‖ s2, by Lemma 4 s′ ‖ s2. Looking at

the sequence of updates to readers(l), there must exist a task TK ∈ readers(l), where

Task(sk) = TK , sk performed a read of l and s′ ≺ sk. Since s′ ‖ s2, Lemma 3 implies

that sk ‖ s2 and a race between sk and s2 will be reported. �

3.6 Experimental Results

In this section, we present experimental results for our determinacy race detection algo-

rithm. The race detector was implemented as a new Java library for detecting determinacy

races in HJ programs containing async, finish and future constructs. The benchmarks writ-

ten in HJ were instrumented for race detection during a bytecode-level transformation pass

implemented on HJ’s Parallel Intermediate Representation (PIR) [34]. The PIR extends

Soot’s Jimple IR [35] with parallel constructs such as async, finish, and future. The instru-

mentation pass adds the necessary calls to our race detection library at async, finish and

future boundaries, future get operations, and also on reads and writes to shared memory

locations.

Our experiments were conducted on a 16-core Intel Ivybridge 2.6 GHz system with 48

GB memory, running Red Hat Enterprise Linux Server release 7.1, and Sun Hotspot JDK

1.7. To reduce the impact of JIT compilation, garbage collection and other JVM services,

we report the mean execution time of 10 runs repeated in the same JVM instance for each

data point. We evaluated the algorithm on the following benchmarks:

42

B
en

ch
m

ar
k

#T
as

ks

#N
T

Jo
in

s

#S
ha

re
dM

em

#A
vg

R
ea

de
rs

Se
q

(m
ill

is
ec

s)

R
ac

ed
et

(m
ill

is
ec

s)

Sl
ow

do
w

n
(R

ac
ed

et
/S

eq
)

Series-af 999,999 0 4,000,059 0.75 483,224 484,746 1.00
Series-future 999,999 0 6,000,059 0.66 487,134 487,985 1.00

Crypt-af 12,500,000 0 1,150,000,682 0.74 15,375 119,504 7.77
Crypt-future 12,500,000 0 1,175,000,682 1.23 15,517 128,234 8.26

Jacobi 8,192 34,944 641,499,805 1.70 3,402 27,388 8.05
Strassen 30,811 33,612 1,610,522,196 0.94 6,281 33,618 5.35

Smith-Waterman 1,608 4,641 1,652,175,806 1.56 3,488 34,558 9.92

Table 3.3 : Runtime overhead for determinacy race detection. #Tasks is the dynamic
number of tasks created, #NTJoins is the dynamic number of non-tree joins performed,
#SharedMem is the total number of dynamic shared memory accesses performed and #Av-
gReaders is the average number of readers stored in the shadow memory per access and
memory location. Seq is the sequential execution time in milliseconds and Racedet is the
execution time with race detection enabled in milliseconds. Slowdown is the slowdown
due to race detection.

• Series-af: Fourier coefficient analysis from JGF [36] benchmark suite (Size C), par-

allelized using async and finish.

• Series-future: Fourier coefficient analysis from JGF benchmark suite (Size C), par-

allelized using futures.

• Crypt-af: IDEA encryption algorithm from JGF benchmark suite (Size C), paral-

lelized using async and finish.

• Crypt-future: IDEA encryption algorithm from JGF benchmark suite (Size C), par-

allelized using futures.

• Jacobi: 2 dimensional 5-point stencil computation on a 2048 × 2048 matrix, where

each tasks computes a 64 × 64 submatrix.

43

• Strassen: Multiplication of 1024 × 1024 matrices using Strassen’s algorithm. The

implementation uses a recursive cutoff of 32 × 32.

• Smith-Waterman: Sequence alignment of two sequences of size 10000. The align-

ment matrix computation is done by 40 × 40 future tasks.

The first four benchmarks were derived from the original versions in the JGF suite. The next

two, Jacobi and Strassen were translated by the authors from OpenMP versions of those

programs in the Kastors [37] benchmark suite. The original versions of these benchmarks

used the OpenMP 4.0 depends clause, in which tasks specify data dependence using in,

out and inout clauses. The translated versions of these benchmarks used future as the

main parallel construct, with get() operations used to synchronize with previously data

dependent tasks. In general, this kind of task dependences cannot be represented using

only async-finish constructs without loss of parallelism. The Smith-Waterman benchmarks

uses futures and is based on a programming project in COMP322, an undergraduate course

on parallel computing at Rice University.

The results of our evaluation is given in Table 3.3. The first column lists the bench-

mark name, and the second column shows the dynamic number of tasks (#Tasks) cre-

ated for the inputs specified above. The third column shows the number of non-tree joins

(#NTJoins) performed by each of the applications (the subset of future get() operations that

are non-tree-joins). The fourth column shows the total number of shared memory accesses

(#SharedMem) performed by the applications (all accesses to instance/static fields and ar-

ray elements). The fifth column (#AvgReaders) shows the average number of past parallel

readers per location stored in the shadow memory when a read/write access is performed on

that location. (The average is computed across all accesses and all locations.) For a given

access, the number of such stored readers will be either zero or one for programs containing

44

only async and finish constructs, thereby ensuring that the average must be in the 0 . . . 1

range for async-finish programs. For programs with futures, the number of stored readers

can be greater than one, if the location being accessed is in the read-shared state and is read

by multiple tasks that can potentially execute in parallel each other. Thus, #AvgReaders

can be any value that is ≥ 0, for programs with futures.

The next column (Seq) reports the average execution time of the sequential (serial eli-

sion) version of the benchmark, and the following column (Racedet) reports the average

execution time of a 1-processor execution of the parallel benchmark using the determinacy

race detection algorithm introduced in this chapter. Finally, the Slowdown column reports

the ratio of the Racedet and Seq values.

We can make a number of observations from the data in Table 3.3. First, if we compute

the Seq/#Tasks ratio for all the benchmarks, we can see that the Crypt-af and Crypt-future

benchmarks perform u 100× less work per task on average, relative to all the other bench-

marks. This is the primary reason why the Crypt-af and Crypt-future benchmarks exhibit

slowdowns of 7.77× and 8.26×. With less work per task, the overhead per task during race

detection becomes more significant than in other benchmarks; further, creating data struc-

tures for large numbers of tasks puts an extra burden on garbage collection and memory

management. However, it is important to note that the slowdowns for Series-af and Crypt-af

are comparable to the slowdowns reported for the ESP-Bags algorithm [38] that only sup-

ported async and finish, thereby showing that our determinacy race detector does not incur

additional overhead for async/finish constructs relative to state-of-the-art implementations.

Next, we see that the number of non-tree joins performed by Series-af and Crypt-af is

zero, since they are async-finish programs for which all join (finish) operations appear as

tree-join edges in the computation graph (Section 3.3). Since their corresponding future

versions, Series-future and Crypt-future, used futures to implement async-finish synchro-

45

nization, their future get() operations also appear as tree-join edges in the computation

graph, thereby resulting in zero non-tree joins as well. However, the future versions of

these two benchmarks have higher number of shared memory accesses than the async-

finish versions, due to the additional writes and reads of future references which happened

to be stored in shared (heap) locations for both benchmarks. In particular, we know that the

reference to each future task must be subjected to at least one write access (when the future

task is created) and one read access (when a get() operation is performed on the future),

though more accesses are possible. Since Series-future creates 999,999 future tasks, we see

that the difference in the #SharedMem values for Series-future and Series-af is 2,000,000

which is very close to the lower bound of 2 × 999, 999. Likewise, for Crypt-future and

Crypt-sf, the number of tasks created is 12,500,000 and the difference in the #SharedMem

values is 25,000,000 which exactly matches the lower bound of 2×12, 500, 000. The slow-

down for Crypt-future is higher than that of Crypt-af due to two reasons: 1) the additional

number of memory accesses due to the future references and 2) the average number of

readers stored in the shadow memory is higher, because of the presence of future tasks.

The slowdowns for Jacobi, Smith-Waterman and Strassen (8.05×, 9.92×, and 5.35×)

are positively correlated by the values of #SharedMem, #AvgReaders, and 1/Seq, and these

correlations can help explain the relative slowdowns for the three benchmarks. A larger

value of #SharedMem leads to a larger slowdown due to the overhead of processing addi-

tional shared memory accesses. A larger value of #AvgReaders leads to a larger slowdown

because the number of reachability queries required per shared memory access is equal to

the number of readers present in the shadow memory for that location. A larger value of

1/Seq indirectly leads to a larger slowdown due to the smaller available time to amortize

the overheads of race detection.

Finally, we observe that the slowdowns are not significantly impacted by the number of

46

non-tree edges. This is because the producer and consumer tasks of a future object happen

to be closely located to each other in the computation graph (for these benchmarks), usually

only requiring 1-2 hops involving non-tree edges in the graph traversal.

3.7 Related Work

Dynamic data race detection techniques target either structured parallelism or unstructured

parallelism. Race detection for unstructured parallelism typically uses vector clock algo-

rithms, e.g., [1, 2]. These algorithms are impractical for task parallelism because either the

vector clocks have to be allocated with a size proportional to the maximum number of si-

multaneously live tasks (which can be unboundedly large) or precision has to be sacrificed

by assigning one clock per processor or worker thread, thereby missing potential data races

when two tasks execute on the same worker.

For programs with structured fork-join parallelism, prior work has shown that for a

single program input, in a single execution, one can pinpoint an example data race, or

else there can be no data races with any interleaving based on that input [3]. Mellor-

Crummey [3] presented Offset-Span labeling algorithm for nested fork-join constructs,

which is an extension of English-Hebrew labeling scheme [39]. The idea behind their

techniques is to attach a label to every thread in the program and use these labels to

check if two threads can execute concurrently. The length of the labels associated with

each thread is bounded by the maximum nesting depth of fork-join in the program. Our

approach uses a labeling scheme which is of constant size to store reachability informa-

tion between ancestor-descendant tasks. While Offset-Span labeling algorithm supports

only nested fork-join constructs, our algorithm supports a more general set of computation

graphs.

Feng and Leiserson [4] introduced the SP-bags algorithm for Cilk’s fully-strict par-

47

allelism, which uses only a constant factor more memory than does the program itself.

Bender et al. [26] presented parallel SP-hybrid algorithm which uses English-Hebrew la-

bels and SP-bags to detect races in Cilk programs. Despite its good theoretical bounds, the

paper did not provide an implementation of the algorithm. Raman et al. [5] extended the

SP-bags algorithm to support async-finish parallelism. They subsequently proposed SPD3

algorithm [27] also for async-finish parallelism, which operates in parallel. The algorithm

determines series-parallel relationships between steps by a lookup of the lowest common

ancestor in the dynamic program structure tree. In contrast to these approaches, our data

race detection algorithm handles async, finish and futures, which can create more general

computation graphs than those that can be generated by async-finish parallelism.

3.8 Summary and Future Wrok

In this chapter, we presented the first known determinacy race detector for dynamic task

parallelism with futures. As with past determinacy race detectors, our algorithm guarantees

that all potential determinacy races will be checked so that if a race is reported for a given

input in one run of our algorithm, it will always be reported in all runs. Likewise, if no race

is reported for a given input, then all executions with that input are guaranteed to be race-

free. Our approach builds on a novel data structure called the dynamic task reachability

graph which models task reachability information for non-strict computation graphs in an

efficient manner. We presented a complexity analysis of our algorithm, and also discussed

its correctness. We implemented the algorithm, and evaluated it on benchmarks which

generate both strict and non-strict computations. The results indicate that the performance

of our approach is similar to other efficient algorithms for spawn-sync and async-finish

programs and degrades gracefully in the presence of futures. Specifically, the experimental

results show that the slowdown factor observed for our algorithm relative to the sequential

48

version is in the range of 1.00× – 9.92×, which is very much in line with slowdowns

experienced for fully strict computation graphs.

There are many opportunities for future research to build on the results of this chapter.

One direction for future work is to use a hybrid static+dynamic approach for computing

the task reachability information, thereby reducing the runtime overhead of race detec-

tion. Another opportunity for future work is to support race detection in parallel programs

with other kinds of point-to-point synchronization constructs including task dependences,

doacross, and phasers.

49

Chapter 4

Test-Driven Repair of Data Races in Task-Parallel
Programs

In this chapter, we address the problem of inserting finish statements in parallel pro-

grams, where parallelism is expressed using async statements and (for the sake of general-

ity) the program may already contain some finish statements inserted by the programmer.

Our approach determines where additional finish statements should be inserted to guarantee

correctness, with the goal of maximizing parallelism. This insertion of finish statements

can be viewed as repairing unsynchronized or under-synchronized parallel programs.

Past solutions to the problem of repairing parallel programs have used static-only or

dynamic-only approaches, both of which have significant limitations in practice. Static ap-

proaches can guarantee soundness in many cases but face severe limitations in precision

when analyzing medium or large-scale software with accesses to pointer-based data struc-

tures in multiple procedures. Dynamic approaches are more precise than static analyses,

but their proposed repairs are limited to a single input and are not reflected back in the

original source program. Our method treads the middle ground between these two classes

of approaches. As in dynamic approaches, we execute the program on a concrete test input

and determine the set of data races for this input dynamically. However, next we compute

a set of finish placements that rule out these races but also respect the static scoping rules

of the program, and can therefore be inserted back into the program.

Consider the Mergesort example in Figure 4.1. The programmer expressed their intu-

ition that the two recursive calls in lines 4 and 5 can execute in parallel. The algorithms

50

1 static void mergesort(int[] A, int M, int N) {

2 if (M < N) {

3 final int mid = M + (N - M) / 2;

4 async mergesort(A, M, mid);

5 async mergesort(A, mid + 1, N);

6 merge(A, M, mid, N);

7 }

8 }

9 ...

10 mergesort(A, 0, size-1); //Call inside main

Figure 4.1 : Mergesort program. A finish statement is needed around lines 4-5 for correct-
ness and maximal parallelism.

1 static void quicksort(int[] A, int M, int N) {

2 if(M < N) {

3 point p = partition(A, M, N);

4 int I = p.get(0);

5 int J =p.get(1);

6 async quicksort(A, M, J);

7 async quicksort(A, I, N);

8 }

9 }

10 ...

11 quicksort(A, 0, size-1); //Call inside main

Figure 4.2 : Quicksort program. A finish statement is needed around line 11 for correctness
and maximal parallelism.

introduced in this chapter can determine that a finish statement is needed around lines 4

and 5 for correctness and maximal parallelism. Now, consider the Quicksort example in

Figure 4.2. Again, the programmer expressed their intuition that the two recursive calls in

lines 6 and 7 can execute in parallel. While inserting a finish statement around lines 6 and

7 would be correct, our algorithms can determine that inserting a finish around line 11 is

better because it also prevents data races, yet yields more parallelism than a finish statement

around lines 6 and 7 by avoiding the need for nested recursive finish constructs.

51

The rest of the chapter is organized as follows. In Section 4.1, we formulate the prob-

lem that we are solving. Section 4.2 presents our contributions. Sections 4.3-4.6 present

our solution. Section 4.7 describes our experiments. Section 4.8 discusses related work.

Finally, Section 4.9 summarizes our conclusions.

4.1 Problem Statement

A program execution contains a data race when there are two or more accesses to the

same variable, at least one of which is a write, and the accesses are unordered by either

synchronization or program order. The primary goal of test-driven repair tool is to ensure

data race freedom∗ for the provided inputs. In addition to this, the repaired programs must

be well formed and must provide good performance. Although the tool is applied iteratively

for different test inputs, we define the problem statement for a single iteration of the tool as

follows:

Problem 2. (Repair) Given a program P and input, ψ, find a set of program locations in P

where finish statements must be introduced such that

1. The program after insertion of finish statements has no data races for input, ψ.

2. The newly inserted finish statements must respect the lexical scope of the input pro-

gram.

3. The program after insertion of finish statements must maximize the available paral-

lelism.

4. The program after insertion of finish statements must have the same semantics as the

serial elision, i.e., the program with no parallel constructs.

∗Since the repaired program is data-race-free, it has the same semantics for all memory models.

52

1 async A(); // Execution Time = 500

2 async B(); // Execution Time = 10

3 async C(); // Execution Time = 10

4 async D(); // Execution Time = 400

5 async E(); // Execution Time = 600

6 async F(); // Execution Time = 500

Figure 4.3 : async-finish program with execution times. The dependences in the program
are B→ D, A→ F and D→ F

5. The program statements remain in the same order. 2

The criterion of maximal available parallelism is abstractly defined as follows:

Definition 5. A program is said to have maximal parallelism, if it has minimum critical

path length (CPL), where critical path is the longest path in the computation graph of the

program. Critical path length could also be defined as the execution time of a program on

a computer with unbounded number of processors.

Consider the program shown in Figure 4.3, where the execution times for each of the

tasks is given. Let us assume that D is dependent on B and F is dependent on both A and D.

Some of the possible finish placements to satisfy these dependences are given in Figure 4.4,

along with their critical path lengths. For example (A B C) (D) E F corresponds

to inserting a finish statement which encloses async A, async B, async C and another

finish statement which encloses async D. The choice of finish placements can have a big

impact on the critical path length and available parallelism. The number of possible finish

placements can grow exponentially with program size, and finding the best possible finish

placement is a complex problem. The problem becomes harder in the presence of function

calls and nested task parallelism, where asyncs are nested inside asyncs.

To demonstrate how a finish statement can violate the scope of the input program, let

us consider the program given in Figure 4.5. There are two data races in this program: A2

53

(A) (B) C (D) E F // CPL = 1510

(A B) C (D) E F // CPL = 1500

(A B C) (D) E F // CPL = 1500

(A (B) C D E) F // CPL = 1110

Figure 4.4 : Few possible finish placements for the program in Figure 4.3 and their critical
path lengths. Parentheses represent finish statements

1 if (...) {

2 async { ... } // A1

3 async { x = ... } // A2

4 }

5 async { y = ... } // A3

6 async { ... = x+y } // A4

Figure 4.5 : Async-finish code which demonstrates the scoping issues in finish insertion

→ A4 and A3→ A4. There are two ways to fix these data races using finish statements:

• Enclose A2 inside a finish statement and A3 inside another finish statement.

• Enclose A1, A2 and A3 inside a single finish statement.

Note that we cannot insert a new finish statement which encloses A2 and A3, but does not

enclose A1. A program with such finish statements is not well formed. The finish placement

algorithm must eliminate such cases from the set of potential repairs.

In this chapter, we present a tool that computes finish placements which guarantee data

race freedom for the provided inputs, retain maximal parallelism, and respect scope rules

of the input program.

4.2 Contributions

The main contributions of this work are as follows:

54

• A dynamic finish placement algorithm which determines points in scoped dynamic

program structure tree (S-DPST) where additional finish constructs need to be in-

serted to repair data races in the input program. We introduce a data structure called

scoped dynamic program structure tree (S-DPST), which can be used to analyze the

execution of parallel programs with async and finish constructs.

• A static finish placement algorithm which maps points in the S-DPST where addi-

tional finish statements are required to points in the program (AST).

• An evaluation of our method on a range of benchmarks, including standard bench-

marks from the HJ Bench, BOTS, JGF, and Shootout suites, as well as student home-

work submissions from a parallel computing course. The evaluation establishes the

effectiveness of our approach with respect to compile-time overhead, precision, and

performance of the repaired code.

4.3 Overview

In this section, we present an overview of our approach to test-driven repair of parallel

programs. The overall approach is incremental by design. A single iteration of the tool

takes as input an unsynchronized or under-synchronized parallel program with async and

finish constructs and a test input. It executes the program in the canonical sequential (depth-

first) order with the given input, and identifies all potential data races by employing a

modified version of the ESP-bags algorithm [5] that builds an extended Dynamic Program

Structure Tree (DPST) [27] for that execution. The output of the iteration identifies static

points in the program where finish statements should be inserted to cover all data races for

that particular execution.

A high level view of the tool is given in Figure 4.6. The three main steps in test-driven

55

Data$Race$
Detec(on$

Dynamic$
Finish$

Placement$

Sta(c$Finish$
Placement$

Input$
Program$

Test$cases$

Program$with$
extra$
synchroniza(on$

Repair$

Figure 4.6 : High level view of test-driven repair

repair of data races are:

• Data Race Detection: Our tool executes the program sequentially with the provided

input to identify data races in the program. To identify data races, the tool uses a

modified version of the ESP-bags algorithm, which is explained in Section 4.4.

While the program executes, the data race detector constructs a data structure called

Scoped Dynamic Program Structure Tree (S-DPST). S-DPST is an ordered rooted

tree that captures the relationships among the async, finish, scope and step instances

in the program, where a step instance is a maximal sequence of statement instances

in a particular scope with no asyncs and finishes. Section 4.4.2 describes the S-DPST

in detail.

• Dynamic Finish Placement: Our tool analyzes the S-DPST, which is annotated with

the set of data races, to find the points in the S-DPST where additional finish state-

ments are required. Section 4.5 presents our dynamic finish placement algorithm.

• Static Finish Placement: Our tool maps points in the S-DPST where additional

finish statements are required to points in the program (AST). Section 4.6 presents

our static finish placement algorithm.

56

We iteratively perform dynamic and static finish placements until all data races discov-

ered in the program with the test input are repaired.

4.4 Data Race Detection

In this section, we present the modified version of ESP-Bags data race detection algorithm

and S-DPST, the principal data structure for our analysis.

4.4.1 Multiple Reader-Writer ESP-Bags

Detecting data races is an important step in identifying the synchronization necessary to

maintain correctness of parallel programs. In this work, we use the ESP-bags algorithm [5]

to identify data races in parallel programs with async and finish constructs. The ESP-

bags algorithm detects data races in a given program if and only if a data race exists.

This algorithm performs a sequential depth first execution of the parallel program with the

given input. By monitoring the memory accesses in the sequential execution, the algorithm

identifies data races that may occur in some parallel execution of the program for that input.

If the algorithm reports no data races for an execution of a program with an input, then no

execution of the program for that input will encounter a data race. The sequential depth

first execution of a parallel program is similar to the execution of an equivalent sequential

program obtained by eliding the keywords async and finish. The ESP-bags algorithm

maintains an access summary for each memory location monitored for data races; each

location’s access summary requires O(1) space.

The ESP-bags algorithm reports only a subset of all the data races present in the pro-

gram for a given input. This limitation is due to the constraint that ESP-bags keeps track

of only one writer and one reader corresponding to each memory location. Consider the

async-finish code given in Figure 4.7. There are two Read→Write data races in this code

57

1 async { ... = x;} // A1

2 async { ... = x;} // A2

3 async { x = ... } // A3

Figure 4.7 : Async-finish code with multiple data races

snippet due to parallel accesses to the global variable x. The first data race is from the

async A1 to the async A3 and the second data race is from the async A2 to the async A3.

The ESP-bags algorithm reports only the data race A1→ A3, because it keeps track of only

one of the readers of a memory location. This data race could be fixed by enclosing A1

inside a finish, but this will not fix the data race from A2 to A3.

The goal of our tool is to fix all potential data races for a given input. To achieve this

goal, we use a modified version of the ESP-bags algorithm that keeps track of all readers

and writers for each memory location. In the rest of the chapter, we refer to the original

ESP-bags algorithm as Single Reader-Writer ESP-Bags (SRW ESP-Bags) and the modified

version as Multiple Reader-Writer ESP-Bags (MRW ESP-Bags).

4.4.2 Scoped Dynamic Program Structure Tree

In this section, we present the principal data structure used for our analysis: Scoped Dy-

namic Program Structure Tree (S-DPST). S-DPST is an extension of Dynamic Program

Structure Tree (DPST) [27], which is used in parallel data race detection for structured

parallel programs.

Definition 6. The Scoped Dynamic Program Structure Tree (S-DPST) for a given execution

is a tree in which all leaves are step instances, and all interior nodes are async, finish and

scope instances. The parent relation is defined as follows:

• Async instance A is the parent of all async, finish, scope and step instances directly

58

executed within A.

• Finish instance F is the parent of all async, finish, scope and step instances directly

executed within F.

• Scope instance S is the parent of all async, finish, scope and step instances directly

executed within S.

There is a left-to-right ordering of all S-DPST siblings that reflects the left-to-right

sequencing of computations belonging to their common parent.

A Scope node represents a scope encountered during the execution of the program. For

instance, a scope node may represent an if statement, a while loop or a function call. The

scope nodes ensures that the start and end points of a newly introduced finish statement are

in the same scope of the input program (see Section 4.5). A non scope node refers to an

async, finish or step node.

Step S1 is called the source of a data race involving steps S1 and S2, if S1 occurs before

S2 in the depth first traversal of the S-DPST. S2 is said to be the sink of the data race. Data

races are represented in S-DPST using directed edges from the step which is the source of

the data race to the step which is the sink of the data race.

Example: Consider the incorrectly synchronized Fibonacci program in Figure 4.8. The

program is incorrect because the async statement in line 12 can execute in parallel with

line 14, both of them access the field X.v and one of them is write. Similarly there is a data

race due to the access to field Y.v. Fig. 4.9 shows a subtree of S-DPST for the Fibonacci

program. Each node is labeled with the type of the node and a number which indicates the

order in which the node is visited in a depth first traversal of the tree. Async0 corresponds

to instances of the async statement in line 19, Async1 corresponds to instances of the async

59

1 static class BoxInteger {

2 public int v;

3 }

4

5 void fib (BoxInteger ret, int n) {

6 if (n < 2) {

7 ret.v = n;

8 return;

9 }

10 final BoxInteger X = new BoxInteger();

11 final BoxInteger Y = new BoxInteger();

12 async fib (X, n-1); // Async1

13 async fib (Y, n-2); // Async2

14 ret.v = X.v + Y.v;

15 }

16

17 public static void main (String[] args) {

18

19 async fib(result, 3); // Async0

20

21 }

Figure 4.8 : Incorrectly synchronized Fibonacci program

in line 12 and Async2 corresponds to instances of the async in line 13. The scope nodes

in the S-DPST are labeled Fib and If, which corresponds to the scope of the fib function

and the if statement in line 6 respectively. The data races due to the parallel accesses to

X.v and Y.v are shown using the dotted directed edges.

Definition 7. A non-scope child of a node p in S-DPST is a node c, which is a direct

descendent of p with only scope nodes along the path from p to c.

Definition 8. The non-scope least common ancestor (NS-LCA) of two nodes ni and n j in

S-DPST is a node li j such that if l
′

i j is the Least Common Ancestor (LCA) of ni and n j in

the S-DPST, then li j is the first non-scope node along the path from l
′

i j to the root of the

S-DPST.

60

Fib:1&

Step:2& Async1:3& Async2:15& Step:19&

Fib:4& Fib:16&

Step:5& Async1:6& Async2:10& Step:14& If:17&

Fib:7& Fib:11&

If:8& If:12&

Step:9& Step:13&

Step:18&

Async0:0&
Tree&edge&

Data&race&

Figure 4.9 : Subtree of S-DPST for Fibonacci

Definition 9. The non-scope least common ancestor (NS-LCA) of a data race, D in S-

DPST is the NS-LCA of ni and n j, where ni is the source and n j is the sink of the data race,

D.

In Figure 4.9, Step:5, Async1:6, Async2:10 and Step:14 are the non-scope children of

the node Async1:3. The NS-LCA of Step:9 and Step:14 is Async1:3.

4.5 Dynamic Finish Placement

In this section, we present the algorithm for dynamic finish placement, which involves two

main steps: dynamic dependence graph construction which is presented in Section 4.5.1

and the application of a dynamic programming algorithm on the dependence graph, which

is presented in Section 4.5.2.

61

Async1:3&

Fib:4&

Step:5& Async1:6& Async2:10& Step:14&

Fib:7& Fib:11&

If:8& If:12&

Step:9& Step:13&

Figure 4.10 : A subtree rooted at NS-LCA for Fibonacci

4.5.1 Dynamic Dependence Graph Construction

In this section we present the method used to construct a dependence graph from the sub-

tree rooted at a NS-LCA. Consider the subtree of the S-DPST rooted at L, where L is the

NS-LCA of each of the data races D1..Dk. Let C1..Cn be the non-scope children of the node

L in the S-DPST. The graph we construct has n nodes, where each node corresponds to a

non-scope child of L. The dependence graph has k edges, where each edge corresponds

to a data race. The source of the edge corresponding to data race, Di is the non-scope

child of L, which is the ancestor of the source of Di. Similarly the sink of the edge corre-

sponding to data race, Di is the non-scope child of L, which is the ancestor of the sink of Di.

Example: The S-DPST in Figure 4.9 has two NS-LCAs: Async0:0 and Async1:3. We

demonstrate the dependence graph construction on the subtree rooted at Async1:3, which

is given in Figure 4.10. Figure 4.11 shows the dependence graph constructed using the

62

Step:5& Async1:6& Async2:10& Step:14&

Figure 4.11 : Dependence graph constructed from the subtree in Figure 4.10

method presented above. The nodes in the graph are the non-scope children of Async1:3

and the edges represent the data races between their descendent steps.

4.5.2 Algorithm

In this section, we present the core algorithm of our test-driven repair tool. The algorithm

takes as input the dependence graph constructed from the subtree rooted at a NS-LCA by

the method presented in Section 4.5.1 and finds the set of finishes needed to fix the data

races represented in the dependence graph. The problem of optimal finish placement could

be stated formally as follows: Let G = (V, E) be a directed acyclic graph where V = {1..n}

is the set of vertices and E = {(x1, y1)..(xm, ym)} is the set of edges. The set of edges, E

satisfy the property ∀(xi, yi) ∈ E, xi < yi. The execution time of each vertex i is represented

as ti. We are interested in finding a set of points in the graph, where finish nodes need

to be introduced such that it resolves all the data races and minimizes the execution time

of G. The set of program points where finish nodes need to be introduced is represented

using a set of ordered pairs, FinishS et = {(s1, e1)..(sn, en)}, where each (si, ei) ∈ FinishS et

represents a finish block which encloses the set of vertices si..ei. To summarize, we need

to compute FinishS et, such that

• if (i, j) ∈ E, ∃ (s, e) ∈ FinishS et where 1 ≤ s ≤ i ≤ e < j

• COS T (G) = maxi=1,n(ES T (i, 1..i − 1) + ti), is minimized

63

OPT (i, j) = min
i≤k< j

OPT (i, k) + OPT (k + 1, j) succ(i..k) ∩ {k + 1.. j} , ∅
max(OPT (i, k), ES T (k + 1, i..k) + OPT (k + 1, j)) otherwise

(4.1)

Figure 4.12 : Optimal substructure of finish placement

ES T (i + 1, i..i) =

0 if i is an async
ti otherwise

(4.2)

ES T (i, j) =

OPT (i, k) + ES T (k + 1, i..k) succ(i..k) ∩ {k + 1.. j} , ∅
ES T (k + 1, i..k) + ES T (j + 1, k + 1.. j) otherwise

(4.3)

Figure 4.13 : Earliest start time computation. k is the optimal partitioning point for i.. j

where ES T (j, i.. j − 1) represents the earliest start time of the node j with respect to the

nodes i.. j − 1. The quantity ES T (i, 1..i − 1) + ti represents the earliest completion time of

the node i.

This problem exhibits optimal substructure. That is, the solution to the problem could

be expressed in terms of solutions to smaller subproblems as shown in Figure 4.12. OPT

(i, j) represents the optimal cost for the subproblem involving the nodes i.. j and the cor-

responding edges. succ(i) represents the set of nodes to which there is an edge from i,

and succ(i..k) = succ(i) ∪ succ(i + 1).. ∪ succ(k). OPT (i, j) is computed from two sub

problems i..k and k + 1.. j. The value of k is chosen such that it gives us the minimum

value of OPT (i, j). We refer to k as the optimal partitioning point for the problem i.. j. The

possible partitioning points are i, i + 1, .. j − 1. The first case represents where there are

edges from the first partition (i..k) to the second partition (k + 1.. j). In this case, a finish

is required around the first partition to satisfy the dependence from the first partition to the

second partition. The second case represents the case where there are no edges from the

64

Algorithm 11 Dynamic finish placement algorithm
Require: Graph, G and Execution time t[1..n] of nodes 1..n in G
Ensure: Opt, Partition, Finish arrays

1: for i = 1 to n do
2: Opt[i][i]← t[i]
3: Partition[i][i]← i
4: Finish[i][i]← f alse
5: if i is an async node then
6: ES T [i + 1, i..i] = 0
7: else
8: ES T [i + 1, i..i] = t[i]
9: end if

10: end for
11: for s = 2 to n do
12: for i = 1 to n − s + 1 do
13: j← i + s − 1
14: for k = i to j − 1 do
15: Cmin = +∞

16: if succ(i..k) ∩ {k + 1.. j} = ∅ then
17: c← max(Opt[i][k], ES T [k + 1, i..k] + Opt[k + 1][j])
18: f ← f alse
19: e← ES T [k + 1, i..k] + ES T [j + 1, k + 1.. j]
20: else if Valid(i, k) then
21: c← Opt[i][k] + Opt[k + 1][j]
22: f ← true
23: e← Opt[i][k] + ES T [j + 1, k + 1.. j]
24: end if
25: if c < Cmin then
26: Cmin ← c
27: p← k
28: f inish← f
29: est ← e
30: end if
31: end for
32: end for
33: Opt[i][j]← Cmin

34: Partition[i][j]← p
35: Finish[i][j]← f inish
36: ES T [j + 1, i.. j]← est
37: end for

65

Algorithm 12 Checks the validity of a finish placement
1: procedure ValidHelp(node1, node2, le f t, right)
2: lca1l = LCA(node1, le f t)
3: lca12 = LCA(node1, node2)
4: lca2r = LCA(node2, right)
5: d1l = lca1l.depth
6: d12 = lca12.depth
7: d2r = lca2r.depth
8: if (d1l > d12) ∨ (d2r > d12) then
9: return f alse

10: end if
11: return true
12: end procedure
13: procedure Valid(i, j)
14: return ValidHelp(node[i], node[j], node[i − 1], node[j + 1])
15: end procedure

first partition to the second partition. In this case a finish is not required. Figure 4.13 shows

the computation of ES T .

Algorithm 11 shows the dynamic programming method used to compute the optimal

finish placement. Opt[i][j] holds optimal cost for the subproblem i.. j. To help us keep

track of how to construct an optimal solution, we save the optimal partitioning point of i.. j

in Partition[i][j]. Finish[i][j] keeps track of whether a finish is required around the block

i..k.

The loop in lines 14-32 iterates through each of the possible partitioning points and

finds the optimal one. Lines 16-20 handle the case where a finish is not required and lines

21-25 handle the case where a finish is required. Note that it considers only values of k

for which (i, k) has a valid static finish placement. Procedure VALID(i, j) in Algorithm 12

checks the validity of a finish placement. (i, j) is a valid finish placement, only if there exists

a point in the DPST where we can introduce a finish node, whose descendents include the

66

nodes i.. j, but do not include nodes i − 1 or j + 1. The array node used in VALID contains

all the nodes in the dependence graph, ordered from left to right.

Algorithm 11 computes the optimal solution in O(n3 × d) time, by taking advantage of

the overlapping-subproblems property, where d represents the height of the subtree rooted

at LCA. There are only Θ(n2) different subproblems in total. The solution for each of these

subproblems is computed once in O(n × d) time.

Algorithm 13 Find the set of finishes from the output of Algorithm 11
Require: Partition, Finish
Ensure: Set of finishes

1: procedure Find(begin, end)
2: if begin = end then
3: return ∅
4: end if
5: p = Partition[begin][end]
6: le f t = Find(begin, p)
7: right = Find(p, end)
8: if Finish[begin][end] = true then
9: return {(begin, p)} ∪ le f t ∪ right

10: else
11: return le f t ∪ right
12: end if
13: end procedure
14: return Find(1, n)

Algorithm 11 computes the optimal cost for a finish placement, which satisfies all the

dependences in the dependence graph. It does not directly show the partitioning points.

This information can be easily determined from the arrays Partition and Finish. 1..(Part

ition[1][n]) and (Partition[1][n] + 1)..n are the two subproblems used to compute the op-

timal solution for 1..n. The value of Finish[1][n] determines whether a finish is required

around 1..Partition[1][n]. The finish placements for all the subproblems can be computed

67

Async1:3&

Fib:4&

Step:5&

Async1:6& Async2:10&

Step:14&

Fib:7& Fib:11&

If:8& If:12&

Step:9& Step:13&

Finish&

Figure 4.14 : Subtree in Figure 4.10 after inserting finish

recursively as presented in Algorithm 13.

The next step is to find the exact location in the S-DPST where the finish nodes must be

inserted. For each (i, j) ∈ FinishS et, this is found by a bottom-up traversal of the S-DPST,

where we find the highest node in the S-DPST where we can introduce a new f inish node

as the ancestor of i.. j, but is not an ancestor of i − 1 or j + 1.

Example: Lets now consider the application of Algorithm 11 on the dependence graph

in Figure 4.11. The set of vertices for the graph is V = {1, 2, 3, 4} and the set of edges

is E = {(2, 4), (3, 4)}, where vertex 1 refers to Step:5, 2 refers to Async1:6, 3 refers to

Async2:10 and 4 refers to Step:14. Lets assume t1 = 5, t2 = 20, t3 = 15, t4 = 5. The

application of Algorithm 11 would infer a finish placement of {(2, 3)}. Figure 4.14 shows

the new subtree after the insertion of finish node.

68

4.5.3 Correctness and Optimality

The dependence graph constructed using the method in Section 4.5.1 models the data races

as dependences between the children of the NS-LCA. The dynamic programming algorithm

given in Section 4.5.2 ensures that new finish nodes are inserted such that the source and

sink of a data race may not happen in parallel.

Theorem 3. Consider two leaf nodes S1 and S2 in a S-DPST, where S1 , S2 and S1 is to

the left of S2. Let N be the node denoting the non-scope least common ancestor of S1 and

S2. Let node A be the ancestor of S1 that is the non-scope child of N. Then, S1 and S2 can

execute in parallel if and only if A is an async node.

Theorem 3 is an extension of a result from [27] which gives the necessary and sufficient

condition for 2 steps to execute in parallel. To resolve a data race between 2 steps S1 and

S2, we need to introduce a finish node, F in the S-DPST, such that

• F is the non-scope child of the NS-LCA, N of S1 and S2

• F is an ancestor of S1 but not an ancestor of S2.

Theorem 4. Consider a node L in S-DPST. Let G = (V, E) be a directed acyclic graph

(DAG) in which nodes V = {1, .., n} represent the dynamic children of L and E represent

the set of data races whose dynamic LCA is L. Algorithm 11 finds an optimal set of finish

placement which resolves all the data races represented by E.

Proof. By induction on s in Algorithm 11. At the start of s iteration of the loop in line

11-36, optimal solutions for all subproblems of size s − 1 have been computed. The next

iteration of the loop computes the optimal solutions for all subproblems of size s. �

69

4.6 Static Finish Placement

In this section, we present the algorithm for finding a static finish placement from the

dynamic finish placements computed using the algorithms presented in Section 4.5.

4.6.1 Algorithm

Dynamic finish placement algorithm finds the finish placements required to resolve the data

races at a single NS-LCA. The choice of finish placements at a single NS-LCA can have

impact on the rest of S-DPST and the input program. The static finish placement algorithm

handles these issues, by propagating these finish placements to the rest of the S-DPST and

the input program. The complete steps in static finish placement algorithm are given below.

1. Find the NS-LCA of the source and sink of each of the data races in the S-DPST

2. Group all the data races which have a common NS-LCA

3. For each unique NS-LCA , N

(a) Reduce the subtree rooted at N to a DAG as described in Section 4.5.1.

(b) Find the set of finish nodes needed to fix the data races with NS-LCA, N using

the dynamic programming algorithm presented in Section 4.5.2.

(c) Find the locations in the S-DPST where a finish needs to be inserted by a

bottom-up traversal.

(d) Insert the finish statements in the input program and update the S-DPST with

the new finish nodes

(e) Remove the data races which are fixed by the insertion of the finish nodes.

(f) Update the data races for which the NS-LCA have changed due to the insertion

of new finish nodes.

70

1 static class BoxInteger {

2 public int v;

3 }

4

5 void fib (BoxInteger ret, int n) {

6 if (n < 2) {

7 ret.v = n;

8 return;

9 }

10 final BoxInteger X = new BoxInteger();

11 final BoxInteger Y = new BoxInteger();

12 finish { // Newly inserted finish

13 async fib (X, n-1); // Async1

14 async fib (Y, n-2); // Async2

15 }

16 ret.v = X.v + Y.v;

17 }

18

19 async fib(3); // Async0

Figure 4.15 : Fibonacci program from Figure 4.8 after finish insertion

The algorithm iterates through each of the unique NS-LCAs and finds the set of dynamic

finish placements needed to fix the data races. These finish placements are then mapped to

the input program. The S-DPST is then updated with the new set of finish statements. Note

that a finish placement at one NS-LCA may lead to the insertion of finish nodes in subtrees

rooted at other NS-LCAs. At the termination of the algorithm, we have a program free of

data races for the given input.

Example: The subtree rooted at Async1:3 after dynamic finish placement is shown in Fig-

ure 4.14. The finish placement in this subtree are then propagated to the rest of the S-DPST.

This will introduce another Finish node as the child of Fib:1 and as the parent of Async1:3

and Async2:15 in Figure 4.9. At this point all the data races have been fixed and the pro-

gram with the newly introduced finish statement is given in Figure 4.15.

71

4.6.2 Correctness & Conditions for Optimality

The static finish placement algorithm iterates through each unique NS-LCA and finds the

finish placement for a subset of all the data races, instead of finding a finish placement

which covers all the data races. The following theorem gives the intuition behind this

approach.

Theorem 5. Consider a program P with n data races {D1,..,Dn}. Let {L1, .., Ln} be the non-

scope least common ancestors (NS-LCA) of the nodes corresponding to the steps involved

in the data race in the S-DPST. A finish node in the S-DPST which resolves a data race Di

may resolve a data race D j only if Li = L j.

From Theorem 5, it follows that the problem of global finish placement could be solved

by grouping data races by their NS-LCA and solving the problem locally. If the subprob-

lems at different NS-LCAs are non-overlapping this leads to an optimal solution. If the

subproblems are overlapping, the decisions made in the solution of earlier subproblems

may lead to non-optimal solutions for later subproblems. In most real world programs, we

observed that the solutions required at different NS-LCAs are identical or non-overlapping,

which leads to a global optimal solution.

4.7 Experimental Results

In this section, we present experimental results for our test-driven repair tool. The different

components of the tool shown in Figure 4.6 were implemented as follows. Programs were

instrumented for race detection, S-DPST construction and computation of execution time

of steps during a byte-level transformation pass on HJ’s Parallel Intermediate Representa-

tion (PIR) [34]. The data race detector (modified version of ESP-Bags) was implemented

as a Java library for detecting data races in HJ programs containing async and finish con-

72

Source Benchmark Description Input Size Input Size
(Repair) (Performance)

HJ Bench Fibonacci Compute nth Fibonacci 16 40
number

Quicksort Quicksort 1,000 100,000,000
Mergesort Mergesort 1,000 100,000,000
Spanning Tree Compute spanning tree of nodes = 200, nodes = 1,000,000,

an undirected graph neighbors = 4 neighbors = 100
BOTS Nqueens N Queens problem 6 13
JGF Series Fourier coefficient analysis rows = 25 rows=100,000

SOR Successive over-relaxation size =100, size = 6,000,
iters = 1 iters = 100

Crypt IDEA encryption 3,000 50,000,000
Sparse Sparse matrix multiplication 100 2,500,000
LUFact LU Factorization 25 × 25 1000 × 1000

Shootout FannKuch Indexed-access to 6 12
tiny integer-sequence

Mandelbrot Generate Mandelbrot 50 10,000
set portable bitmap

Table 4.1 : List of benchmarks evaluated

Figure 4.16 : Average execution times in milliseconds and 95% confidence interval of
30 runs for sequential, original parallel, and repaired parallel versions, for “Performance”
input size. Parallel versions were run on 12 cores.

73

Benchmark HJ-Seq RaceDet Time #S-DPST Number of Repair Time
(millisecs) (millisecs) Nodes Data Races (secs)

Fibonacci 17.41 229.03 17,568 3,192 4.77
Quicksort 11.01 554.50 54,857 17,727 21.35
Mergesort 6.08 827.04 120,688 424,436 647.43
Spanning Tree 9.15 360.00 37,410 3,261 11.21
Nqueens 2.67 283.75 32,434 4 6.02
Series 37.07 559.30 98,226 6 45.30
SOR 26.01 275.11 59,422 19,110 21.11
Crypt 32.10 603.05 30,596 3,375 5.44
Sparse 13.52 223.02 46,561 260 15.21
LUFact 13.01 299.32 24,430 99,563 56.27
FannKuch 3.41 2,853.18 19,785 7 3.09
Mandelbrot 10.62 430.45 271,354 100 55.66

Table 4.2 : Time for program repair. Input size: Repair

structs, and generating trace files containing all the data races detected. The dynamic and

static finish placement algorithms were implemented as subsequent compiler passes in the

HJ compiler, that read the trace files generated by the data race detector, update the PIR

representation of the program, and then output the source code positions where additional

finish constructs should be inserted.

Our experiments were conducted on a 12-core Intel Westmere 2.83 GHz system with 48

GB memory, running Red Hat Enterprise Linux Server release 6.2, and Sun Hotspot JDK

1.7. To reduce the impact of JIT compilation, garbage collection and other JVM services,

we report the mean execution time measured in 30 runs repeated in the same JVM instance

for each data point.

We evaluated the repair tool on a suite of 12 task-parallel benchmarks listed in Table 4.1.

The fourth column of Table 4.1 shows the input sizes used for repair mode (which includes

data race detection and S-DPST construction). The fifth column shows the input size used

for performance evaluation of the repaired programs.

74

4.7.1 Repairing Programs

To evaluate our tool, we performed the following test. We removed all finish statements

from the benchmarks in Table 4.1, and then ran the repair tool on each of the resulting

buggy programs. For these programs, a single iteration of the tool with a single test case

(input size shown in column 4 of Table 4.1) was sufficient to obtain a repair that satisfied

all task dependences. Further, the tool’s repair (insertion of finish statements) resulted in

parallel performance that was almost identical to that of the original benchmark in each

case. Figure 4.16 shows the execution times for the sequential, original parallel, and re-

paired parallel versions of each benchmark when executed on 12 cores. A visual inspection

confirmed that the tool was able to insert finish statements so as to obtain comparable par-

allelism to that created by the experts who wrote the original benchmarks.

Benchmark Data Race Detection 1 Repair Time Data Race Total Time
(millisecs) (secs) Detection 2 (secs)

SRW MRW SRW MRW SRW Only SRW MRW
Fibonacci 213.13 229.03 4.71 4.77 170.12 5.09 5.00
Quicksort 411.52 554.50 21.11 21.35 386.35 21.91 21.90
Mergesort 623.12 827.04 155.91 647.43 557.13 157.09 648.26
Spanning Tree 291.00 360.00 10.03 11.21 138.67 10.46 11.57
Nqueens 255.12 283.75 6.11 6.02 253.44 6.62 6.30
Series 560.03 559.30 45.03 45.30 526.47 46.12 45.86
SOR 220.31 275.11 21.01 21.11 198.05 21.43 21.39
Crypt 374.52 603.05 5.36 5.44 314.15 6.05 6.04
Sparse 171.11 223.02 15.11 15.21 170.21 15.45 15.43
LUFact 216.21 299.32 56.41 56.27 157.63 56.78 56.57
FannKuch 203.51 2,853.18 3.06 3.09 204.23 3.47 5.94
Mandelbrot 426.31 430.45 55.13 55.66 382.36 55.94 56.09

Table 4.3 : Comparison of SRW ESP-Bags and MRW ESP-Bags. Input size: Repair

75

Benchmark SRW ESP-Bags MRW ESP-Bags
Fibonacci 3,192 3,192
Quicksort 1,780 17,727
Mergesort 39,684 424,436
Spanning Tree 397 3,261
Nqueens 4 4
Series 6 6
SOR 19,110 19,110
Crypt 3,375 3,375
Sparse 100 260
LUFact 99,563 99,563
FannKuch 7 7
Mandelbrot 100 100

Table 4.4 : Number of data races detected by SRW ESP-Bags and MRW ESP-Bags. Input
size: Repair

4.7.2 Time for Program Repair

Table 4.2 shows the time to repair each of the programs using input sizes given in column

4 of Table 4.1. HJ-Seq is the sequential runtime of the benchmarks. The third column

shows the time taken for data race detection and S-DPST construction. The fourth and

fifth column gives the number of S-DPST nodes and the number of data races reported

by MRW ESP-Bags algorithm respectively. Repair time is the time taken for static and

dynamic finish placements. We observed that, as the number of S-DPST nodes and the

number of data races increases, the time taken for the program repair also increases. This

is because the time to repair is dominated by the time taken to read the trace files generated

by data race detector and building the S-DPST. Although the worst-case time complexity

for dynamic finish placement is O(n3 × d), the time taken in practice is very small because

n and d are small in practice.

76

4.7.3 Comparison of SRW and MRW ESP-Bags

In this section, we compare the overheads and results produced by the two data race detec-

tors. Our tool uses the MRW ESP-Bags algorithm for data race detection by default. This

guarantees that all data races are reported in a single run, for a given test case. Using the

SRW ESP-Bags algorithm may require multiple iterations of the tool for the same test case

to ensure that the program does not contain data races that were not identified and fixed

in a prior iteration. For the benchmarks used in this work, only two SRW iterations were

needed in each case (one for repair, and one to confirm that no data races remain). The

main reason to consider SRW is that each SRW iteration may generate smaller trace files

than that generated by a single MRW run, and smaller trace files directly result in a smaller

memory footprint and execution time for repair. This hypothesis is confirmed in Table 4.4,

which compares the number of data races detected by a single run of the SRW and MRW

algorithms.

Table 4.3 compares the total repair time for the MRW and SRW algorithms (including

two runs in the SRW case). We see that the execution times are comparable in many cases,

but there is a big difference for mergesort for which MRW’s repair time is more than 4×

slower than SRW’s repair time. This can be explained by the large absolute number of

reported data races for the MRW algorithm in Table 4.4, for the mergesort benchmark. The

time for synthesizing a correct program from MRW race reports for mergesort is higher

due to the cost of reading the large traces and adding the race edges to our internal repre-

sentation.

4.7.4 Student Homework Evaluation

We also used our repair tool to evaluate student homework submissions as part of an un-

dergraduate course on parallel computing. The assignment for the students was to per-

77

form a manual repair on a parallel quicksort program i.e., to insert finish statements with

maximal parallelism while ensuring that no data races remain. The initial version of the

program contained async statements, but no finish statements. We then evaluated the stu-

dent submissions against the finish statements automatically generated by the tool. Out

of 59 student submissions, 5 submissions still had data races, 29 submissions were over-

synchronized (i.e., had reduced parallelism), and 25 submissions matched the output from

our repair tool. We believe that our repair tool will be a valuable aid for future courses on

parallel programming, especially in on-line offerings where automated feedback is critical

to improve the learning experience for students.

4.8 Related Work

The last decade has seen much activity in repair and synthesis of programs, including con-

current programs. Vechev, Yahav, and Yorsh [40] use abstract interpretation to analyze

atomicity violations and abstraction-guided synthesis to introduce minimal critical regions

into a program to eliminate atomicity violations by restricting potential interleavings. A

prototype based on this approach has been demonstrated on program fragments consisting

of tens of lines. Cerny et al. [41] present a method for using a performance model to guide

refinement of a non-deterministic partial program into one that is both race and deadlock

free. They use manually derived abstractions of programs and the SPIN model checker to

reason about transitions. This system was also applied to tens of lines of code. Raychev et

al. [8] used abstract interpretation to compute an over-approximation of the possible pro-

gram behaviors. If the over-approximation is not free of conflicts, the algorithm synthesizes

a repair that enforces conflict freedom. Solar-Lezama et al. [42] synthesizes concurrent data

structures from high-level “sketches”.

The most closely related work on concurrent program repair is described in a pair of

78

papers by Jin et al. [9, 10]. In a 2011 paper [9], they describe AFix—a system for detection

and repair of concurrency bugs resulting from single-variable atomicity violations. Their

system detects atomicity violations, designs a repair by adding a critical section protected

by a lock to prevent problematic interleavings. They identify nodes on all intra-procedural

paths between two instructions that need to be protected and insert lock acquire and releases

at the boundaries as one enters and exits the protected region. Critical sections added by

AFix need not be block structured. Finally, AFix merges overlapping critical regions intro-

duced by one or more repairs. A 2012 paper [10] describes CFix—a more comprehensive

system for detecting and repairing several kinds of concurrency bugs, including atomicity

violations, ordering violations, data races, and def-use errors. CFix relies on several differ-

ent existing bug detectors to detect different types of concurrency bugs. They fix bugs by

adding ordering and/or mutual exclusion. For mutual exclusion, they rely on their earlier

work on AFix. With respect to [9] and [10], which avoids atomicity violations by ordering

accesses: we add finish constructs which (a) eliminate the observed races, and (b) ensure

that the semantics of the accesses in the parallel program is the same as in the sequential

version. [9] and [10] merely ensure that the accesses aren’t concurrent by adding mutual

exclusion or pairwise ordering.

Kelk et al. uses a combination of genetic algorithms and program optimization to au-

tomatically repair concurrent Java programs [43]. The usefulness of genetic algorithms in

program repair was previously demonstrated by Le Goues et al. [44]. Other relevant pro-

gram repair Griesmayer et al. [45], which uses a method based on model checking to repair

boolean programs, and Logozzo and Ball [46], which describes a system for reasoning

about .NET software that uses abstract interpretation to suggest program repairs. However,

the focus in these approaches is not on concurrency bugs.

79

4.9 Summary and Future Work

We presented a tool for test-driven repair of data races in structured parallel programs. The

tool identifies static points in the program where additional synchronization is required to

fix data races for a given set of input test cases. These static points obey the scoping con-

straints in the input program, and are inserted with the goal of maximizing parallelism.

We evaluated an implementation of our tool on a wide variety of benchmarks which re-

quire different synchronization patterns. Our experimental results indicate that the tool is

effective — for all benchmarks, the tool was able to insert finishes to avoid data races and

maximize parallelism. Further, the evaluation of the tool on student homeworks shows the

potential for such tools in future offerings of parallel programming courses, especially in

online versions.

There are multiple possibilities for future work. One of the limitations of the tool is in

analyzing long-running programs, which may lead to the creation of S-DPSTs that do not

fit in memory. One possible extension for the future is to enable garbage collection of parts

of the S-DPST that do not exhibit race conditions. Some other directions for future work

include generation of context sensitive finishes (where a finish is conditionally executed

only in contexts where a data race is observed), and test coverage analysis to evaluate the

suitability of a given set of test cases for program repair.

80

Chapter 5

Automatic Parallelization via Synthesis of Futures

Parallelizing programs to effectively utilize multicore architectures is a major challenge

facing application developers and domain experts. In this work, we introduce a novel

approach for automatically parallelizing pure method calls using futures as the primary

parallel construct. A method is pure [47, 48] if it (or any method that it calls) does not

mutate any object in the program state that exists before the method is invoked. However,

a pure method is permitted to mutate objects that are allocated during its execution and

return a newly constructed object as the result. Further, a pure method is allowed to read

global state that may be later mutated by the method’s caller.

Futures are traditionally used for enabling functional style parallelism, and therefore,

are a natural fit for parallelizing the execution of pure method calls. They also have the

advantage that references to future objects can be copied without waiting for the future tasks

to have completed, thereby exposing more parallelism than in imperative-style task parallel

constructs. Finally, the synchronization patterns that can be expressed by structured fork-

join models (such as OpenMP’s task parallelism [30], Cilk’s spawn-sync [29] parallelism)

are inherently limited to series-parallel computation graphs, while futures can be used to

generate any arbitrary computation graph.

As an example, consider the program from the Computer Language Benchmarks Game

[49] in Figure 5.1, which constructs a binary tree using method bottomUpTree and then

performs a traversal of the tree using method itemCheck. The program after paralleliza-

tion using the approach presented in this chapter (using a test input that constructs a tree

81

1 class TreeNode {

2 private TreeNode left, right;

3 ...

4 TreeNode bottomUpTree(int item, int depth){

5 if (depth > 0) {

6 TreeNode l = bottomUpTree(2*item-1, depth -1);

7 TreeNode r = bottomUpTree(2*item, depth -1);

8 return new TreeNode(l, r, item);

9 } else {

10 return new TreeNode(item);

11 }

12 }

13 ...

14 int itemCheck() {

15 ...

16 return item + left.itemCheck() - right.itemCheck();

17 }

18 }

Figure 5.1 : Sequential binary tree program [49] from computer language benchmarks
game

with height = 14) is shown in Figure 5.2. The parallelization algorithm made the following

changes to the program: 1) The construction of the tree is performed as future tasks, if the

current depth∗ is greater than or equal to a certain threshold; 2) The types of the fields left

and right and variables l and r are changed from TreeNode to mayfuture<TreeNode>,

where mayfuture<T> may refer to a future<T> object or an object of type T; 3) A new

constructor is added to the TreeNode class which accepts mayfuture<TreeNode> as its

first and second arguments; and, 4) get() calls are inserted before the result of a future/-

mayfuture object is used. Another important aspect of our approach is that even though

both bottomUpTree and itemCheck are pure methods, our approach only parallelizes the

execution of the bottomUpTree method since the work performed by itemCheck is not

∗This benchmark uses a parameter named depth for what might usually be considered to be the height of
the node. For example, the depth parameter is zero for all leaf nodes.

82

profitable for parallelization. Compared to using imperative-style task parallel constructs,

this program has more parallelism because it performs a get() only when the result of

the future task is used in line 28 of Figure 5.2. If the same program is parallelized us-

ing imperative-style constructs such as spawn-sync or async-finish, the parallelized

program will require synchronization to ensure that the tasks created in line 9 and line 15

complete before the constructor invocation in line 20 of Figure 5.2.

The rest of the chapter is organized as follows. In Section 5.1, we formulate the prob-

lem that we are solving. Section 5.2 presents our contributions. Section 5.3 presents an

overview of our approach. Sections 5.4-5.7 describe the technical details of our solution.

Section 5.8 contains our experiment results. Section 5.9 discusses related work, and Sec-

tion 5.10 summarizes our conclusions.

5.1 Problem Statement

Problem 3. (Synthesis) Given a sequential or parallel program, P in which selected ex-

pressions are annotated as async for asynchronous execution as futures, and test inputs, ψ1,

ψ2,..,ψn, output a program with increased parallelism by inserting future operations, type

conversions, and conditional threshold expressions as needed for the async expressions,

such that

1. for all inputs, the synthesized program does not exhibit any data races on the result

objects of async expressions,

2. the synthesized program must express the maximum parallelism available from the

inserted futures (without any loss of parallelism due to copying of future references),

3. the synthesized program must minimize the loss in type information for future ob-

jects, i.e., must make the declared types of futures as precise as possible, thereby

83

1 class TreeNode {

2 private mayfuture<TreeNode> left, right;

3 static int THRESHOLD = 12;

4 ...

5 TreeNode bottomUpTree(int item, int depth){

6 if (depth > 0) {

7 mayfuture<TreeNode> l, r;

8 if (depth-1 >= THRESHOLD) {

9 l = async<TreeNode> {

10 return bottomUpTree(2*item-1, depth -1);

11 }

12 } else

13 l = bottomUpTree(2*item-1, depth -1);

14 if (depth-1 >= THRESHOLD) {

15 r = async<TreeNode> {

16 return bottomUpTree(2*item, depth -1);

17 }

18 } else

19 r = bottomUpTree(2*item, depth -1);

20 return new TreeNode(l, r, item);

21 } else {

22 return new TreeNode(item);

23 }

24 }

25 ...

26 int itemCheck() {

27 ...

28 return item + left.get().itemCheck() -

right.get().itemCheck();

29 }

30 }

Figure 5.2 : Binary tree program from Figure 5.1 after parallelization using the approach
presented in this chapter. Our implementation does the transformations on Java bytecode.
The equivalent source code is shown here.

minimizing the number of cast and instanceof operations inserted for future objects,

4. the synthesized program must clone objects read by future tasks as required to pre-

serve anti dependences in the input program, and

84

5. the synthesized program must execute an expression as future task only if it is prof-

itable to do so based on execution profile information collected from ψ1,..,ψn. 2

5.2 Contributions

The main contributions of this work are as follows:

• A static analysis algorithm for future synthesis that can be used to synthesize a paral-

lel program with future objects, their type declarations, and async expressions. Our

approach synthesizes object clones when needed, and generates more precise type

information for future objects, compared to future synthesis algorithms reported in

past work for manual parallelization.

• A parallelism benefit analysis algorithm, which determines the profitability of ex-

ecuting a method call as a future task. The analysis is based on execution profile

information collected from multiple test inputs.

• An algorithm to synthesize threshold conditional expressions, which determine dy-

namically whether a specific method call should be executed sequentially or in par-

allel.

• These algorithms have been implemented as analyses and transformations to generate

parallel Habanero Java (HJ) [16] code from sequential Java code, and evaluated on a

range of benchmark programs. When using 8 processor cores, the evaluation shows

that our approach can provide significant parallel speedups of up to 7.4× (geometric

mean of 3.69×).

85

 Candidate
Future

Synthesis

Input Sequential
Program

Parallel
Program

with Futures
(Useful

Parallelism)
Parallel

Program
with Futures

(Ideal
Parallelism)

Unconditional
Futures

Threshold
Expressions for

Conditional
Futures

Parallelism
Benefit

Analysis

Threshold
Expression
Synthesis

Final Future
Synthesis

Test Inputs

Method Purity
Analysis Pure

Methods

Conditional Futures
w/ Profile Information

Figure 5.3 : High level view of our approach. The dotted lines represent user inputs and
outputs. The grey box (Method Purity Analysis) represents past work leveraged by our
approach, whereas the other boxes represent new contributions.

5.3 Overview of Approach

A high level view of our approach is given in Figure 5.3. The five main steps in automatic

parallelization of eligible method calls are as follows:

1. Method Purity Analysis: The first step in our approach is the identification of pure

methods. Our implementation uses past work (ReImInfer [48]) on automatic pu-

rity analysis to identify pure methods in Java programs, but can also be applied to

programs in which methods are annotated as pure by the programmer.

2. Candidate Future Synthesis (CFS): Our tool annotates calls to a subset of the pure

methods identified by ReImInfer as async expressions. (The subset focuses on meth-

ods containing iterative/recursive subcomputations, so as not to overwhelm later in-

strumentation phases with trivial and unprofitable candidates for execution as future

tasks.) Next, we generate a parallel program by synthesizing futures from the async

expressions. The synthesis algorithm is presented in Section 5.4 and involves two

86

steps: 1) inter-procedural future analysis, which determines the locations in the input

program where a future object may be accessed, as well as the types of the future

objects and 2) future transformations, which changes the types of future objects and

inserts future get operations.

3. Parallelism Benefit Analysis (PBA): Once we have a parallel program with futures,

we construct Weighted Computation Graphs (WCGs) for the program for each of the

given test inputs. (The choice of test inputs only impacts the performance, not the

correctness, of parallelization.) The weights of the nodes in the WCG represent the

work done by each of the steps and the overheads of task creation, task termination

and synchronization operations. The weighted computation graphs are then analyzed

to identify tasks that provide benefit from parallelization. Based on the analysis

results, each method call site is classified as serial, parallel or conditional parallel.

The parallelism benefit analysis algorithm is presented in Section 5.5.

4. Threshold Expression Synthesis (TES): For call sites that are identified as condi-

tional parallel by PBA, this step synthesizes an expression that enables conditional

parallel execution of method invocations. The threshold expression identifies a sub-

set of method invocations at the call site, for which the work done by the method

is greater than a certain threshold, which we refer to as sequential threshold. The

threshold expression synthesis algorithm is presented in Section 5.6.

5. Final Future Synthesis: In the last step, we generate parallel code from the input

sequential program based on the analysis done by the previous steps. This involves

cloning inputs when needed, annotation of parallel call sites as async expressions,

and conditional annotation of conditional parallel call sites as async expressions.

The final future synthesis step is described in Section 5.7.

87

1 class TreeNode {

2 private TreeNode left, right;

3 ...

4 TreeNode bottomUpTree(int item, int depth){

5 if (depth > 0) {

6 TreeNode l = async bottomUpTree(2*item-1, depth -1);

7 TreeNode r = async bottomUpTree(2*item, depth -1);

8 return new TreeNode(l, r, item);

9 } else {

10 return new TreeNode(item);

11 }

12 }

13 ...

14 int itemCheck() {

15 ...

16 return item + async left.itemCheck() - async

right.itemCheck();

17 }

18 }

Figure 5.4 : Binary tree program from Figure 5.1 after method purity analysis and async
expression annotation

5.4 Candidate Future Synthesis

In this section, we present our approach for synthesizing futures in a program annotated

with async expressions. The async expressions that serve as the source for synthesis are

inserted based on the output of method purity analysis. The program from Figure 5.1 after

async expression annotation using method purity analysis is shown in Figure 5.4. The two

functions bottomUpTree and itemCheck do not cause any side-effects, and their calls are

therefore marked as async expressions. The async expression annotated program is then

passed as input for future synthesis.

The synthesis process involves the following steps:

1. Replacing async expressions by typed future expressions.

88

2. Identifying inputs that need to be cloned in the final future synthesis step.

3. Analyzing the whole program and modifying the types of variables and fields that can

refer to a future object. Their type is changed from T to future<T>, if the variable or

field must refer to a future at all program points where the variable/field is accessed.

If the variable or field may refer to a future, the type is changed to mayfuture<T>.

This is in contrast to past work [50] in which all future variables/fields were declared

with an Object type in both cases, and cast operations were inserted whenever they

needed to be accessed as future objects (Section 5.4.1).

4. Identify methods that perform non-constant amount of work and are candidates for

asynchronous execution (Section 5.4.3).

5. Insertion of calls to get() before the result of a future task is used, along with

instanceof checks when needed for mayfuture objects.

Section 5.4.1 presents an inter-procedural data flow analysis that identifies the locations

in the program where a future object may be accessed, as well as the types of the future

objects. Section 5.4.2 contains the details of the transformation step based on the result

of the data flow analysis. Section 5.4.3 presents an algorithm to identify methods that

perform non-constant amount of work and are candidates for asynchronous execution, and

Section 5.4.4 discusses how our transformation preserves the data dependences in the input

program.

5.4.1 Inter-procedural Future Analysis

As indicated earlier, past work on future synthesis did not analyze the types of the future

objects. Instead they set the type of all future objects to Object in Java programs as

in [50], or worked with untyped programs as in MultiLisp [18]. In contrast, our work

89

Statement Data flow function

t := async e; λY .(Y ∪ {t})

x := new τ; λY .(Y − {x})

x.f := t; λY .(if t ∈ Y then Y ∪ {f} else Y)

t := x.f; λY .(if f ∈ Y then Y ∪ {t} else Y)

x := t; λY .(if t ∈ Y then Y ∪ {x} else Y)

Figure 5.5 : Examples of normal flow function for computingM (may-be-future)

attempts to determine the most precise type information for future objects as possible. We

do so by using the IFDS [51] algorithm as the foundation for solving the future-analysis

problem. IFDS can be used to compute the meet-over-all-valid-paths solution for all inter-

procedural, finite, distributive subset problems. In the IFDS framework, the input program

is represented as a directed graph called the super graph. The super graph consists of a

collection of flow graphs, one for each procedure in the input program. The analysis is

solved in polynomial time by reducing it to a graph-reachability problem.

The goal of the analysis is to find the set of variables and fields that may/must refer to

a future object during all its accesses in the program, as well as the most precise type that

can be identified statically for the future object, where a future object is the result of any

expression of the form async expr. Our analysis finds the solution to two problems: may-

be-future and must-be-future. The solution to the must-be-future problem is computed as

the complement of the solution to the may-not-be-future problem. At any given statement,

M represents the set of variables and fields that may-be-future and N represents the set of

variables and fields that may-not-be-future. TheM andN sets need not be disjoint; in fact,

the most conservative solution is to simply state that all variables and fields belong to both

sets.

Normal flow functions are applied to all statements that contain neither call nor return

90

statements. Examples of normal flow functions for computingM are given in Figure 5.5.

An async expression generates a future object, whereas the result of a new expression

cannot be a future object. The other three kinds of assignment statements may propagate a

reference to a future object from the right hand side to the left hand side of the assignment.

Our analysis builds on type-based alias analysis [52], and its precision can be improved by

incorporating more complex alias analysis algorithms into the framework. However, more

precise whole program alias analysis could be a scalability bottleneck for large applications.

One drawback of using type-based alias analysis is that all elements of arrays of type τ in

the program will be marked as may-future if any future object is stored into an array of

type τ. We assume a universe Var of variable names, F of field names, T of class names,

where x,t,r,a0,...an,p0,...pn ∈ Var, f ∈ F, and τ ∈ T .

Call flow functions handle the data flow from a method call statement into the called

procedure. The context change from the body of the caller to the body of the callee is mod-

eled by replacing references to actual parameters, ai by references to formal parameters,

pi. All fields that may be a future at the call site may also be a future at the start node of

the callee. The call flow function at call site, c is shown below, where ai
c
−−→ pi represents

the binding of the actual parameter ai to the formal parameter pi.

λY .{∀i, pi | ai ∈ Y ∧ ai
c
−−→ pi} ∪ {f | f ∈ Y ∧ f ∈ F}

At a return statement, the data flow set at the callee is mapped back to the caller by the

return flow function. The return value, r in the callee is mapped to the left hand side of the

assignment in the caller. All fields that may be a future in the callee may also be a future

at the call site. Return flow function at call site, c is given below, where r
c
−−→ x represents

the binding of the return value, r in the callee to the variable x in the caller.

λY .{x | r ∈ Y ∧ r
c
−−→ x} ∪ {f | f ∈ Y ∧ f ∈ F}

91

Statement Data flow function

s: t := async e; λY .(if e ∈ M(s) then Y ∪ {t} else Y)

x := new τ; λY .(Y ∪ {x})

x.f := t; λY .(if t ∈ Y then Y ∪ {f} else Y)

t := x.f; λY .(if f ∈ Y then Y ∪ {t} else Y)

x := t; λY .(if t ∈ Y then Y ∪ {x} else Y)

Figure 5.6 : Examples of normal flow function for computing N

A call-to-return flow function intra-procedurally propagates data flow values that are

independent of the call. The call-to-return flow function for computing M is the identity

function.

The may-not-be-future analysis is performed after may-be-future analysis. Examples of

normal flow functions for may-not-be-future analysis are given in Figure 5.6. The main dif-

ference relative to may-be-future is in the functions for the async and the new expressions.

The synthesis algorithm does not create a future task from an async expression, async e,

if e may be a future object (thereby ensuring that no nested futures are created). Therefore

the flow function for s: t := async e; checks that e ∈ M(s), before adding t to N ,

whereM(s) denotes the set of variables and fields that may refer to a future immediately

before statement s.

The result of future analysis are the sets M and N , which will be available after the

IFDS algorithm converges. The algorithm has worst-case complexity O(ED3), where E is

the number of control-flow edges (or statements) of the analyzed program and D is the size

of the analysis domain, where the domain consists of the set of all variables and fields in

the program. We have not found this worst-case complexity to be a limitation in practice.

Section 5.4.2 contains the details of the transformation step based on the result of the

data flow analysis.

92

1 class TreeNode {

2 private future<TreeNode> left, right;

3 ...

4 TreeNode bottomUpTree(int item, int depth){

5 if (depth > 0) {

6 future<TreeNode> l = async<TreeNode> {

7 return bottomUpTree(2*item-1, depth -1);

8 }

9 future<TreeNode> r = async<TreeNode> {

10 return bottomUpTree(2*item, depth -1);

11 }

12 return new TreeNode(l, r, item);

13 } else {

14 return new TreeNode(item);

15 }

16 }

17 ...

18 int itemCheck() {

19 ...

20 future<Integer> li = async<Integer> {

21 return left.get().itemCheck();

22 };

23 future<Integer> ri = async<Integer> {

24 return right.get().itemCheck();

25 };

26 return item + li.get() - ri.get();

27 }

28 }

Figure 5.7 : Binary tree program after synthesis of futures

5.4.2 Future Transformation

In this section, we present transformation rules for synthesizing futures based on the result

of inter-procedural analysis from section 5.4.1. The transformation rules are shown in

Table 5.1. The third column shows the input code and fourth column shows the transformed

code, if the conditions in second column holds true. M(s) denotes the set of variables and

fields which may refer to a future immediately before statement s. SimilarlyN(s) denotes

the set of variables and fields which may not refer to a future immediately before statement

93

Rule IFDS Results Input Code Output Code
1 e <M(s) s: async e async<T> { return e; }

2 @s1 : x ∈ N(s1) T x future<T> x

3 ∃s1 : x ∈ M(s1) ∧ T x mayfuture<T> x

∃s2 : x ∈ N(s2)

4 x ∈ N(s) s: a = x.f; T y = x.get();

5 ∃s1 : x ∈ M(s1) ∧ s: a = x.f; T y = (T)x;

∃s2 : x ∈ N(s2) ∧ a = y.f;

x <M(s)
6 ∃s1 : x ∈ M(s1) ∧ s: a = x.f; future<T> t = (future<T>)x;

∃s2 : x ∈ N(s2) ∧ T y = t.get();

x ∈ N(s) a = y.f;

7 ∃s1 : x ∈ M(s1) ∧ s: a = x.f; T y;

∃s2 : x ∈ N(s2) ∧ if (x instanceof future<T>)

x ∈ M(s) ∧ x < N(s) future<T> t = (future<T>)x;

y = t.get();

else

y = x;

a = y.f;

Table 5.1 : Example transformation rules based on future-analysis results

s. Rule 1 translates an async expression async e to a future task creation expression,

if e may not be a future. Rule 2 changes the type of a variable from T to future<T>,

if the variable must refer to a future object. Rule 3 changes the type of a variable to

mayfuture<T>, if it may hold a reference to a future and a non-future object, where T

is an application class. If T is a library class, the type is changed to Object. Rules 4-7

handle the different cases, where the object field, f is accessed. Rule 4 and 6 handle the

case, where x must refer to a future object by inserting a x.get() operation which obtains

the result of the future task. Rule 5 handles the case where xmay not refer to a future object

at statement s, but may refer to a future object at a different statement s1. In this case, a

cast operation from mayfuture<T> to T is required before the field access at statement s.

94

Rule 7 is the most general case, where x may refer to a future object or a non-future object

at statement s. In this case, a runtime check is inserted which handles both the possible

scenarios.

Our implementation also changes method parameter types and return types based on

the result of future analysis. When the parameter type (or return type) of a class member

function is changed, the type declaration of the corresponding function in the super class

is also updated. For instance, let D1, ..,Dn be the subclasses of C and let T1, ...,Tn be the

inferred type of the ith parameter of member function F in D1, ..,Dn respectively. The

transformation algorithm then updates the type of ith parameter of F in C to lub(T1, ...,Tn)

which is the least upper bound type of the types T1..Tn, where for any given type T, T ≤

mayfuture<T> and future<T> ≤ mayfuture<T>.

The program from Figure 5.4 after synthesis of futures is shown in Figure 5.7. The

calls to bottomupTree and itemCheck are translated to future tasks. The types of the

local variables l and r and fields left and right are changed to future<TreeNode>.

The synthesis algorithm also inserts get operations before the use of future objects in lines

20-26. Note that the synthesis algorithm does not insert get operations in line 12, where

references to future objects are passed as arguments to the TreeNode constructor.

5.4.3 Candidate Future Identification

Our tool annotates calls to a subset of the pure methods identified by ReImInfer as async

expressions. Although it is safe to execute all pure method calls as future tasks, it is not ben-

eficial to execute method calls that perform insignificant work as separate tasks. Therefore,

we identify methods that perform repetitive computations as candidates, by analyzing the

call graph of the program and control flow graphs of each of the methods in the program.

Algorithm 14 classifies the methods in the input program as async methods and

95

Algorithm 14 Async method identification
Require: Call Graph of the Program , CFGs of each of the Methods
Ensure: Set of async methods A, Set of non-async methods S

1: for all M ∈ {M1, ..,Mn} do
2: if (isLeaf(M) and not hasLoops(M)) or
3: not isPure(M) or hasExceptions(M) then
4: S ← S ∪ {M}
5: end if
6: if (isRecursive(M) or hasLoops(M)) and
7: isPure(M) and not hasExceptions(M) then
8: A← A ∪ {M}
9: end if

10: end for
11: Worklist ← {M1, ..,Mn} − S − A
12: while Worklist , ∅ do
13: M ← Extract(Worklist)
14: async← False
15: for all C ∈ Callees(M) do
16: if C ∈ A then
17: A← A ∪ {M}
18: async← True
19: break
20: end if
21: end for
22: if async = False then
23: S ← S ∪ {M}
24: end if
25: end while

non-async methods. A method is classified as an async method if it or any method

that it calls contains repetitive structures in the form of loops or recursive cycles. This

classification is refined later in the Parallelism Benefit Analysis (PBA) step. Lines 1-10

of Algorithm 14 initialize the sets A and S , which are the set of async methods and set of

non-async methods respectively. S is initialized to contain all non-pure methods and leaf

96

methods (methods which do not call other methods) with no loops in the method body. A

is initialized to contain methods that are either recursive or contain a loop, with two fur-

ther constraints: the method must be pure (isPure(M)), and must not throw any exceptions

(hasExceptions(M) is false).

Purity ensures that asynchronous execution of the method with a future result will not

result in nondeterministic behavior (provided that any input variables that may be mutated

after the method call are cloned, as discussed in Section 5.4.4). Exceptions represent a

special kind of side effect that is typically not included in the scope of purity analysis. A

common assumption in defining the semantics of exceptions with futures is to propagate

any exception thrown by the asynchronous task at the point when the get() operation is

performed. However that approach makes it challenging to execute foo() asynchronously

in scenarios such as the following,

try { x = foo() ; } catch { } ; y = x.z;

in which any exception thrown by foo() in the sequential version will be “swallowed”

before the result of x is accessed as x.z, while, under common assumptions, x.get().z

could throw an exception in the parallel version. The not hasExceptions(M) check ensures

that this situation will not occur in our approach. While it is possible to identify some

weaker sufficient conditions to be used as a replacement for not hasExceptions(M), our

experience has been that the not hasExceptions(M) check provides a simple and effective

means for ensuring correctness of our approach in the presence of exception semantics

without limiting parallelism in practice.

The loop in lines 12-25 iteratively adds the remaining methods to S and A. The Ex-

tract method extracts a method M from the worklist such that all the methods invoked by

M are already classified as async or non-async. A method that calls an async method is

added to A and a method that calls only non-async methods is added to S .

97

5.4.4 Preserving Data Dependences

The parallel program after future synthesis is data race free and deterministic if it preserves

all data dependences in the input sequential program. Purity analysis ensures that asyn-

chronous execution of the candidate future methods do not violate flow (Read after Write)

and output (Write after Write) dependences, since pure methods do not mutate global data.

In order to preserve anti (Write after Read) dependences in the input program, our al-

gorithm copies (clones) all mutable data read by candidate futures and the future tasks

performs all reads on the copied data. A weaker sufficient condition (which leads to less

copying) is to copy all memory locations, L such that L ∈ READ(F) ∩ MOD(C), where

F is the candidate future function and C is the continuation after the call to F. READ is

computed by standard side-effect analysis and MOD is computed by a backward data flow

analysis on the inter-procedural control flow graph, where READ and MOD represent the

read set and modification set respectively.

5.5 Parallelism Benefit Analysis

Section 5.4 presented the analysis for synthesizing a parallel program, in which all pure

method invocations are executed asynchronously. We refer to this program as a parallel

program with ideal parallelism, which has the smallest possible critical path length (CPL),

if we ignore all overheads of parallelism including those arising from task creation, task

termination, and task synchronization. In practice, these operations can incur significant

overhead and it is necessary to ensure that every task has sufficient granularity to justify the

task creation, task termination and synchronization overheads, and there is parallelism ben-

efit that arises from each task creation. We now present an algorithm to classify invocations

of a pure method, M at call site c into one of the following three classes:

98

• Sequential: A method call is classified as sequential, if all invocations of M at call

site c must be executed sequentially.

• Parallel: A method call is classified as parallel, if all invocations of M at call site c

can be executed asynchronously.

• Conditional Parallel: A method call is classified as conditional parallel, if a subset

of the invocations of M at c must be executed asynchronously and the rest must be

executed sequentially. In this case, the determination of whether a specific dynamic

call should be executed sequentially or in parallel will be made by evaluating an

automatically synthesized predicate expression at runtime.

The classification algorithm first constructs a data structure called the weighted com-

putation graph (WCG), which is introduced in Section 5.5.1. Next, Section 5.5.2 presents

an algorithm that uses the WCG to classify the calls into the three categories listed above.

The WCG construction algorithm takes as input the parallel program with ideal parallelism

synthesized by the algorithm in Section 5.4 and one or more test inputs for the program.

5.5.1 Weighted Computation Graph

.

A weighted computation graph (WCG) is a directed acyclic graph that is built at run-

time to capture 1) the happens-before relationships among the step instances of a parallel

program’s execution, 2) the work done by each of the steps, and 3) the overheads incurred

in task creation, termination and synchronization. Computations are represented in the

WCG using step nodes, which are defined as follows:

Definition 10. A step node represents a maximal sequence of statement instances such that

no statement instance in the sequence includes the start or end of an async or a future get

99

B1 S11 F11 F12 S12 J11 J12 F13 F14 J13 J14

B2 S21 F21 F22 S22 E2

B3 S31 F31 F32 S32 E3

B4 S41 E4

B5 S51 E5

B6 S61 E6

B7 S71 E7

B8 S81 J81 J82 S82 E8

B9 S91 J91 J92 S92 E9

T1

T2

T9

T8

T6

T3

T4

T5 T7

WB WE

WB

WB

WB

WB

WE

WE
WE

WE

WE

WEWB

WB

WB

WB

WF WF

WF WF

WF WF

WF WF

WS11 WS12
S13

WJ WJ WJ WJ

WJ WJ

WJ WJ

WS13

WS21 WS22

WS31 WS32

WS41

WS51 WS71

WS61

WS81

WS91

WS82

WS92

spawn

join

WE

WE

E1

Figure 5.8 : Weighted computation graph for binary tree program in Figure 5.7 for depth=2

operation.

Definition 11. The weighted computation graph (WCG) for a given execution is a directed

acyclic graph with four different types of nodes:

• A step node, S n represents a sequential computation. The weight of step node is the

total number of instructions executed to complete the step.

• A spawn node Fn represents the creation of child task. The weight of spawn node

Tspawn represents the overhead in the parent task for task creation. This includes the

overhead of copying the mutable data read by the child task.

• A join node Jn represents the join operation with another task. The weight of join

node T join represents the overhead of a join operation in the waiter task.

• A start node Bn is the first step in a task. The weight of start node Tstart represents

the overhead of creating and scheduling a task.

100

• An end node En is the last step in a task. The weight of end node Tend represents the

overhead of task termination.

Next we discuss how to build the WCG during program execution. We first instrument

the parallel program with ideal parallelism generated by the algorithm in Section 5.4. The

instrumented program is then executed on a test input in serial, depth-first order (like a

sequential Java program) to construct the WCG. The instrumented code performs the WCG

construction as follows: When the main task starts execution, the WCG will contain two

nodes: 1) B1 which corresponds to the start node of the main task and 2) step node S 1

which corresponds to the starting computation inside main. The edge B1 → S 1 represents

the ordering between B1 and S 1.

Future Task Creation When a task Ta creates a child task Tb, a spawn node Fi is created

and an edge is inserted from S j to Fi, where S j is the step immediately preceding the spawn

operation in Ta. A start node Bk corresponding to Tb is created and an edge is inserted from

Fi to Bk. Task Tb is now executed and the next node N (step, spawn, join or end node) is

added as a successor of Bk.

Future Task Termination When a task Tb completes execution, an end node Ei is created

and an edge is inserted from S j to Ei, where S j is the last step in Tb. The program execution

now continues in Ta which is the parent task of Tb. The next node to be added is the

successor of Fk which is the spawn node in Ta corresponding to the creation of Tb.

Future Join When task Ta performs a join operation on task Tb, a join node Ji is created

and an edge is inserted from S j to Ji, where S j is the step immediately preceding the join

operation in Ta. An edge is inserted from Ek to Ji, where Ek is the end node in Tb. Execution

of Ta continues at node N, which is the successor of Ji.

Example The WCG for the Binary Tree program in Figure 5.7 for input depth=2 is shown

101

in Figure 5.8. The weights of each of the nodes are shown above the node. Task T1 which

consists of the directed path from B1 to E1 is the main task. T2, T3, T4, T5, T6 and T7 are

future tasks created in line 6 and line 9 for the invocations of bottomupTree. T8 and T9

are future tasks created in line 20 and line 23 for the invocation of itemCheck. This WCG

demonstrates the generality of synchronization patterns possible with futures. For instance,

the edge from E7 to J92 (T7 to T9) due to the future get operation is not possible in more

structured fork-join models.

5.5.2 Classification of Pure Function Calls

We now analyze the WCG to identify tasks that give no benefit from asynchronous exe-

cution. Based on this analysis, we classify pure method invocations as parallel, sequential

or conditional parallel. For every task Ta, our analysis tries to answer two questions: 1)

Is the work done by task Ta of sufficiently coarse granularity to justify the task creation,

termination and synchronization overhead? and 2) Is there sufficient work that can be over-

lapped with the execution of Ta? We use the critical path length (CPL) as the cost metric for

evaluating the profitability of parallelization, where the critical path is defined as follows.

Definition 12. The critical path of a weighted computation graph is the longest weighted

path in the WCG, where the weight of a path is the sum of the weights of all the nodes

included in the path.

Algorithm 15 presents our approach for evaluating the parallelism benefit for each of

the tasks in the WCG. The algorithm takes as input the WCG, G and the set of all tasks, T.

The outputs of the algorithm are the set of parallel tasks, P and the set of serial tasks, S. The

algorithm uses a greedy strategy, evaluating the tasks in bottom-up, right-to-left order. The

algorithm merges a task with its parent, if executing that particular task asynchronously

102

Algorithm 15 Parallelism benefit analysis
Require: Computation graph G, Set of tasks T
Ensure: Set of sequential tasks S , Set of parallel tasks P

1: for all t ∈ T do
2: if work(t) < Tspawn then
3: S ← S ∪ {t}
4: G ←MergeParent(G, t)
5: Visited ← Visited ∪ {t}
6: end if
7: end for
8: for all t ∈ T − Visited do
9: P← P ∪ {t}

10: if children(t) = ∅ and rightsiblings(t) = ∅ then
11: Worklist ← Worklist ∪ {t}
12: end if
13: end for
14: CPL← LongestPath(G)
15: while Worklist , ∅ do
16: Remove t from Worklist
17: Visited ← Visited ∪ {t}
18: G′ ←MergeParent(G, t)
19: CPL′ ← LongestPath(G′)
20: if CPL′ < CPL then
21: G ← G′

22: P← P − {t}
23: S ← S ∪ {t}
24: CPL← CPL′

25: end if
26: for all t1 ∈ T − Visited do
27: if (Children(t1) ∪ Rightsiblings(t1))
28: ∩ Visited = ∅ then
29: Worklist ← Worklist ∪ {t1}

30: end if
31: end for
32: end while

103

B1 E1

S1

S3

F2
J2

J1

J3

S2

S4

S5

S6

S7

S8

S9

S1 S3 S2

S4

S5

S6

S7

S8

S9

Ta
MergeParent(Ta)

Figure 5.9 : Merge parent transformation on the computation graph, where the task Ta is
merged with its parent.

does not yield any benefit. The bottom-up approach ensures that the tasks of smaller gran-

ularity are first considered as merge candidates. Evaluating the right siblings of a task Ta

as merge candidates before Ta itself ensures that the algorithm obtains a more accurate es-

timate of the total work in the continuation before making a decision on the profitability

of executing Ta asynchronously. Lines 1-7 of Algorithm 15 classify a task as serial and

merges it with its parent, if the total work done by the task is less than Tspawn. Lines 8-13

initialize the worklist with the set of tasks which have no children and no right siblings.

The set of parallel tasks P is initialized to contain all non-serial tasks. Lines 15-32 remove

a task t from the worklist, classifies it as serial/parallel and updates the worklist with tasks

which are ready to be evaluated. Lines 18-25 merge t with its parent and checks if the CPL

after merging is smaller than the CPL before merging. If the merging results in a smaller

CPL, the task t is classified as serial and the WCG is updated.

Figure 5.9 shows an example of the MergeParent transformation on the WCG, where

the task Ta is merged with its parent. F2 is the spawn node corresponding to the task Ta

in the parent task. Task Ta consists of the step node S 3 in addition to the start node and

the end node. There are three separate join nodes corresponding to Ta, which are J1, J2

and J3. The dotted edges from S 2 to S 4, S 5 and S 6 represents paths in the WCG. The

MergeParent transformation removed the spawn, start, end and join nodes corresponding

to Ta and inserted S 3 along the path from S 1 to S 2 where S 1 and S 2 are the nodes preceding

104

and succeeding the spawn node F2 in the WCG. This transformation ensures that there are

paths from S 3 to S 7, S 8 and S 9 which are successor nodes of the join nodes in the input

WCG.

Our approach performs parallelism benefit analysis separately on each of the WCGs

corresponding to each of the test inputs. The output of parallelism benefit analysis is the

set of serial and parallel tasks. Next, we merge the output of parallelism benefit analysis

for all WCGs at a particular call site and identify parallel and conditional parallel call sites.

Classifying call sites as serial, parallel, and conditional parallel based on this output is

straightforward. If all instances of a method at a particular call site are serial/parallel, then

that call site is classified as serial/parallel. If only a subset of instances of a method at a

particular call site are serial, we mark it as conditional parallel.

5.6 Threshold Expression Synthesis

Parallelism benefit analysis classifies the pure method calls as sequential, parallel and con-

ditional parallel. Conditional parallel calls are method calls that should be executed asyn-

chronously only if the work done by the method is greater than sequential threshold, which

is the minimum amount of work (in terms of instruction count) that must be done by a task

to justify the task overhead. For a method invocation obj.f(a1, an), which is classified as

conditional parallel, our goal is to generate the code shown in Figure 5.10. The conditional

expression cond determines if the work done by f is greater than sequential threshold and

we refer to this as the threshold expression.

The work done by a pure method call obj.f(a1, an) typically depends on 1) the type of

obj, because a class hierarchy can contain multiple implementations for the same method

and the type of obj determines which implementation of f is invoked, 2) the values of the

arguments of f, and 3) the values of the fields of obj. For example, the total work done

105

1 mayfuture<T> x;

2 if (cond)

3 x = async<T> { return obj.f(a1, .., an);};

4 else

5 x = obj.f(a1, .., an);

Figure 5.10 : Conditional parallel execution of method call obj.f(a1, an)

by the recursive Fibonacci function int fib(int n) depends on n and the work done

by a sort function int[] sort(int[] A) depends on A.length. Here n and A.length

represent the problem sizes for the two functions respectively.

While instrumenting the input program for WCG construction, we also instrument it to

collect the following information for each invocation of a method f executed as a future

task:

• The type T of the receiver object X

• The problem size parameters p1, .., pk of f, which consists of

– The values of numeric type arguments of f

– The values of numeric type fields of arguments of f

– The values of numeric type fields of X, where X is the receiver object of f

– The size of collection/data structure (List, Array, String) type arguments of f

• The cumulative work, w done by f and all the methods that it calls. The work is

computed in terms of the number of instructions executed.

Since f is a pure method, the threshold expression for f is usually a function of the problem

size parameters and the type of the receiver object.

At each conditional parallel call site the profile information is divided based on the type

of the receiver object. Note that the profile information for each conditional parallel call

106

site from multiple test inputs is merged before threshold expression synthesis. For each

receiver type T, we construct a matrix, M with k + 1 columns, where columns 1 to k con-

tains the values of the problem size parameters p1 to pk, and column k + 1 contains work

w. For most pure methods, the problem size is one of p1, .., pk. In other cases the problem

size is an expression involving two or more of the parameters p1, .., pk. Our approach finds

the threshold expression by performing a search on the space of expressions formed from

p1, .., pk and a set of arithmetic operators. Our current implementation handles arithmetic

operators +, -, min and max. The search algorithm looks for an expression e, such that e has

a monotonic relationship with w – as the value of e increases, so does the value of w. We use

Spearman’s rank correlation [53] coefficient, ρ as the metric for monotonicity. Spearman’s

correlation coefficient assesses how well the relationship between two variables X and Y

can be described using a monotonic function. Note that ρ is a non-parametric measure and

is not based on a possible relationship of a parameterized form (such as a linear relation-

ship). The value of ρ lies between +1 and -1 inclusive, where 1 is total positive correlation,

0 is no correlation, and -1 is total negative correlation. Our algorithm starts by computing

ρ between each of the problem size parameters pi and the work w. If the algorithm finds

a pi which has high rank correlation to w (ρ(pi,w) > ρthreshold, where ρthreshold = 0.9), the

algorithm terminates returning pi as the problem size. If none of the parameters has high

correlation with w, the algorithm computes the correlation of expressions involving two pa-

rameters such as pi+p j and pi−p j. This is done by constructing a new matrix in which each

of the columns correspond to an expression. The search continues with larger expressions

until an expression with the desired correlation is found or when the algorithm has explored

all expressions of size n, where n is a tuning parameter for the search. This search algorithm

for an expression with syntactic constraints which meets a correctness specification (high

correlation) is similar in spirit to syntax guided synthesis [54]. If TES for a call site c is

107

unable to find a threshold expression, we classify c as parallel/serial based on the frequency

of parallel/serial invocations in the output of parallelism benefit analysis. Next we find the

minimum value, v of e for which the method must be executed asynchronously by a lookup

of M. This information on which rows in M corresponds to parallel execution is available

from parallelism benefit analysis. The result of threshold expression synthesis for a given

receiver type T is the expression ((obj instanceof T) ∧ (e ≤ v)) or ((obj instanceof

T) ∧ (e ≥ v)), depending on whether the correlation between the expression and the work

is positive or negative. The final threshold expression is a disjunction of threshold expres-

sions for each of the receiver types. The instanceof check can be eliminated if the declared

type of the receiver object is same as T.

As an example, consider the int[] mergesort(int a[], int start, int end)

function, which sorts the elements of array a[] starting at index start and ending at index

end. The problem size parameters for this function are 1) a.length, which is the length

of the array a, 2) start and 3) end. The TES algorithm computes the rank correlation

between each of these parameters and the work w done by the function. The algorithm con-

tinues the search, since none of these parameters have high correlation with the work. Next,

the algorithm computes the correlation between expressions involving two parameters such

as a.length + start, start + end, and end - start. Finally, the algorithm returns

end - start as the threshold expression, since it has high correlation to the work done

by the function.

Algorithm 16 presents the high level view of our approach for threshold expression syn-

thesis for a given call site obj.f(a1..an). Line 1 of the algorithm initializes the threshold

expression to false. The loop in lines 2-20 iterates through each of the possible types of

the receiver object and finds the threshold expression. Lines 3-16 handle the case where

the call site is conditional parallel for type T. ConstructMatrix constructs a matrix with

108

Algorithm 16 Threshold expression synthesis
Require: Profile data, P for call site obj.f(a1..an)

Ensure: Threshold expression for call site obj.f(a1..an)

1: TExpr ← False
2: for all T ∈ Types(obj) do
3: if obj.f(a1..an) is conditional parallel for type T then
4: for size = 1 to n do
5: M ← ConstructMatrix(P, size)
6: (ρmax, exprmax)←MaxSpearmanCorr(M)
7: if |ρmax| ≥ ρthreshold then
8: value← GetSeqThreshold(M, exprmax)
9: if ρmax > 0.0 then

10: TExpr ← TExpr ∨ ((obj instanceof T) ∧ (exprmax ≥ value))
11: else
12: TExpr ← TExpr ∨ ((obj instanceof T) ∧ (exprmax ≤ value))
13: end if
14: break
15: end if
16: end for
17: else if obj.f(a1..an) is parallel for type T then
18: TExpr ← TExpr ∨ (obj instanceof T)
19: end if
20: end for

m columns, where columns 1 to m − 1 contains the data corresponding to the expressions

and column m contains the work. MaxSpearmanCorr computes the Spearman’s rank cor-

relation between each of the columns 1..m − 1 and column m and returns the maximum

correlation, ρmax and the expression exprmax having the highest correlation. If the absolute

value of ρmax is greater than or equal to ρthreshold, we have found the threshold expression,

else we continue the search with expressions of larger size. Lines 7-13 extends the thresh-

old expression depending on whether the correlation between the expression and work is

positive or negative. The method GetSequentialThreshold returns the minimum/maxi-

mum value of exprmax for which the call site must be executed asynchronously, depending

109

on whether the work done by f increases or decreases as the value of exprmax increases.

5.7 Final Future Synthesis

The last step in our parallelization tool is the generation of parallel code, in which pure

method calls which are found to be beneficial by the analysis in Section 5.5 are executed

asynchronously (and the others are executed sequentially). The inputs to the parallel code

generation are the input sequential program, the set of parallel call sites, the set of condi-

tional parallel call sites and the threshold expressions for each of the conditional parallel

call sites computed by the algorithm in Section 5.6. (Note that this step uses the original

sequential program as input, and not the parallel program from Section 5.4.)

The final future synthesis step includes the following steps:

1. Generate conditional statements at conditional parallel call sites using threshold ex-

pressions. The true branch represents the case where the work done by the method is

greater than the sequential threshold and the false branch represents the case where

the work done by the method is less than the sequential threshold. We annotate the

method call in the true branch as an async expression.

2. Annotate all parallel call sites as async expressions

3. Clone all inputs to each pure method that may be modified in any of the continua-

tions that follow each of the parallel and conditional parallel calls, and replace all

references to those inputs in the pure method by references to the cloned data.

4. Synthesize futures in the async-annotated program resulting from the previous steps,

using the synthesis algorithm presented in Section 5.4.1.

110

Source Benchmark Description Input Size Input Size
(Train) (Ref)

JGF [36] Series Fourier coefficient analysis size A size B
SPECjvm2008 [55] MPEGaudio MPEG audio decoder 4 mp3 files 12 mp3 files
CLBG [49] Binary Tree Tree construction depth = 14 depth = 20

traversal
Jolden [56] TreeAdd Recursive depth-first depth = 15 depth = 24

traversal of a tree
BOTS Nqueens N Queens problem n = 9 n = 13
HJ Bench Fibonacci Compute nth Fibonacci n = 22 n = 38

number
MatrixEval Matrix expression evalu- 200x200 500x500

ation
Mergesort Mergesort n = 16000 n = 1000000
Quicksort Quicksort n = 10000 n = 1000000

Table 5.2 : List of benchmarks evaluated. Input Size(Train) is the input size used for
profiling the parallel program for parallelism benefit analysis and Input Size(Ref) is the
input size used for performance evaluation.

As discussed earlier, the result of final future synthesis for the program in Figure 5.1

can be seen in Figure 5.2.

5.8 Experimental Evaluation

5.8.1 Experimental Setup

In this section, we summarize the implementation and setup used in our experimental

evaluation. The different components of our system were implemented in Habanero Java

(HJ) [16] compiler and runtime as follows. The HJ compiler extends the Soot frame-

work [35] for bytecode transformations. Inter-procedural future analysis is implemented

as a new compiler analysis pass in Heros [57], a scalable, highly multi-threaded imple-

mentation of the IFDS framework, which can be invoked from Soot. Our inter-procedural

analyses used the call graph provided by the Soot framework, which is obtained through

111

class hierarchy analysis and is sound. The insertion of future operations is implemented

as a subsequent compiler transformation pass that updates Soot’s Jimple [35] intermediate

representation extended for HJ programs. Instrumentation of programs for WCG construc-

tion and computation of instruction counts of steps is also implemented as a bytecode-level

transformation pass on Jimple. The instrumentation pass inserts callbacks to the HJ run-

time at all future task creation, termination and synchronization points in the program and

also inserts counters to compute the dynamic number of instructions executed during the

program execution. For each method call that is executed as future task, we instrument

the bytecode to collect the values of the arguments of the method, the type and the fields

of the receiver object. This information is used for threshold expression synthesis. The

instrumented program, during execution writes the profile information to a file. Parallelism

benefit analysis is implemented as a compiler pass in the HJ compiler which reads the

profile information, analyzes it and finds the set of method calls that are parallel and con-

ditional parallel. We used the JGF ForkJoin microbenchmark to measure the overheads of

task creation and task termination for our runtime and a given hardware platform. This

information and the profile information is passed to threshold expression synthesis, which

determines the threshold expressions for each of the conditional parallel method calls. Fi-

nally, the parallel code is generated by invoking the inter-procedural future analysis and the

future transformation pass.

Our experiments were conducted on a 16-core Intel Ivybridge 2.6 GHz system with

48 GB memory, running Red Hat Enterprise Linux Server release 7.1, and Sun Hotspot

JDK 1.7. To reduce the impact of JIT compilation, garbage collection and other JVM

services, we report the steady state mean execution time of 30 runs repeated in the same

JVM instance for each data point. In all our measurements, we only used 8 of the 16 cores

to execute the application (by using HJ’s “-places 1:8” option), so as to further reduce the

112

1 Integer f1 = fib(n-1);

2 Integer f2 = fib(n-2);

3 return f1+f2;

Figure 5.11 : Sequential recursive Fibonacci invocation

impact of system perturbations.

We evaluated the parallelization tool on a suite of nine benchmarks listed in Table 5.2.

Our approach targets applications in which pure method calls perform significant amount

of work. Therefore, we chose benchmarks in which at least 50% of the sequential work is

performed in pure method calls. We did this by using ReImInfer to identify pure methods

and by inserting timers around calls to pure methods. The fourth column of Table 5.2 shows

the input size used for profiling the program (“Train”). The fifth column shows the input

size used for performance evaluation of the parallelized programs (“Ref”).

Benchmark #Candidate #Serial #Parallel #Conditional
Series 3 1 2 0
MPEGaudio 1 0 1 0
Binary Tree 12 9 1 2
TreeAdd 6 4 0 2
Fibonacci 3 2 0 1
MatrixEval 3 2 1 0
Mergesort 4 3 0 1
Nqueens 3 2 0 1
Quicksort 3 2 0 1

Table 5.3 : Number of call sites identified as serial, parallel, and conditional parallel by
parallelism benefit analysis

5.8.2 Experimental Results

We now present experimental results for our automatic parallelization approach. Table 5.3

shows the results of parallelism benefit analysis. The second column shows the number

113

Benchmark #Future #MayFuture #Gets #Instanceof #Typecasts
Series 2 3 2 4 4
MPEGaudio 3 0 1 0 1
Binary Tree 2 15 4 6 7
TreeAdd 0 10 4 8 8
Fibonacci 0 2 1 2 2
MatrixEval 8 0 3 0 3
Mergesort 0 4 1 2 2
Nqueens 0 4 2 4 4
Quicksort 0 2 1 2 2

Table 5.4 : Synthesis statistics. #Future gives the number of variables and fields whose
type got changed to future<T>, #MayFuture gives the number of variables and fields
whose type got changed to mayfuture<T>. #Gets , #Instanceof and #Typecasts are the
number of get(), instanceof and cast operations inserted by future synthesis.

of call sites that were identified as candidates for future task creation by the algorithm in

Section 5.4.3. The third, fourth, and fifth columns shows the number of call sites that were

identified as serial, parallel, and conditional parallel respectively by parallelism benefit

analysis.

A call site may be classified as serial if there is insufficient work done by the method or

if there is insufficient parallelism. For example, in the Fibonacci program in Figure 5.11,

the call to fib in line 2 will be classified as serial, since there is no benefit in executing it

as a separate future task, where as the call in line 1 will be classified as conditional parallel,

because 1) the work done by the function depends on the value of n and 2) if the call is

executed as a future task, it can execute in parallel with the call in line 2.

Table 5.3 shows that a subset of methods identified by the algorithm in Section 5.4.3

benefit from asynchronous execution, thereby reinforcing the importance of parallelism

benefit analysis in choosing method calls for parallelization.

Table 5.4 shows the statistics resulting from the final future synthesis step, which is

performed after parallelism benefit analysis and threshold expression synthesis. It shows

114

Benchmark Seq Par(No PBA) Par(No TES) Par Speedup
(Seq/Par)

Series 25,973.35 4,175.49 4,203.84 4,201.22 6.18
MPEGaudio 6,691.52 2,839.76 2,838.51 2,835.21 2.36
Binary Tree 527.50 167,674.52 529.11 271.33 1.94
TreeAdd 586.54 293,431.26 602.21 259.49 2.26
Fibonacci 473.92 OOM 474.33 64.07 7.40
Quicksort 282.71 OOM 296.39 70.58 4.00
MatrixEval 1,853.83 884.11 359.23 358.86 5.17
Mergesort 151.31 OOM 151.57 40.96 3.69
Nqueens 4,242.57 OOM 4,211.21 1,199.07 3.54
GeoMean - - - - 3.69

Table 5.5 : Comparison of execution times in milliseconds of the sequential and parallel
versions of the program. Seq is the sequential execution time, Par(No PBA) is parallel
execution time without parallelism benefit analysis, Par(No TES) is parallel execution time
without threshold expression synthesis and Par is the parallel execution time of the final
program generated by our approach. Parallel versions were run on 8 cores. OOM (Out Of
Memory) represents cases where execution did not complete because of insufficient heap
memory.

the number of variable types that were changed and the number of get(), instanceof and

cast operations that were inserted by future synthesis. Overall, these statistics indicate that

significant programmer effort is required to manually parallelize a sequential program using

futures, and that this effort may need to repeated for different platforms (due to differences

in overheads and available hardware parallelism).

Table 5.5 compares the execution times of the sequential and automatically parallelized

versions of each program in our benchmark suite. All programs were run with 16GB heap

space. Par(No PBA) shows the parallel execution time without parallelism benefit analysis.

All call sites that were identified as candidates for future task creation by the algorithm in

Section 5.4.3 were executed as parallel tasks with no threshold expressions. OOM (Out

Of Memory) represents cases where execution did not complete because of insufficient

heap memory. Par(No TES) shows the parallel execution times with parallelism benefit

115

Benchmark Threshold - 2 Threshold - 1 Threshold Threshold + 1 Threshold + 2
Binary Tree 309.18 292.13 271.33 295.85 306.62
TreeAdd 349.83 279.53 259.49 259.26 256.93
Fibonacci OOM 88.2 64.07 57.71 54.37
Quicksort 89.74 85.18 70.58 66.69 69.73
Mergesort 43.92 40.68 40.96 41.79 41.76
Nqueens 1,461.63 1,261.53 1,199.07 1,556.3 4,665.8

Table 5.6 : Comparison of execution times in milliseconds of the parallel versions of the
programs with different threshold values for conditional parallel call sites. Threshold is the
execution time with threshold expressions computed by TES. Threshold - 1 and Threshold
- 2 are execution times of parallel programs with higher parallelism compared to Thresh-
old. Threshold + 1 and Threshold + 2 are execution times of parallel programs with
lower parallelism compared to Threshold.

analysis but without threshold expression synthesis. In this case, we used the parallel/serial

frequency information at a call site to classify a method call as either serial or parallel.

There are no conditional parallel method calls in this case. Par is the parallel execution time

with parallelism benefit analysis and threshold expression synthesis. All the applications

showed significant performance improvements with our approach.

Table 5.6 compares the execution times of the parallel versions of each program with

conditional parallel sites when using different threshold values. Threshold shows the par-

allel execution time when using threshold values computed by our threshold expression

synthesis algorithm. For this sensitivity analysis, we used two threshold values which al-

low higher parallelism and two threshold values which allow lower parallelism compared

to the threshold value computed by threshold expression synthesis. Threshold - 1 shows

the parallel execution time when a threshold value that allows higher parallelism compared

to Threshold is used. Threshold - 2 shows the parallel execution time where the threshold

value allows higher parallelism compared to Threshold - 1. Similarly, Threshold + 1 and

Threshold + 2 shows the parallel execution times where the parallelism is lower compared

to Threshold. For example, the threshold value computed by TES for the Binary Tree

116

benchmark is 12. Therefore, we used threshold values of 10 (Threshold - 2), 11 (Thresh-

old - 1), 12 (Threshold), 13 (Threshold + 1) and 14 (Threshold + 2) for the sensitivity

analysis. For Quicksort and Mergesort benchmarks, the threshold values are varied by a

factor of two. The results indicate that the performance of the parallel program when using

threshold values computed by threshold expression synthesis is better or comparable to the

performance of the program when using a different threshold value.

In summary, these results indicate the importance of parallelism benefit analysis and

threshold expression synthesis in automatic generation of task parallelism.

5.9 Related Work

5.9.1 Futures

Futures were introduced by Halstead as an explicit concurrency primitive for functional

programming in Multilisp [18], an untyped language that did not need the synthesis ca-

pabilities introduced in our work. Flanagan and Felleisen [58] defined a whole program

analysis to reduce runtime checks for futures in dynamically typed languages. In contrast,

our work synthesizes future operations, synchronization and runtime checks, while also

providing parallelism benefit analysis and threshold expression synthesis capabilities.

Safe futures [59] implement futures as software transactions so that safety violations

(data races) can be avoided or corrected. Their approach requires a heavyweight runtime

which supports object versioning, operation logging and other metadata. Performance re-

sults can vary widely depending on the number of safety violations detected at runtime.

Navabi et al. [60] uses static analysis to insert barriers, which preserve sequential semantics

with the help of a lightweight runtime. Swaine et al. [61] provides a way to add parallelism

to legacy runtime systems using futures. These approaches require the programmer to par-

117

allelize the program and the framework handles conflicts due to shared data accesses. In

contrast, our approach is fully automatic, targets pure method calls and has to deal with

only anti-dependences on mutable data, which are preserved by copying the data.

Pratikakis et al. [50] present a framework for transparently executing programs with

asynchronous calls. They employ a static analysis based on qualifier inference to iden-

tify the proxy variables in the program. Their analysis is flow-insensitive and context-

insensitive, and does not differentiate maybe proxy variables from mustbe proxy variables.

Due to these differences, their approach changes the types of all variables which could po-

tentially be a proxy to java.lang.Object. Their framework also requires a type cast and

an instanceof check at every potential proxy access. Their framework requires the pro-

grammer to annotate the async expressions, which can cause data races. The programmer

also has to determine whether the annotated expressions have benefits from asynchronous

execution.

Harris and Singh [62] presented a profile based parallelization for Haskell programs.

Their approach selects thunks for parallel execution which are likely to be needed by the

program and will run long enough to compensate the overheads. In contrast to our work,

their approach does not require future synthesis and does not find threshold expressions

which can dynamically determine if the work is of sufficient granularity to justify task

creation overhead.

Directive-based Lazy Futures [63] require users to annotate declarations of all variables

that store the return value from a function that can be potentially executed as futures with

@future directives. Their approach does not allow the propagation of future objects across

method boundaries, which can limit parallelism in many cases. In contrast, our approach

automatically identifies the variables and fields which may hold references to future ob-

jects and inserts get(), without limiting the parallelism at method boundaries. Zhang et

118

al. [64] and Navabi et al. [65] presented approaches for precise exceptions in the presence

of futures, which is orthogonal to our work which addresses automatic parallelization.

5.9.2 Parallelism and Performance Profiling

Past work has used profile information and critical path analysis to analyze the parallelism

in a given application. Kulkarni et al. [66] used a critical path based analysis to bring

insight into the parallelism inherent in irregular algorithms that exhibit amorphous data

parallelism. Kremlin [67], given a serial version of a program, will make recommendations

to the user as to what regions (e.g. loops or functions) of the program to parallelize first

using a hierarchical critical path analysis. It also provides a ranked order of specific regions

to the programmer that are likely to have the largest performance impact when parallelized.

Cilkview [68] scalability analyzer is a software tool for profiling and estimating scalability

of parallel Cilk++ applications. It monitors the logical parallelism during an instrumented

execution of the application on a single core. As Cilkview executes, it analyzes logical

dependencies within the computation to determine its work and critical path length. It

uses these metrics to estimate parallelism and predict the scalability of the application.

Unlike Cilkview, which analyzes only the whole-program scalability of a Cilk computation,

Cilkprof [69] collects work and critical-path length for each call site in the computation to

assess how much each call site contributes to the overall work and span.

Threshold expression synthesis finds an expression involving method arguments and

receiver object fields which is monotonic with respect to the work done by the function.

Past work has tried to model the performance of programs as function of the size of the

input. Emilio Coppa et al. in [70] presented input-sensitive profiling, a method for auto-

matically measuring how the performance of individual routines scales as a function of the

size of the input. The key feature of their method is the ability to automatically measure

119

the size of the input given to a generic code fragment. The tool estimates the input size by

using the amount of distinct memory first accessed by a routine or its descendants as reads.

This work was extended in [71] which takes into account dynamic workloads produced by

memory stores performed by other threads and by the OS kernel. As noted in [70], their

approach fails to characterize pure functional computations such as Fibonacci where the

running time (or work) is determined by the values of one or more arguments. Algorith-

mic profiling [72] is an approach to automatically infer approximations of the expected

algorithmic cost functions of algorithm implementations. Our method of determining the

inputs to a function is similar to their approach. Their implementation automatically infers

the inputs to the program, but the fitting of cost functions is done by hand. In contrast, our

approach does not try to find an exact cost function, but uses a search algorithm to find an

expression which is monotonic with respect to the work done by the method.

Duran et al. [73] presented a runtime technique to adaptively coalesce OpenMP tasks by

employing a dynamic profiler. The profiler estimates the work performed by a task as the

average work performed by all previously profiled tasks at that particular level/depth of the

spawn tree. The work estimation does not depend on the computation performed by the task

or the arguments to the computation, whereas our approach computes a distinct threshold

expression for every call site and takes into account the arguments to the computation.

Thoman et al. [74] presented a combined compiler and runtime approach that enables

automatic granularity control. They generate multiple versions of a given task of increasing

granularity by task unrolling at compile time and the runtime system selects a task version

by estimating task demand. The number of generated versions depend on the granularity

of the initial tasks, but the paper does not discuss how the task granularity is estimated.

A runtime estimate of task demand could be combined with our approach to prevent task

creation if the demand is low.

120

5.10 Summary and Future Work

We presented a novel approach for automatically parallelizing pure method calls by us-

ing futures as the primary parallel construct. Given a sequential program, our algorithm

automatically generates a parallel program in which pure method calls that benefit from

asynchronous execution are executed as future tasks. Our approach addresses the ma-

jor drawbacks of manually parallelizing programs using futures. Section 5.4 contains our

algorithm for synthesizing future tasks and their associated type declarations with more

precision than in past work. Section 5.5 describes our approach to classifying each pure

method call as sequential, parallel, or conditional parallel, based on computing critical path

lengths in a weighted computation graph that takes task creation, termination, and syn-

chronization overheads into account. Section 5.6 contains our algorithm for synthesizing

threshold expressions that can be evaluated at runtime, to ensure that a future task is only

created when it is profitable to do so. We implemented all three steps in our approach, and

evaluated the complete tool chain on a range of applications written in Java. When using

8 processor cores, the evaluation shows that our approach can provide significant paral-

lel speedups of up to 7.4× (geometric mean of 3.69×) for sequential programs with zero

programmer effort, beyond providing test cases for parallelism benefit analysis.

There are many opportunities for future research to build on the results of this chapter.

Future synthesis is inter-procedural in scope, and requires whole-program static analysis

in general. A direction for future work is to make our approach modular by ensuring that

there is no asynchronous information flow through future objects across components. En-

hancements in alias analysis could further increase the precision of type information in

the synthesized program. Alternatively, our approach can be applied to dynamically typed

languages for which no type declarations need to be generated. There is also room to

further study the impact of exception semantics on automatic parallelization with futures,

121

and to explore the use of runtime checks for potential exceptions in candidate future tasks.

There is a promising opportunity for code motion to separate future task creation and the

corresponding future get() operations as far as possible, so as to further increase the par-

allelism in the program (akin to global instruction scheduling). Yet another direction for

future work is to extend our approach so that it can be applied to programs with explicit

task parallelism, thereby using future tasks to further increase parallelism; it would also be

interesting to perform parallelism benefit analysis and threshold expression synthesis for

explicitly-parallel programs so as to aid the programmer in granularity control of their par-

allelism. Finally, it would be desirable (albeit challenging) to perform parallelism benefit

analysis and threshold expression synthesis at runtime, so that they can be better tuned to

the underlying platform.

122

Chapter 6

Putting It Together

Debugging, repair, and synthesis of parallelism are both synergistic and orthogonal prob-

lems. These three capabilities can be used together or in a standalone manner to improve

the productivity of parallel software developers. We discuss below some different possible

workflows using our tool chain, which are demonstrated in Figures 6.1- 6.5.

Data Race
Detection

Program with async, finish, and future

Test input Data race report

Figure 6.1 : Debugging of parallel programs with async, finish, and future

6.1 Data Race Detection and Manual Repair (DEBUG)

The programmer can use the data race detection algorithm presented in Chapter 3 to iden-

tify data races in the input program. They can then analyze the race report and manually

repair the detected races by inserting additional synchronization as needed. This workflow

is shown in figure 6.1.

123

Data Race
Detection

Test-Driven
RepairTest input

Program with async,
finish, and future

Repaired
ProgramData

race
report

Figure 6.2 : Debugging and repair of parallel programs with async, finish, and future

6.2 Data Race Detection and Automatic Repair (DEBUG-REPAIR)

Instead of manually performing the repair, our repair algorithm presented in Chapter 4

can be used to fix the data races identified. The repair algorithm is independent of the

race detection algorithm; therefore the programmer can use any race detection algorithm

that produces precise race reports for parallel programs containing async, finish, and

future constructs. This workflow is shown in Figure 6.2.

Future
Synthesis

Program with
async, finish

Programmer identified
async expressions / tool
identified pure functions

Synthesized
program with
async, finish,
and future

Figure 6.3 : Synthesis of futures in parallel programs

124

Candidate
Future

Synthesis

Program with
async, finish

Programmer identified
async expressions / tool
identified pure functions

Synthesized
program with
async, finish,
and future

Parallelism
Benefit

Analysis

Threshold
Expression
Synthesis

Test Inputs

Final
Future

Synthesis

Figure 6.4 : Synthesis of futures with profitability analysis

6.3 Synthesis of Futures (SYNTHESIS)

The programmer can annotate expressions in the input program as async expressions, and

direct our algorithm to automatically synthesize future operations and necessary type con-

versions using the approach presented in Chapter 5. This is shown in Figure 6.3. A synthe-

sis workflow which includes profitability analysis is shown in Figure 6.4. Note that in this

work flow, if the candidate async expressions are identified by the programmer, it is their

responsibility to ensure that the candidate expressions do not contain any side effects which

may cause data races. However, even for programmer specified future tasks, our approach

will take care of cloning inputs to the future task to avoid violating any anti dependences

on those inputs.

125

Future
Synthesis

Program with
async, finish

Data Race
Detection

Test-Driven
Repair

Synthesized
program with
async, finish,
and future

Data
race
report

Test input

Repaired
Program

Programmer identified
async expressions / tool
identified pure functions

Figure 6.5 : A workflow which includes synthesis, debugging and repair of task-parallel
programs

6.4 Synthesis, Data Race Detection and Automatic Repair (SYN-DEBUG-

REPAIR)

A complete workflow (shown in Figure 6.5) that puts all these algorithms together would

involve first annotating expressions and statements which should be asynchronously exe-

cuted, synthesizing futures and type conversions using the future synthesis algorithm, and

finally identifying and repairing data races by inserting necessary finish constructs. Al-

though the repair algorithm presented in Chapter 4 targets programs with async and finish

constructs, it can also be used to repair programs with async, finish, and future constructs

by treating a future as an async.

126

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Current approaches for debugging, repair, and synthesis have known limitations in func-

tionality, performance or precision when applied to general task-parallel programs with

non-strict computation graphs. In this dissertation, we presented efficient and precise algo-

rithms for debugging, repair, and synthesis of task-parallel programs with async, finish and

future constructs, using a combination of static and dynamic techniques.

We presented the first known determinacy race detector for dynamic task parallelism

with futures. We presented a complexity analysis of our algorithm, and also discussed

its correctness. We implemented the algorithm, and evaluated it on benchmarks which

generate both strict and non-strict computations. The results indicate that the performance

of our approach is comparable to that of other efficient algorithms for spawn-sync and

async-finish programs and degrades gracefully in the presence of futures.

We presented a tool for test-driven repair of data races in structured parallel programs.

The tool identifies static points in the program where additional synchronization is required

to fix data races for a given set of input test cases. These static points obey the scoping con-

straints in the input program, and are selected with the goal of maximizing parallelism

while still ensuring data race freedom. We evaluated an implementation of our tool on a

wide variety of benchmarks which require different synchronization patterns. Our experi-

mental results indicate that the tool is effective — for all benchmarks, the tool was able to

127

insert finishes to avoid data races and maximize parallelism. Further, the evaluation of the

tool on student homeworks shows the potential for such tools in future offerings of parallel

programming courses, including online offerings of such courses.

We presented a novel approach for automatically parallelizing pure method calls by

using futures as the primary parallel construct. Given a sequential program, our algorithm

automatically generates a parallel program in which pure method calls that benefit from

asynchronous execution are executed as future tasks. Our approach addresses the major

drawbacks of manually parallelizing programs using futures, including cloning of inputs

to future tasks to break anti dependences.. When using 8 processor cores, the evaluation

shows that our approach can provide significant parallel speedups of up to 7.4× (geometric

mean of 3.69×) for sequential programs with zero programmer effort, beyond providing

test cases for parallelism benefit analysis.

7.2 Future Work

There are many opportunities for future research to build on the results of this thesis. One

direction for future work is to use a hybrid static+dynamic approach for computing the

task reachability information, thereby reducing the runtime overhead of race detection.

Another opportunity for future work is to support race detection in parallel programs with

additional point-to-point synchronization constructs including task dependences [30, 75],

doacross [76, 77], and phasers [78, 79].

One of the limitations of our repair algorithm is in analyzing long-running programs,

which may lead to the creation of S-DPSTs that do not fit in memory. While this can be

mitigated by using small test inputs to drive repair, one possible extension for the future is to

enable garbage collection of parts of the S-DPST that do not exhibit race conditions. Some

other directions for future work include generation of context sensitive finishes (where a

128

finish is conditionally executed only in contexts where a data race is observed), and test

coverage analysis to evaluate the suitability of a given set of test cases for program repair.

Another direction for future work is to make future synthesis modular by ensuring that

there is no asynchronous information flow through future objects across components. En-

hancements in alias analysis could further increase the precision of type information in

the synthesized program. Alternatively, our approach can be applied to dynamically typed

languages for which no type declarations need to be generated. There is also room to

further study the impact of exception semantics on automatic parallelization with futures,

and to explore the use of runtime checks for potential exceptions in candidate future tasks.

There is a promising opportunity for code motion to separate future task creation and the

corresponding future get() operations as far as possible, so as to further increase the par-

allelism in the program (akin to global instruction scheduling). Yet another direction for

future work is to extend our approach so that it can be applied to programs with explicit

task parallelism, thereby using future tasks to further increase parallelism; it would also be

interesting to perform parallelism benefit analysis and threshold expression synthesis for

explicitly-parallel programs so as to aid the programmer in granularity control of their par-

allelism. Finally, it would be desirable (albeit challenging) to perform parallelism benefit

analysis and threshold expression synthesis at runtime, so that they can be better tuned to

the underlying platform.

129

Bibliography

[1] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen, “A theory of data race detection,” in

PADTAD ’06, (New York, NY, USA), pp. 69–78, ACM, 2006.

[2] C. Flanagan and S. N. Freund, “FastTrack: efficient and precise dynamic race detec-

tion,” in PLDI ’09, (New York, NY, USA), pp. 121–133, ACM, 2009.

[3] J. Mellor-Crummey, “On-the-fly detection of data races for programs with nested

fork-join parallelism,” in Supercomputing ’91, (New York, NY, USA), pp. 24–33,

ACM, 1991.

[4] M. Feng and C. E. Leiserson, “Efficient detection of determinacy races in Cilk pro-

grams,” in SPAA ’97, (New York, NY, USA), pp. 1–11, ACM, 1997.

[5] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Efficient data race detection

for async-finish parallelism,” Formal Methods in System Design, vol. 41, pp. 321–347,

Dec. 2012.

[6] R. Surendran and V. Sarkar, “Dynamic determinacy race detection for task parallelism

with futures,” in RV’16, (Berlin, Heidelberg), Springer-Verlag, 2016.

[7] R. Surendran, R. Raman, S. Chaudhuri, J. Mellor-Crummey, and V. Sarkar, “Test-

driven repair of data races in structured parallel programs,” in PLDI ’14, (New York,

NY, USA), pp. 15–25, ACM, 2014.

130

[8] V. Raychev, M. T. Vechev, and E. Yahav, “Automatic synthesis of deterministic con-

currency,” in SAS, pp. 283–303, 2013.

[9] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated atomicity-violation fix-

ing,” in PLDI ’11, (New York, NY, USA), pp. 389–400, ACM, 2011.

[10] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu, “Automated concurrency-bug fixing,”

in OSDI’12, (Berkeley, CA, USA), pp. 221–236, USENIX Association, 2012.

[11] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and

its use in optimization,” ACM Trans. Program. Lang. Syst., vol. 9, pp. 319–349, July

1987.

[12] P. Feautrier and C. Lengauer, Polyhedron Model, pp. 1581–1592. Boston, MA:

Springer US, 2011.

[13] L. Lamport, “The parallel execution of do loops,” Commun. ACM, vol. 17, pp. 83–93,

Feb. 1974.

[14] R. Surendran and V. Sarkar, “Automatic parallelization of pure method calls via con-

ditional future synthesis,” in OOPSLA’16, (New York, NY, USA), ACM, 2016.

[15] K. Ebcioğlu, V. Saraswat, and V. Sarkar, “X10: an experimental language for high

productivity programming of scalable systems (extended abstract),” in P-PHEC ’05,

February 2005.

[16] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-java: the new adventures of

old x10,” in PPPJ ’11, (New York, NY, USA), pp. 51–61, ACM, 2011.

[17] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability and the Chapel

language,” Int. J. High Perform. Comput. Appl., vol. 21, pp. 291–312, Aug. 2007.

131

[18] R. H. Halstead, Jr., “Multilisp: A language for concurrent symbolic computation,”

ACM Trans. Program. Lang. Syst., vol. 7, no. 4, pp. 501–538, 1985.

[19] B. Liskov and L. Shrira, “Promises: Linguistic support for efficient asynchronous

procedure calls in distributed systems,” in PLDI ’88, (New York, NY, USA), pp. 260–

267, ACM, 1988.

[20] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations by work

stealing,” J. ACM, vol. 46, pp. 720–748, Sept. 1999.

[21] S. Agarwal, R. Barik, D. Bonachea, V. Sarkar, R. K. Shyamasundar, and K. Yelick,

“Deadlock-free scheduling of x10 computations with bounded resources,” in SPAA

’07, (New York, NY, USA), pp. 229–240, ACM, 2007.

[22] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Com-

mun. ACM, vol. 21, pp. 558–565, July 1978.

[23] R. M. Karp and R. E. Miller, “Parallel program schemata,” J. Comput. Syst. Sci.,

vol. 3, pp. 147–195, May 1969.

[24] J. B. Dennis, G. R. Gao, and V. Sarkar, “Determinacy and repeatability of parallel

program schemata,” in DFM ’12, (Washington, DC, USA), pp. 1–9, IEEE Computer

Society, 2012.

[25] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall,

“Dag-consistent distributed shared memory,” in IPPS ’96, (Washington, DC, USA),

pp. 132–141, IEEE Computer Society, 1996.

[26] M. A. Bender, J. T. Fineman, S. Gilbert, and C. E. Leiserson, “On-the-fly maintenance

of series-parallel relationships in fork-join multithreaded programs,” in SPAA ’04,

132

(New York, NY, USA), pp. 133–144, ACM, 2004.

[27] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Scalable and precise dy-

namic datarace detection for structured parallelism,” in PLDI ’12, (New York, NY,

USA), pp. 531–542, ACM, 2012.

[28] D. Dimitrov, M. Vechev, and V. Sarkar, “Race detection in two dimensions,” in SPAA

’15, (New York, NY, USA), pp. 101–110, ACM, 2015.

[29] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and

Y. Zhou, “Cilk: An efficient multithreaded runtime system,” in PPoPP ’95, (New

York, NY, USA), pp. 207–216, ACM, 1995.

[30] “OpenMP specifications.” http://www.openmp.org/specs.

[31] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algorithms.

McGraw-Hill Higher Education, 2nd ed., 2001.

[32] R. E. Tarjan, “Efficiency of a good but not linear set union algorithm,” J. ACM, vol. 22,

pp. 215–225, Apr. 1975.

[33] P. Dietz and D. Sleator, “Two algorithms for maintaining order in a list,” in STOC ’87,

(New York, NY, USA), pp. 365–372, ACM, 1987.

[34] V. K. Nandivada, J. Shirako, J. Zhao, and V. Sarkar, “A transformation framework for

optimizing task-parallel programs,” ACM Trans. Program. Lang. Syst., vol. 35, Apr.

2013.

[35] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot - a

java bytecode optimization framework,” in CASCON ’99, IBM Press, 1999.

133

[36] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey, “A benchmark

suite for high performance java,” Concurrency: Practice and Experience, vol. 12,

no. 6, pp. 375–388, 2000.

[37] P. Virouleau, P. Brunet, F. Broquedis, N. Furmento, S. Thibãult, O. Aumage, and

T. Gautier, “Evaluation of OpenMP Dependent Tasks with the KASTORS Benchmark

Suite,” in IWOMP 2014, pp. 16–29, 2014.

[38] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Efficient data race detection

for async-finish parallelism,” in RV’10, (Berlin, Heidelberg), pp. 368–383, Springer-

Verlag, 2010.

[39] A. Dinning and E. Schonberg, “An empirical comparison of monitoring algorithms for

access anomaly detection,” in PPOPP ’90, (New York, NY, USA), pp. 1–10, ACM,

1990.

[40] M. Vechev, E. Yahav, and G. Yorsh, “Abstraction-guided synthesis of synchroniza-

tion,” in POPL ’10, (New York, NY, USA), pp. 327–338, ACM, 2010.

[41] P. Černý, K. Chatterjee, T. A. Henzinger, A. Radhakrishna, and R. Singh, “Quanti-

tative synthesis for concurrent programs,” in CAV’11, (Berlin, Heidelberg), pp. 243–

259, Springer-Verlag, 2011.

[42] A. Solar-Lezama, C. G. Jones, and R. Bodik, “Sketching concurrent data structures,”

in PLDI, pp. 136–148, 2008.

[43] D. Kelk, K. Jalbert, and J. S. Bradbury, “Automatically repairing concurrency bugs

with ARC,” in Multicore Software Engineering, Performance, and Tools, pp. 73–84,

Springer, 2013.

134

[44] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A generic method

for automatic software repair,” IEEE Trans. Software Eng., vol. 38, no. 1, pp. 54–72,

2012.

[45] A. Griesmayer, R. Bloem, and B. Cook, “Repair of Boolean programs with an appli-

cation to C,” in CAV, pp. 358–371, Springer, 2006.

[46] F. Logozzo and T. Ball, “Modular and verified automatic program repair,” in OOPSLA

’12, (New York, NY, USA), pp. 133–146, ACM, 2012.

[47] A. Sălcianu and M. Rinard, “Purity and side effect analysis for Java programs,” in

VMCAI’05, (Berlin, Heidelberg), pp. 199–215, Springer-Verlag, 2005.

[48] W. Huang, A. Milanova, W. Dietl, and M. D. Ernst, “Reim & Reiminfer: Checking

and inference of reference immutability and method purity,” in OOPSLA ’12, (New

York, NY, USA), pp. 879–896, ACM, 2012.

[49] J. Miettinen, “Computer language benchmarks game.” http://benchmarksgame.

alioth.debian.org/u64q/program.php?test=binarytrees&lang=java&

id=6. Accessed: 2015-11-06.

[50] P. Pratikakis, J. Spacco, and M. Hicks, “Transparent proxies for Java futures,” in

OOPSLA ’04, (New York, NY, USA), pp. 206–223, ACM, 2004.

[51] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow analysis via

graph reachability,” in POPL ’95, (New York, NY, USA), pp. 49–61, ACM, 1995.

[52] A. Diwan, K. S. McKinley, and J. E. B. Moss, “Type-based alias analysis,” in PLDI

’98, (New York, NY, USA), pp. 106–117, ACM, 1998.

135

[53] C. Spearman, “The proof and measurement of association between two things,” Amer-

ican Journal of Psychology, vol. 15, pp. 88–103, 1904.

[54] R. Alur, R. Bodı́k, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,

R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa, “Syntax-guided synthesis,” in

FMCAD 2013, pp. 1–8, 2013.

[55] “Specjvm2008.” https://www.spec.org/jvm2008/.

[56] B. Cahoon and K. S. McKinley, “Data flow analysis for software prefetching linked

data structures in Java,” in PACT ’01, (Washington, DC, USA), pp. 280–291, IEEE

Computer Society, 2001.

[57] E. Bodden, “Inter-procedural data-flow analysis with IFDS/IDE and Soot,” in SOAP

’12, (New York, NY, USA), pp. 3–8, ACM, 2012.

[58] C. Flanagan and M. Felleisen, “The semantics of future and its use in program opti-

mization,” in POPL ’95, (New York, NY, USA), pp. 209–220, ACM, 1995.

[59] A. Welc, S. Jagannathan, and A. Hosking, “Safe futures for Java,” in OOPSLA ’05,

(New York, NY, USA), pp. 439–453, ACM, 2005.

[60] A. Navabi, X. Zhang, and S. Jagannathan, “Quasi-static scheduling for safe futures,”

in PPoPP ’08, (New York, NY, USA), pp. 23–32, ACM, 2008.

[61] J. Swaine, K. Tew, P. Dinda, R. B. Findler, and M. Flatt, “Back to the futures: Incre-

mental parallelization of existing sequential runtime systems,” in OOPSLA ’10, (New

York, NY, USA), pp. 583–597, ACM, 2010.

[62] T. Harris and S. Singh, “Feedback directed implicit parallelism,” in ICFP ’07, (New

York, NY, USA), pp. 251–264, ACM, 2007.

136

[63] L. Zhang, C. Krintz, and P. Nagpurkar, “Language and virtual machine support for

efficient fine-grained futures in Java,” in PACT ’07, (Washington, DC, USA), pp. 130–

139, IEEE Computer Society, 2007.

[64] L. Zhang, C. Krintz, and P. Nagpurkar, “Supporting exception handling for futures in

Java,” in PPPJ ’07, (New York, NY, USA), pp. 175–184, ACM, 2007.

[65] A. Navabi and S. Jagannathan, “Exceptionally safe futures,” in COORDINATION ’09,

(Berlin, Heidelberg), pp. 47–65, Springer-Verlag, 2009.

[66] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Casçaval, “How much par-

allelism is there in irregular applications?,” in PPoPP ’09, (New York, NY, USA),

pp. 3–14, ACM, 2009.

[67] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor, “Kremlin: Rethinking and reboot-

ing gprof for the multicore age,” in PLDI ’11, (New York, NY, USA), pp. 458–469,

ACM, 2011.

[68] Y. He, C. E. Leiserson, and W. M. Leiserson, “The cilkview scalability analyzer,” in

SPAA ’10, (New York, NY, USA), pp. 145–156, ACM, 2010.

[69] T. B. Schardl, B. C. Kuszmaul, I.-T. A. Lee, W. M. Leiserson, and C. E. Leiserson,

“The cilkprof scalability profiler,” in SPAA ’15, (New York, NY, USA), pp. 89–100,

ACM, 2015.

[70] E. Coppa, C. Demetrescu, and I. Finocchi, “Input-sensitive profiling,” in PLDI ’12,

(New York, NY, USA), pp. 89–98, ACM, 2012.

[71] E. Coppa, C. Demetrescu, I. Finocchi, and R. Marotta, “Estimating the empirical cost

function of routines with dynamic workloads,” in CGO ’14, (New York, NY, USA),

137

pp. 230–239, ACM, 2014.

[72] D. Zaparanuks and M. Hauswirth, “Algorithmic profiling,” in PLDI ’12, (New York,

NY, USA), pp. 67–76, ACM, 2012.

[73] A. Duran, J. Corbalán, and E. Ayguadé, “An adaptive cut-off for task parallelism,” in

SC ’08, (Piscataway, NJ, USA), pp. 36:1–36:11, IEEE Press, 2008.

[74] P. Thoman, H. Jordan, and T. Fahringer, “Adaptive granularity control in task parallel

programs using multiversioning,” in Euro-Par’13, (Berlin, Heidelberg), pp. 164–177,

Springer-Verlag, 2013.

[75] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing locality and

independence with logical regions,” in SC ’12, (Los Alamitos, CA, USA), pp. 66:1–

66:11, IEEE Computer Society Press, 2012.

[76] J. Shirako, P. Unnikrishnan, S. Chatterjee, K. Li, and V. Sarkar, “Expressing

DOACROSS Loop Dependencies in OpenMP,” in IWOMP’13, Sep 2013.

[77] P. Unnikrishnan, J. Shirako, K. Barton, S. Chatterjee, R. Silvera, and V. Sarkar, “A

practical approach to doacross parallelization,” in Euro-Par’12, (Berlin, Heidelberg),

pp. 219–231, Springer-Verlag, 2012.

[78] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer, “Phasers: a unified deadlock-

free construct for collective and point-to-point synchronization,” in ICS ’08, (New

York, NY, USA), pp. 277–288, ACM, 2008.

[79] J. Shirako, K. Sharma, and V. Sarkar, “Unifying barrier and point-to-point synchro-

nization in OpenMP with phasers,” in IWOMP’11, (Berlin, Heidelberg), pp. 122–137,

Springer-Verlag, 2011.

