
�

�

�

�

�

�

�

�

3

A Transformation Framework for Optimizing Task-Parallel Programs

V. KRISHNA NANDIVADA, IIT Madras
JUN SHIRAKO, JISHENG ZHAO, and VIVEK SARKAR, Rice University

Task parallelism has increasingly become a trend with programming models such as OpenMP 3.0, Cilk,
Java Concurrency, X10, Chapel and Habanero-Java (HJ) to address the requirements of multicore program-
mers. While task parallelism increases productivity by allowing the programmer to express multiple levels
of parallelism, it can also lead to performance degradation due to increased overheads. In this article, we in-
troduce a transformation framework for optimizing task-parallel programs with a focus on task creation and
task termination operations. These operations can appear explicitly in constructs such as async, finish in
X10 and HJ, task, taskwait in OpenMP 3.0, and spawn, sync in Cilk, or implicitly in composite code state-
ments such as foreach and ateach loops in X10, forall and foreach loops in HJ, and parallel loop in
OpenMP.

Our framework includes a definition of data dependence in task-parallel programs, a happens-before anal-
ysis algorithm, and a range of program transformations for optimizing task parallelism. Broadly, our trans-
formations cover three different but interrelated optimizations: (1) finish-elimination, (2) forall-coarsening,
and (3) loop-chunking. Finish-elimination removes redundant task termination operations, forall-coarsening
replaces expensive task creation and termination operations with more efficient synchronization operations,
and loop-chunking extracts useful parallelism from ideal parallelism. All three optimizations are specified
in an iterative transformation framework that applies a sequence of relevant transformations until a fixed
point is reached. Further, we discuss the impact of exception semantics on the specified transformations, and
extend them to handle task-parallel programs with precise exception semantics. Experimental results were
obtained for a collection of task-parallel benchmarks on three multicore platforms: a dual-socket 128-thread
(16-core) Niagara T2 system, a quad-socket 16-core Intel Xeon SMP, and a quad-socket 32-core Power7 SMP.
We have observed that the proposed optimizations interact with each other in a synergistic way, and result
in an overall geometric average performance improvement between 6.28× and 10.30×, measured across all
three platforms for the benchmarks studied.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Optimization;
Compilers; Parallelism

General Terms: Algorithms, Performance, Experimentation

This article is an extended and reorganized version of the following two previous articles from conference
proceedings [Shirako et al. 2009; Zhao et al. 2010].
The authors gratefully acknowledge support from the IBM Open Collaborative Faculty Awards in 2008 and
2009. This research is partially supported by the Center for Domain-Specific Computing (CDSC), funded
by the NSF Expeditions in Computing Award CCF-0926127. The work is also partially supported by the
New Faculty Seed Grant, funded by IIT Madras CSE/11-12/567/NFSC/NANV. The POWER7 system at Rice
University was supported by a 2010 IBM Shared University Research (SUR) Award as part of IBM’s Smarter
Planet Initiatives in Life Science/Healthcare and in collaboration with the Texas Medical Center partners,
with additional contributions from IBM, CISCO, Qlogic, and Adaptive Computing.
Authors’ addresses: V. K. Nandivada, Department of Computer Science and Engineering, IIT Madras, Sar-
dar Patel Road, Kanagam, Chennai, Tamil Nadu 600036 India; J. Shirako, J. Zhao, and V. Sarkar (corre-
sponding author), Department of Computer Science, Rice University, 6100 Main St., Houston, TX 77005;
email: vsarkar@rice.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0164-0925/2013/04-ART3 $15.00
DOI:http://dx.doi.org/10.1145/2450136.2450138

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:2 V. K. Nandivada et al.

ACM Reference Format:
Nandivada, V. K., Shirako, J., Zhao, J., and Sarkar, V. 2013. A transformation framework for optimizing
task-parallel programs. ACM Trans. Program. Lang. Syst. 35, 1, Article 3 (April 2013), 48 pages.
DOI:http://dx.doi.org/10.1145/2450136.2450138

1. INTRODUCTION

Two complementary compiler-based approaches for multicore enablement of software
are: (1) compilation and optimization of explicitly parallel programs and (2) automatic
extraction of parallelism from sequential programs. This article follows the first ap-
proach with a focus on task parallelism in programming models such as OpenMP 3.0
[OpenMP 2008], Cilk [Blumofe et al. 1995], Java Concurrency [Peierls et al. 2005],
X10 [Charles et al. 2005], Chapel [2005], and Habanero-Java (HJ) [Habanero 2009].
While task parallelism increases productivity by allowing the programmer to express
multiple levels of parallelism that may be a natural fit with the underlying algorithm,
it can also lead to performance degradation due to increased overheads. In this arti-
cle, we introduce a transformation framework for optimizing task-parallel programs,
with a focus on: (a) reasoning about dependency relations in task-parallel programs
and (b) optimizing task creation, termination, and synchronization operations. Exper-
imental results were obtained for a collection of task-parallel benchmark programs
written in HJ on three platforms: a dual-socket 128-thread (16-core) Niagara T2 sys-
tem, a quad-socket 16-core Intel Xeon SMP, and a quad-socket 32-core Power7 SMP.
These results show geometric average performance improvements of 6.56×, 6.28×,
and 9.77× on the three platforms, respectively, due to the optimizations introduced in
this article. For certain benchmarks for which the original versions were highly inef-
ficient, the maximum improvements on these three platforms ranged from 1103.90×
to 3935.88×.

In addition to the performance benefits, we believe that this transformation
framework can serve as an exemplar for optimizations for future explicitly parallel
programs. Optimization of parallel programs is a challenging research area because
the historical foundations of code optimization are deeply entrenched in the von
Neumann model of sequential computing and have to be reworked for parallelism.
As we will discuss, a number of new legality constraints and supporting transfor-
mations need to be incorporated in a unified transformation framework to optimize
task-parallel programs. Our framework includes a definition of data dependence in
task-parallel programs (called happens-before dependence), a static happens-before
dependence analysis algorithm, and a host of whole program transformations that
help to achieve performance benefits under three broad heads: (a) finish-elimination
to optimize task termination operations, such as finish in X10 and HJ, taskwait in
OpenMP 3.0, and sync in Cilk, (b) forall-coarsening to reduce the task creation and
termination overheads incurred by parallel loops present within sequential loops,
and (c) loop-chunking to derive useful parallel iterations from a given parallel loop
specifying the ideal parallelism. These transformations pose interesting challenges in
the presence of both data dependence and other synchronization operations. Another
interesting challenge comes in the presence of programs that throw exceptions.
The analysis and transformations presented in this article can handle all of these
challenges. We also introduce a seq clause that simplifies writing and optimization of
threshold conditions in task creation operations such as async spawning. To the best
of our knowledge, this is the first such framework to include this set of analyses and
transformations for optimizing task-parallel programs.

We now present the motivation behind each of the three categories of optimizations
discussed in this article and note some of the underlying challenges.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:3

Fig. 1. Original code for BOTS Health benchmark.

Fig. 2. Optimized version of Figure 1.

Finish-elimination. The finish-elimination optimization involves eliminating and/
or reshaping the finish regions to reduce synchronization overhead and improve
ideal parallelism. As an example, Figure 1 shows a code fragment from the BOTS
Health benchmark [Duran et al. 2009] rewritten in HJ1. Each call to method
sim village par(v) contains a finish construct spanning lines 1–9. The async seq
construct in lines 5 and 7 executes the function sim village par(v) sequentially if
condition (sim level - vil.level >= bots cutoff value) is true, otherwise it cre-
ates a child task to invoke sim village par(v) (see Section 2 for details on HJ syntax).
As a result, multiple child tasks created in multiple iterations can execute in parallel
with the parent task. The parent task waits at the end of line 9 for all these child
tasks to complete since the scope of the finish construct ends at line 9. The code frag-
ment in Figure 2 shows the effect of applying finish-elimination optimization on the

1While HJ is the language used to describe the problem and our solution, the approach described in this
article is applicable to any task-parallel language.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:4 V. K. Nandivada et al.

Fig. 3. (a) One-dimensional iterative averaging example; (b) naive forall-coarsening may be semantically
incorrect; (c) correct coarsening.

example code shown in Figure 1. As can be seen, the number of dynamic finish con-
structs executed in Figure 2 are fewer than in Figure 1 since no finish constructs are
executed in the else part of the code. The impact of this optimization depends on the
relative overhead of task termination with underlying runtime scheduling policy such
as work-sharing or work-stealing.

Forall-coarsening2. To illustrate the challenges in forall-coarsening, Figure 3(a)
shows the pedagogical one-dimensional iterative averaging program [Chamberlain
et al. 2004]. The forall loop has an implicit outer finish inside which n parallel tasks
are created to execute the loop body. These n tasks terminate and join at the end of

2In a previous conference submission [Zhao et al. 2010], we referred to the forall-coarsening phase as
forall-distillation.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:5

the forall loop. These task creations and terminations are repeated in each iteration
of the while loop, which can result in a large overhead. A naive attempt to move the
forall header outside the serial loop (as shown in Figure 3(b)) would lead to an in-
correct translation: in this example, the original computation outside the forall (sum
and exchange) in Figure 3(a) should be executed only once per iteration of the while
loop, and only after the termination of the forall loop. In the translated program
shown in Figure 3(b), the sum and exchange code is executed for each iteration of the
serial loop, which in turn is executed once for each parallel iteration of the forall
loop, leading to incorrect semantics. A similar problem would arise if the input pro-
gram could throw exceptions (see Section 5 for details). Further, the code shown in
Figure 3(b) has a data race on A and newA among the parallel iterations of the forall
loop and thus needs to be remedied by inserting additional synchronization operations
(shown in Figure 3(c)). The next statement in this correct translation serves as a bar-
rier with a single statement [Yelick et al. 2007] that is guaranteed to be executed by
only one task3. We present a two-phased approach for forall-coarsening: (a) simple
forall-coarsening to increase the granularity of synchronization-free parallelism,
(b) forall-coarsening with synchronization to increase the granularity of parallelism
that may involve the addition of new synchronization operations.

Loop-chunking. We start with the correctly transformed code after forall-
coarsening shown in Figure 3(c). The code correctly captures the programmer’s orig-
inal intent. However, if n is larger than the number of available hardware threads,
this code can incur significant overhead since the barrier synchronization performed
by the phaser involves all n iterations. As indicated earlier, loop-chunking [Kennedy
and Allen 2002] is a standard approach to improve the efficiency of a parallel loop.
Figure 4(a) shows the result of performing a chunking transformation mechanically
on the forall loop, with the goal of decomposing the forall loop into chunks of S it-
erations. (The 1:n:S notation in the new jj forall loop is akin to the low : high :
stride triple notation in Fortran 90 [Metcalfe and Reid 1990].) There has been consid-
erable past work to address the problem of selecting an optimal value of S. The gen-
eral problem of analytically determining the optimal chunk size of a parallel loop in the
presence of overhead and variance was studied by Kruskal and Weiss [1985]. Their ap-
proach was extended by Flynn and Hummel [1990] to a sequence of multiple batches,
each batch using a progressively smaller chunk size than the previous batch. The idea
of using progressively smaller chunk sizes was also advocated by Polychronopoulos and
Kuck [1987]. In models like OpenMP [2008], the programmer can guide the implemen-
tation by providing chunk policy and chunk size values that can be set dynamically for
different platforms. Note that the code transformation in Figure 4(a) is independent of
the value of the chunk size, S, and that S can in fact even be set at runtime. Thus, our
transformation framework is orthogonal to the problem of selecting the optimal value
of S, and we defer to the best-known solutions in practice to address that problem4.

However, though this chunking transformation is legal for parallel loops that do not
contain synchronization operations, it is not legal for the example in Figure 3(c) since it
contains a next (barrier) operation. In particular, the transformed version Figure 4(a)
will attempt to complete all iterations of the while loop for iteration j before starting
iteration j+1 from the same chunk, and this semantics is different from that of the
original code in Figure 3(c). A semantically correct transformed version is shown in

3The detailed semantics of next with single statement is described in Section 2.1.1.
4If the chunk size is variable, the 1:n:S triple will have to be replaced by a call to an appropriate runtime
iterator.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:6 V. K. Nandivada et al.

Fig. 4. (a) Naive (incorrect) chunking of the program shown in Figure 3(c); (b) correct chunking.

Figure 4(b). A similar need for careful optimization would arise if the original forall
loop contained signal and wait operations instead of barrier operations. In general,
our optimization pass chunks foreach loops, whether one is tightly contained inside
a finish barrier, such as in forall (note: a forall can be seen as syntactic sugar for
finish foreach), or is present standalone.

Combined effect of the different optimizations. The transformations presented in this
article can be used in conjunction with each other. To get an understanding of the
scope of these transformations together, Figure 5(a) shows an HJ program that first
computes elements of a table as an average over its neighbors from previous row. Then,
based on a global option, it either processes each element in each row in parallel to
compute the sum or aggregates the elements of each row in a serial code. After applying
finish-elimination, forall-coarsening, and loop-chunking, the transformed code can
be seen in Figure 5(b). Compared to the original code the transformed code has reduced
number of barriers, avoids creating useless activities, and extracts useful parallelism
from ideal parallelism, resulting in overall efficient code.

An interesting part of this transformation framework is that it is generic in nature
and can be used in conjunction with other analyses and optimizations for task-parallel

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:7

Fig. 5. (a) HJ program shows the scope of our work; (b) transformed HJ program to show the complexity of
the problem. Order of transformations: finish-elimination, forall-coarsening, loop-chunking.

programs. For instance, the approach introduced in this article could be used as a
prepass to optimizations such as synchronization optimization [Nicolau et al. 2009].

Contributions. We make the following contributions.

— an iterative algorithm to eliminate redundant finish operations that tries to in-
crease ideal parallelism in the program;

— simple forall-coarsening, a transformation scheme that reduces the task cre-
ation/termination overhead without introducing any additional synchronization
operations;

— forall-coarsening with synchronization, a more aggressive transformation scheme
that replaces task creation/termination operations by lighter-weight barrier
synchronizations;

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:8 V. K. Nandivada et al.

— an iterative algorithm to realize useful parallelism from given specifications of ideal
parallelism by chunking parallel loops;

— additional optimizations used to further improve performance as a post-optimization
phase. These include Redundant Next/next Single Elimination (RNSE), an algo-
rithm to eliminate and strengthen reduction of barrier operations, and loop
readjustment that marks loop-exchange operations during prior transformation
phases and reverses some of them to improve spatial data locality;

— preservation of exception semantics: the transformation framework presented in
this article respects the exception semantics of the HJ language (derived from the
X10 v1.5 exception model [Charles et al. 2005]);

— experimental results. Our framework has been implemented within the HJ compi-
lation system [Habanero 2009] and has been evaluated on three different platforms.
The proposed optimizations interact with each other in a synergistic way and
overall result in a geometric average performance improvement between 6.28× to
10.30×, measured across all three platforms.

Organization. The rest of this article is organized as follows. Section 2 introduces
the HJ parallel programming language that is used in this article as the target of the
optimizations. Section 3 presents the basic techniques used in the optimization frame-
work, including the basic program analysis and transformation schemes. Section 4
presents the main optimization framework, and Section 5 gives the details of how
to maintain the correct exception semantics during optimization. Section 6 discusses
how all the proposed optimizations are integrated in our transformation framework.
Section 7 describes how to implement this optimization framework with the HJ com-
pilation system. In Section 8, we present the experimental results collected on three
different hardware platforms. Section 9 discusses prior research related to the tech-
niques introduced in this article and finally, we conclude in Section 10.

2. BACKGROUND

2.1. Habanero Java (HJ) Language

Our input programs are written in HJ [Habanero 2009], which extends the earlier
Java-based version (v1.5) of the X10 programming language [Charles et al. 2005] with
phasers [Shirako et al. 2008] among other additions and modifications. The scope
of this work is limited to the async, finish, and isolated parallel constructs in HJ,
thereby making this work applicable to any task-parallel language with primitives for
task creation, termination, and mutual exclusion. These constructs are summarized
shortly. Following the basic principles of structured programming, these constructs
can be arbitrarily nested with each other5 and with other sequential control-flow con-
structs in Java.

async. Async is the HJ construct for creating or forking a new asynchronous task.
The statement async 〈stmt〉 causes the parent task to create a new child task to exe-
cute 〈stmt〉 asynchronously (i.e., before, after, or in parallel) with the remainder of the
parent task. 〈stmt〉 is permitted to read/write any data in the heap and to read any
final local variable in the parent task’s lexical environment.

In this article, we introduce an extension to async that simplifies programmer-
controlled serialization of task creation. The extension takes the form of a seq clause
with the following syntax and semantics.
async seq(cond) <stmt> ≡ cond ? <stmt>: async <stmt>

5The only exception is that finish and async are not permitted within an isolated statement.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:9

A blocking operation (such as critical section, or barrier operation) inside an async-
seq statement may lead to undesirable (and sometimes undefined) behavior. We em-
ploy a runtime mechanism to ensure that there are no blocking operations inside an
async-seq statement; otherwise, a runtime exception is thrown.

The main benefit of the seq clause is that it removes the burden on the programmer
to specify <stmt> twice with the accompanying software engineering hazard of ensur-
ing that the two copies remain in sync. In the future, we plan to explore approaches in
which the compiler and/or runtime system can select the serialization condition auto-
matically for any async statement.

isolated. An isolated statement expresses a global critical section among all tasks. It
supports weak atomicity, since no mutual exclusion guarantees are enforced between a
statement within an isolated block and a statement outside an isolated block. We take
inspiration from prior work [Larus and Rajwar 2006] and use the “isolated” keyword
instead of “atomic” to make explicit the fact that the construct supports weak isola-
tion rather than strong atomicity. Nesting of isolated statements is permitted but is
redundant. HJ prohibits async and finish statements within an isolated statement.
However, isolated blocks may contain loops, conditionals, and other forms of sequential
control flow.

finish. The HJ statement finish 〈stmt〉 causes the parent task to execute 〈stmt〉
and then to wait until all subtasks created within 〈stmt〉 have terminated, including
transitively spawned tasks. Operationally, each instruction executed in an HJ task has
a unique Immediately Enclosing Finish (IEF) statement instance [Shirako et al. 2008].

An async in statement S is considered to be escaping [Guo et al. 2009] (also referred
to as e-async) if it is not enclosed in a finish statement within S, that is, if its IEF is
not contained within S.

Besides termination detection, the finish statement plays an important role with
regard to exception semantics. As in X10, an HJ task may terminate normally or
abruptly. A statement terminates abruptly when it throws an exception that is not
handled within its scope; otherwise, it terminates normally. If any async task ter-
minates abruptly by throwing an exception, then its IEF statement also terminates
abruptly and throws a MultiException [Charles et al. 2005] formed from the collec-
tion of all exceptions thrown by all abruptly terminating tasks in the IEF. In contrast,
in the Java model, an exception is simply propagated from a thread to the top-level
console.

foreach. The statement foreach (point p : R) S supports parallel iteration over
all the points in region R by launching each iteration as a separate async. A point is an
element of an n-dimensional Cartesian space (n ≥ 1) with integer-valued coordinates.
A region is a set of points and can be used to specify an array allocation or an iteration
construct as in the case of foreach. For instance, the region [0:200,1:100] specifies a
collection of two-dimensional points (i,j) with i ranging from 0 to 200 and j ranging
from 1 to 100.

A foreach statement does not have an implicit finish (join) operation, but its ter-
mination can be ensured by enclosing it within a finish statement at an appropriate
outer level. Further, any exceptions thrown by the spawned iterations are propagated
to its IEF instance.

2.1.1. Phasers. In this section, we summarize the phaser construct [Shirako et al.
2008] as an extension to X10 clocks [Charles et al. 2005]. Phasers integrate col-
lective and point-to-point synchronization by giving each activity (task) the option
of registering with a phaser in signal-only/wait-only mode for producer/consumer

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:10 V. K. Nandivada et al.

synchronization or in signal-wait mode for barrier synchronization. In addition, a next
statement for phasers can optionally include a single statement (next {S}), which is
guaranteed to be executed exactly once during a phase transition [Yelick et al. 2007].

These properties, along with the generality of dynamic parallelism and the phase-
ordering and deadlock-freedom safety properties, distinguish phasers from synchro-
nization constructs in previous studies including barriers [Gupta 1989; OpenMP 2008],
counting semaphores [Sarkar 1988], and X10’s clocks [Charles et al. 2005]. Though
phasers as described in this article may seem X10-specific, they are a general unifi-
cation of point-to-point and collective synchronizations that can be added to any pro-
gramming model with dynamic parallelism such as OpenMP [2008], Intel’s Thread
Building Blocks, Microsoft’s Task Parallel Library, and Java Concurrency Utilities
[Peierls et al. 2005].

A phaser is a synchronization object that supports the following six operations by an
activity Ai.

(1) new. When Ai performs a new phaser(MODE) operation, it results in the creation of
a new phaser ph such that Ai is registered with ph according to MODE. The default
mode is signal-wait; it includes signal and wait capabilities, and is used when
MODE is omitted.

(2) phased async. When Ai performs “async phased (ph1〈mode1〉, ph2〈mode2〉, . . . ) Aj”
statement, it creates a child activity Aj registered with a list of phasers with spec-
ified modes. If 〈modek〉 is omitted, the same mode as Ai is assumed by default.

(3) drop. Ai drops its registration on all phasers when it terminates. In addition, when
Ai finishes executing a finish statement F, it completely deregisters from each
phaser ph for which F is the IEF for ph’s creation. This constraint is necessary for
the deadlock-freedom property for phasers [Shirako et al. 2008].

(4) next. The next operation has the effect of advancing each phaser on which Ai is
registered to its next phase, thereby synchronizing all activities registered on the
same phaser. The semantics of next is equivalent to a signal operation followed by
a wait operation. The exception semantics for the single statement was unspecified
[Shirako et al. 2008]. We define the exception semantics of the single statement
as follows: an exception thrown in the single statement that causes all the tasks
blocked on that next operation to terminate abruptly with a single instance of the
exception thrown to the IEF task.6

(5) signal. A signal operation by Ai is shorthand for a ph.signal() operation per-
formed on each phaser ph on which Ai is registered with signal capability. Note
that ph will advance to its next phase when all activities registered on ph with
signal capability perform ph.signal() operations.

(6) wait. A wait operation by Ai is a blocking operation to wait for all phasers on which
Ai is registered with wait capability to advance to the next phase. Note that a wait
operation is always performed as the latter part of a next operation and hence does
not cause any deadlock.

forall. HJ introduces forall 〈stmt〉 as syntactic sugar for “finish{ ph=new
phaser(SIG WAIT NEXT); foreach phased(ph) 〈stmt〉}”. The scope of the phaser ph is
limited to the implicit finish in the forall, and thus the parent task will drop its
registration on ph after all the iterations of forall are created.

6Since the scope of a phaser is limited to its IEF, all tasks registered on a phaser must have the same IEF.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:11

2.2. Classical Loop Transformations

This section briefly summarizes some classical loop restructuring techniques that
have historically been used to improve parallelism and data locality, and expose other
opportunities for compiler optimization [Kennedy and Allen 2002; Wolfe 1996].

— Strip mining is a loop transformation that replaces a single loop with two nested
loops with smaller segments. This restructuring is an important preliminary step
for vectorization, tiling, SIMDization, and other transformations for improving lo-
cality and parallelism.

— Loop interchange results in a permutation of the order of loops in a perfect loop
nest and can be used to improve data locality, coarse-grained parallelism, and vec-
torization opportunities.

— Loop distribution divides the body of a loop and generates several loops for dif-
ferent parts of the loop body. This transformation can be used to convert loop-
carried dependences to loop-independent dependences, thereby exposing more
parallelism.

— Loop unswitching is akin to interchanging a loop and a conditional construct. If the
condition value is loop invariant, it can be moved outside so that it is not evaluated
in every iteration.

— Loop fusion is the inverse of loop distribution. It merges two loops to generate a
loop with a single header. This transformation can also help improve data locality,
coarse-grained parallelism, and vectorization opportunities.

The legality constraints for these transformations are well understood for cases in
which the input program is sequential. In Sections 3.2 and 5, we show how these
transformations can be extended in the context of task-parallel programs in the
presence of synchronizations and exceptions.

2.3. Program Structure Tree

Agarwal et al. [2007] introduced a program representation called a Program Structure
Tree (PST) which statically represents the parallelism structure of a single procedure.
A PST for a procedure in a program is a rooted tree (N, E), where:

— the set N of nodes can have the following types: root, statement, loop, async,
finish, and isolated. The root type corresponds to the start of the procedure,
and the statement type corresponds to all other statements except loop, async,
finish, and isolated;

— the set E contains edges resulting from reducing the abstract syntax tree of the
procedure into the types listed before.

We present a Program Structure Graph (PSG) as an extension of PST to represent the
whole program by incorporating call graph information. A program structure graph
is given by a rooted graph (N, E), where a node in the set N may have the additional
types: function and call, besides the types of the nodes of PST. Similarly, we extend
the edge set by admitting optional labels call 〈context〉 and return 〈context〉; in-
tuitively, context contains the calling context. For the sake of this presentation, we
assume that each finish statement is represented as a pair of nodes in the PSG: begin-
finish and end-finish.

3. BASIS OF OUR TRANSFORMATION FRAMEWORK

In this section, we present three fundamental instruments of our transformation
framework: advances in program analysis techniques for task-parallel programs, ex-
tensions to traditional loop transformations in the context of task-parallel programs,

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:12 V. K. Nandivada et al.

and a set of new transformations in task-parallel programs presented as variations of
some of the traditional optimizations in the context of parallel constructs. We start the
section by discussing two aspects of program analysis for task-parallel programs: data
dependence and happens-before dependence analysis. We follow it up with two differ-
ent sets of program transformation primitives that are inspired from many traditional
program transformation techniques. To simplify the presentation, we first focus on
the restricted case where the input code is known to be exception free. Later in Sec-
tion 5, we discuss the more general case involving exceptions. We use HJ as the target
language for describing the programs and the transformations there on. However, the
specified transformations can be applied in other similar task-parallel languages (such
as X10, OpenMP, Cilk, and so on).

3.1. Data Dependence in Task-Parallel Programs

Legal program transformation requires the preservation of the order of ordered in-
terfering memory accesses in the input program. Data-dependence analysis has tra-
ditionally enforced this requirement and to maintain the legality of transformations
of sequential programs. Modern optimizing compilers use data-dependence analysis
for various program analysis and transformations, including loop transformations and
automatic parallelization [Kennedy and Allen 2002; Wolfe and Banerjee 1987]. How-
ever, dependence analysis is more challenging in the context of task-parallel languages
since parallel language constructs, such as async, impact which pairs of interfering
data accesses should be treated (or not) as data dependences.

Another aspect of parallel language semantics that impacts the legality of program
transformations is the memory consistency model. The data-dependence framework in-
troduced in this article can be viewed from two perspectives. From the perspective of a
strong memory model such as sequential consistency [Lamport 1979], this framework
only specifies transformations that are legal for data-race-free programs. In this case,
our framework would be applicable to memory models such as that proposed for C++
in which the behavior of programs with data races is undefined. From the perspective
of a weak memory model, such as location consistency [Gao and Sarkar 2000], this
framework specifies transformations that are legal for all programs whether or not
they exhibit data races.

3.1.1. Dynamic Happens-Before Dependence. In this section, we extend the classical def-
inition of data dependence in sequential programs to happens-before dependence in
parallel programs. We begin by adapting the definition of a happens-before relation
(HB) of Lamport [1978] to a dynamic execution of an HJ program. Specifically, the rela-
tion HB on instances IA and IB of statements A and B is the smallest relation satisfying
the following conditions.

(1) Sequential order. If IA and IB belong to the same task, and IB is sequentially control
or data dependent on IA, then HB(IA, IB) = true.

(2) Async creation. If IA is an instance of an async statement, and IB is the correspond-
ing instance of the first statement in the body of the async, then HB(IA, IB) = true.

(3) Finish termination. If IA is the last statement of an async task, and IB is the
end-finish statement instance of IA’s Immediately-Enclosing-Finish (IEF) instance,
then HB(IA, IB) = true.

(4) Isolated. All instances of interfering isolated blocks in a dynamic execution of an
HJ program can be assumed serialized in some total order. If IA is the last state-
ment in an isolated block instance, and IB is the first statement of the next isolated
block instance in the total order, then HB(IA, IB) = true.

(5) Transitivity. If HB(IA, IB) = true and HB(IB, IC) = true then HB(IA, IC) = true.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:13

Fig. 6. Loop distribution example.

Given the dynamic HB relation, we define a dynamic happens-before dependence
relation HBD on statements A and B as follows. We say that HBD(A, B) = true if there is a
possible execution of the program with instances IA and IB of statements A and B that
satisfies all of the following conditions.

(1) HB(IA, IB) = true,
(2) IA and IB access the same location X and at least one of the accesses is a write, and
(3) there is no statement instance IC in the same execution that writes X such that

HB(IA, IC) = true and HB(IC, IB) = true.

As with dependence analysis of sequential programs, we classify the dependence
as flow, anti, and output when the accesses performed by IA and IB are read-after-
write, write-after-read, and write-after-write, respectively. Further, the HBD relation
can be qualified by restricting the sets of instances participating in the dependence
akin to direction vectors and distance vectors in sequential programs. It should be
easy to see that the HBD relation degenerates to sequential data dependences when
the input program is sequential. Also, as with sequential data-dependence analysis,
any HBD analysis performed by a compiler is necessarily conservative to guarantee
soundness, that is, the analysis must err on the side of stating that HBD(A, B) = true
when it is unsure of the dependence relation. Thus, HBD is a “may dependence” analysis.

We conclude this section with a discussion of HBD analysis on the example code frag-
ment in Figure 6. We have a flow dependence from S1 to S2 on variable X with direc-
tion vector (≤) assuming that the subscript functions f (i) and g(i) are unanalyzable
by the compiler. While a sequential compiler would also report a loop-carried antide-
pendence from S2 to S1 with direction vector (<), no such dependence occurs in the
parallel case according to the definition of HBD since no execution of the code fragment
can result in instances IS1 and IS2 of statements S1 and S2 such that HB(IS2 , IS1) =
true. Thus there is no dependence cycle that includes S1 and S2. As a result, loop
distribution can be performed on S1 and S2 as shown in Figure 6 even though loop
distribution would be illegal in the sequential case.

3.1.2. Computation of Happens-Before Dependence. We now present a scheme to compute
the happens-before dependence information based on the static happens-before infor-
mation. It involves a two-phase process. We first present a conservative constraint-
based algorithm to compute may-happen-before information as a set MHB of pairs: if
(N1, N2) ∈ MHB, then N1 may happen before N2. We use N1, N2 · · · (with numeric sub-
scripts) to denote nodes in the PSG, corresponding to the static statements rather than
the dynamic instances. In the second phase, we propagate the may-happens-before in-
formation introduced by the isolated statements.

Phase 1. We generate a set of constraints to compute static happens-before informa-
tion in Figure 7. Note the following points pertinent to the constraints: (a) statically
each async statement has a set of one or more IEFs in the PSG; and (b) unlike a dy-
namic instance of a statement, a static instance can have more than one possible last
statement.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:14 V. K. Nandivada et al.

Fig. 7. Constraints to compute static happens-before information. First, solve the constraints generated
from Phase 1 to compute a first cut of MHB without taking into consideration the isolated statements ; then
execute the Phase 2.

We solve these constraints to generate the set MHB (which contains only partial
may-happen-before information, as this phase does not take into consideration the
isolated statements). In general, the happens-before information may also contain a
condition vector (akin to direction and distance vectors), giving the conditions under
which the relation may hold. In such a case, each element of the set MHB will be
a three tuple where the third element is the condition vector. A discussion on such
precise happens-before information is left for future work.

Phase 2. After we have obtained the partial may-happen-before information in
the first phase, we use a two-step process to update the set MHB, to include the
happens-before relation introduced by the isolated statements. Step 1: For each pair
of isolated statements, we introduce a commutative may-happen-before relation, if
they are not already ordered. Step 2: We introduce constraints to address the transi-
tive may-happen-before relation and solve them.

Now we summarize the algorithm to compute static happens-before dependence
(which we call the may-happen-before dependence), based on the MHB information.
For any two nodes N1 and N2, we say that N2 has a may-happen-before dependence on
N1, denoted by MHBD(N1, N2) = true, if: (i) (N1, N2) ∈ MHB, (ii) N1 and N2 access the
same variable or storage location and one of the access is a write, (iii) ¬∃N3 ∈ Nodes:
MHBD(N3, N1) = true and MHBD(N2, N3) = true. As an illustration, for the code snippet
shown in Figure 8(a), a subset of the elements from the MHB set, and the complete
MHBD set for each variable are shown in Figure 8(b) and Figure 8(c), respectively.

3.2. Extensions to Traditional Loop Transformations

In this section, we present some extensions to the traditional loop transformation tech-
niques in the presence of task-parallel programs. These transformations will be used
later to derive more complex program optimization techniques. Figure 9 presents some
of our extensions to the traditional loop transformations in the context of task-parallel
programs. The comments under each rule shown in Figure 9 act as the preconditions
that need to be satisfied for the rule to be applied. An e-async is an escaping async as
defined in Section 2. A statement is considered to be side-effect free if: (a) it does not
update any variable whose value is visible after the execution of the statement, and

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:15

Fig. 8. Example to illustrate may-happen-before dependence. (a) input program with labels; (b) some illus-
trative elements of the MHB set; and (c) may-happen-before dependences.

(b) it does not have an e-async. The dependence relations mentioned in the precondi-
tions refer to the may-happen-before dependence relations discussed in Section 3.1.2.

These preconditions are required for semantically correct translation. For instance,
for the serial loop distribution (rule 1) to be correct, there should be no dependence cy-
cle between S1 and S2. While the rest of the rules are different extensions to traditional
loop transformation techniques, the first rule (1) and the last rule (10) are the exact
traditional loop distribution and loop unswitching rules [Muchnick 1997] reproduced
in this article for completeness. It may be noted that even though we use the for loop
to describe many of the rules, it is also applicable to other loops (such as while and
do-while). We now discuss a few of the transformation rules.

Unlike serial loop distribution, parallel loop distribution (rule 2) does not require
any dependence testing and thus has no preconditions. It builds on a well-known
observation that a parallel loop can always be fully distributed [Kennedy and Allen
2002] since a loop-carried dependence is needed to create a distribution-preventing
cycle. Hence the forall loops can be fully distributed. The implicit finish operations
in forall ensure the correctness of the resulting transformation. As in classical se-
rial loop distribution, it may be necessary in some cases to perform scalar expansion
[Kennedy and Allen 2002] on any iteration-private scalar variables that may be ac-
cessed in both S1 and S2.

Rule 3 (loop/finish interchange) increases the scope of a finish construct, and it can
do so only if there are no dependencies between the escaping asyncs in S3 and the body
of the serial for loop.

The serial-parallel loop interchange (rule 4) has similarities to the traditional loop
parallelization rule [Kennedy and Allen 2002]. Rule 5 (parallel-serial loop interchange)
builds on a well-known observation from classical vectorization: “a loop that carries no
dependences cannot carry any dependences that prevent interchange with other loops
nested inside it” [Kennedy and Allen 2002]. Though this observation was developed for
sequential loops that are parallelizable, it is just as applicable to parallel forall loops.
Thus, the interchange in rule 5 can be performed without the need for checking any
data dependences. For simplicity, we assume that the inner sequential loop’s iteration
space, R2, is independent of the outer forall loop’s index variable. Extension of this
rule to support interchange of trapezoidal loops should be straightforward as in past
work on loop interchange in sequential programs [Kennedy and Allen 2002]. We also

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:16 V. K. Nandivada et al.

assume that the loop body S does not contain any break or continue statements; sup-
port for these statements is more complicated but can be built on the exception support
in Section 5.

Loop unpeeling (rule 6) expands the scope of a forall loop by adding the statement
S2 to the body of the loop; S2 is executed as a next-single statement. This rule assumes
that S2 does not have break or continue statements.

Loop fusion (rule 7) builds on the classical loop fusion transformation for sequential
code [Kennedy and Allen 2002]. It merges two forall statements by fusing their bodies
and inserting a next (barrier) statement. Both of these rules (unpeeling and fusion) use
the implicit phaser associated with forall.

Loop switching (rule 8) is based on the inverse of classical loop unswitching trans-
formation discussed in Section 4.2. It expands the scope of the forall loop by bringing
an if statement inside the body of the loop.

Rule 9 (parallel loop unswitching) builds on the classical unswitching transforma-
tion for sequential code [Kennedy and Allen 2002] (also shown in rule 10). The main as-
sumption here is that the condition e is independent of the forall loop’s index variable.

3.3. Variations of Traditional Transformations with Parallel Constructs

In this section, we discuss some new transformations, presented as a variation to
the traditional (non-loop) program transformation techniques in the presence of
task-parallel programs. These transformations, along with the ones presented in
Section 3.2, will be used later to derive complex program optimization techniques.

Figure 10 presents some of our extensions to the traditional program (non-loop)
transformations in the context of task-parallel programs. The comments under each
rule act as the preconditions that need to be satisfied for the rule to be applied. For
instance, in the finish distribution (rule 1), if S1 contains an e-async, then the trans-
lation may be incorrect. We now present some details for the rest of the rules.

Redundant finish elimination removes the redundant finish around a forall state-
ment that has no e-asyncs. The tail finish elimination (rule 5) applies to all the variants
of tail finish statements, such as the finish statement occurring as the last statement
of an e-async statement or as the last statement of a tail if-then block or else block.
The finish fusion (rule 6) expands the scope of the finish block, provided there is no
dependence between the e-asyncs of S1 and S2.

All these rules apply to both intraprocedural and interprocedural contexts. In an
interprocedural context, we may have to do some code replication to maintain the pro-
gram semantics. Figure 11 presents a sample rule in the interprocedural context.

3.4. Correctness Guarantees

In this section, we present an argument on the semantics-preserving nature of the
transformations presented in the article. We state it in terms of a theorem on the
semantics-preserving nature of any optimization phase that consists of applying one
more instance of transformation rules presented in Figure 9 and Figure 10.

We first present a specialization of the may-happen-before dependency introduced
in Section 3.1.

Definition 3.1. For a given variable (or storage location) v and any two nodes I1 and
I2, we say that MHBDV(I1, I2, v) = true if: (i) MHBD(I1, I2) = true, (ii) I1 and I2 both access
v and one of the access is a write, and (iii) ¬∃I3 ∈ Nodes: MHBDV(I1, I3, v) = true and
MHBDV(I3, I2, v) = true.

We now present a definition for semantics preservation for transformations that
ensure that each source AST node can be found at one or more places in the target

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:17

Fig. 9. Extending traditional loop transformations for task-parallel programs.

AST; extending the argument to the PSGs, for a given source PSG node I1, we will
assume that the set T(I1) gives the corresponding set of nodes in the target PSG.

Definition 3.2. A transformation of a parallel program is semantics-preserving if
the set of happens-before dependencies of all the variables at all program points in the
source program are conservatively preserved in the translated program; that is, in the

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:18 V. K. Nandivada et al.

Fig. 10. Variations of traditional transformations for programs with parallel constructs.

Fig. 11. Interprocedural finish unswitching.

source program given a node I1 in the PSG, a variable v, and a set S of nodes such that
∀Ik ∈ S : MHBDV(I1, Ik, v) = true, then in the target program, ∀I2 ∈ T(I1), ∀Ij ∈ T(Ik) :
MHBDV(I2, Ik, v) = true.

LEMMA 3.3. The preconditions for each rule shown in Figure 9 and Figure 10 en-
sure that the individual transformation resulting from each of the rules is semantics-
preserving.

PROOF. (Sketch)
We present a sketch for the proof of the transformations involving parallel constructs

only; the proof for the traditional serial transformations (see the ones prefixed “Serial”
in Figure 9) are skipped here. Before we proceed to the details, we bring to the notice
of the reader that because of the chosen memory model for any given activity A, as
seen by the other parallel activities, there is no assumed order among the instructions

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:19

of activity A. Thus, if a transformation does not introduce any new activities or modify
the MHP information, then the transformation is semantics-preserving, provided the
dependencies among the rest of the statements are preserved.

— (Rule 2 in Figure 9, parallel loop distribution). The transformation does not intro-
duce any new dependence or any change in the MHP information in the program.
The rule does introduce a new statement the second forall statement, but it does
not modify the happens-before dependence relations.

— (Rule 3 in Figure 9 loop/finish interchange). Though this transformation increases
the scope of activities created in S2, since the different asynchronous tasks created
in S2 have no dependence on different iterations of S2, the transformation does not
affect the happens-before dependence relations of any source variable.

— (Rule 4 in Figure 9, serial-parallel loop interchange). The explanation for this rule
is quite similar to the previous rule.

— (Rule 5 in Figure 9, parallel-serial loop interchange). Although the transformation
reduces the scope of the activities created in the forall loop, it does not modify
the happens-before dependence relation between any statements. While the order
among the forall and for loops is indeed interchanged, there is no happens-before
dependence relation between these statements.

— (Rule 6 in Figure 9, loop unpeeling). Because of the transformation, some of the
e-asyncs present in S1, which in the source code terminate before S2, may run in
parallel with S2. But the preconditions set ensure that there is no happens-before
dependence between S2 and these e-asyncs.

— (Rule 7 in Figure 9, loop fusion). The explanation for this rule is similar to the
previous rule.

— (Rule 8 in Figure 9, loop switching). The explanation is trivial, considering that the
evaluation of the predicate still happens before the forall statement.

— (Rule 9 in Figure 9, parallel loop unswitching). The precondition ensures that e is a
pure expression with no side-effects, and has no dependence on p. Thus, unswitch-
ing the loop makes no difference to the happens-before dependence relations.

— (Rule 1 in Figure 10, finish distribution). The transformation does not change se-
quential program order. Since this rule is applied only if S1 has no e-asyncs, there
is no change in the MHP information, and the happens-before dependence does not
change either.

— (Rule 2 in Figure 10, finish unswitching). The transformation does not change se-
quential program order. Since this rule is applied only if cond has no e-asyncs,
there is no new MHP relation and the happens-before dependence does not
change.

— (Rule 3 in Figure 10, if expansion). This is a trivially correct serial transformation
involving code duplication.

— (Rule 4 in Figure 10, redundant finish elimination). S has no happens-in-parallel
relation with any of the code after the finish closure, since it does not contain
e-asyncs. Eliminating the finish does not violate any happens-before relation.
Further, the elimination of the finish does not affect the order of execution of S.

— (Rule 5 in Figure 10, tail finish elimination). S1 either happens-before or happens-
in-parallel with S2, and eliminating the tail finish does not violate these relations.
Thus there is no change in the happens-before dependence relations.

— (Rule 6 in Figure 10, finish fusion). S1 and S2 have no dependence, thus finish
S1 and S2 can be exchanged without violating any dependence relations between
statements in S1 and S2. Since S2 accesses no shared variables, moving S2 before
finish S1 does not impact the happens-before dependence relations between the
statements of S2 and statements present in other parallel activities. Note that the

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:20 V. K. Nandivada et al.

Fig. 12. Block diagram of the finish-elimination phase.

translation ensures that S3 starts only after S1 has terminated, as was the case in
the input program.

THEOREM 3.4. Any optimization pass consisting of applying one or more instances
of the rules shown in Figure 9 and Figure 10 is semantics-preserving.

PROOF. Follows directly from the Lemma 3.3.

4. NEW OPTIMIZATIONS FOR TASK-PARALLEL PROGRAMS

In this section, we discuss the details of our transformation framework to optimize
task-parallel programs by presenting three new program optimizations. We use the
basic infrastructure developed in Section 3 to develop new program optimization tech-
niques for task-parallel programs written in HJ. It may be noted that these optimiza-
tions can be applied in other similar task-parallel languages as well (such as X10,
OpenMP, and Cilk). These new optimizations are, namely, finish-elimination, forall-
coarsening, and loop-chunking.

4.1. Finish-Elimination

In this section, we introduce a transformation technique to reduce the number of dy-
namic finish operations performed by an HJ program. The same framework should
apply (with some adaptations) to optimizing termination operations in other languages
such as OpenMP’s taskwait and Cilk’s sync.

The basic insight behind finish-elimination is that a finish statement is redun-
dant if its body has no escaping asyncs. Our transformation technique is based on an
iterative algorithm that incrementally optimizes the program.

4.1.1. Finish-Elimination Algorithm. We now present a new compiler optimization phase
called iterative finish-elimination that depends on the happens-before dependence
analysis discussed earlier (see Section 3.1).

Figure 12 shows the block diagram of our finish-elimination phase. Before the en-
try to this optimization pass, we first build the program structure graph (defined in
Section 2.3). We then invoke the iterative finish-elimination algorithm on the root node
of the graph; it performs a post-order traversal of the PSG and recursively invokes the
rules shown in the block diagram (explained in Section 3). We repeatedly apply redun-
dant finish elimination, tail finish elimination, finish fusion, loop/finish interchange,

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:21

Fig. 13. Profitability constraints for iterative finish-elimination.

finish distribution, serial loop distribution, finish unswitching, if expansion, and serial
loop unswitching. We continue the iterative process until either no further change is
possible, or there is no parallel code left in the body of the finish node. These subtrans-
formations are monotonic in nature and can be applied in any order. After each suc-
cessful invocation of a rule on a node n, the program structure is changed and the PSG
needs to be updated; it is sufficient to rebuild the subtree rooted at the parent node of n.

In addition to the correctness requirements of these transformation rules (shown
as comments on the rules in Figure 9 and Figure 10), the rules are applied only if
the profitability requirement is also satisfied. For each of the transformations, the
profitability requirements are shown in Figure 13.

We now present the effect of invoking the finish-elimination algorithm on the run-
ning example shown in Figure 1 (reproduced in Figure 14(a)). There are some omitted
shared heap accesses in the code in Figure 14(a) line 9. Thus, because of the possi-
ble concurrent data dependence, the finish node cannot be eliminated (Figure 14(a)
line 1). Now the compiler expands async seq to an if-then-else statement and ap-
plies if expansion (rule 3, Figure 10). Next, it applies loop unswitching, if expansion,
finish unswitching, and redundant finish-elimination to derive the optimized code. Be-
fore applying the redundant finish-elimination rule, the compiler checks that the body
of the inner finish has no e-async within (precondition (1)); it does so by analyzing the
body of finish, which involves analyzing the invoked function sim village par.

4.2. Forall-Coarsening

In this section, we present our transformation framework to reduce task creation and
termination overhead. We introduce a new compiler optimization phase called forall-
coarsening. In the HJ program snippet shown in Figure 15(a), the forall loop inside
a for loop (with m number of iterations) results in creation of m × n number of tasks,
with each of the n tasks waiting on a finish. The main goal of our translation is
to generate coarse-grained forall statements that encompass the surrounding for
loops and while loops. Depending on the actual program code, different translations
are possible; Figure 15(b) and Figure 15(c) show two translations that coarsen the
forall loop in Figure 15(a). We call the first translation simple forall-coarsening and
the second one forall-coarsening with synchronization. While both translations are

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:22 V. K. Nandivada et al.

Fig. 14. Applying the iterative finish-elimination algorithm. (a) input program; (b) after if expansion;
(c) after for unswitching; (d) after if expansion; (e) after finish unswitching; (f) after finish-elimination.
Transformations are shown in bold face.

more efficient than the original code, the translation in Figure 15(b) is arguably more
efficient than that in Figure 15(c). However, dependences in different parts of the code
may (or may not) permit either of the translations.

We adopt a two-phase strategy for forall-coarsening, as shown in the overall
block diagram in Figure 16: first we apply a set of transformations to attempt simple
forall-coarsening (which needs no additional synchronization). After that, we address
coarsening that may require synchronization. The different sets of transformations

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:23

Fig. 15. (a) Example program; (b) simple forall-coarsening: does not need any additional barriers (as-
suming that dependences permit); (c) forall-coarsening with synchronization: requires additional barriers
(next statements), but is always legal.

Fig. 16. Block diagram for forall-coarsening.

in each of these two phases satisfy a confluence; though they may be applied in any
order, the resulting transformed code is guaranteed to be the same. Finally, we apply
some cleanup optimizations to further optimize the generated code. We now present
the details of each of these phases.

The rules for simple forall-coarsening and forall-coarsening with synchronization
are derived from the transformation rules given in Figure 9 and Figure 10; a similar
approach can also be applied to a limited set of while loops, as in Figure 3. We first start
with the simple forall-coarsening: for any for loop, we repeatedly apply serial loop
distribution, serial loop unswitching, redundant finish-elimination, and serial-parallel
loop interchange until: (a) no forall statement occurs in the body of for loops, or (b)
no further change is possible.

In contrast to simple forall-coarsening, intuitively, forall-coarsening with synchro-
nization replaces fork-join synchronization by barrier synchronization, thereby further
increasing the scope of forall iterations. For any forall loop, we repeatedly apply
loop fusion, loop switching, redundant finish-elimination, and serial-parallel loop in-
terchange until: (a) no forall statement occurs in the body of for loops, or (b) no
further change is possible. The idea behind forall-coarsening with synchronization is
to replace task creation/termination operations by lighterweight barrier synchroniza-
tions. This enables the programmer to express parallelism at a fine-grained task level
and to leave it to the compiler and runtime to map the parallelism to a coarser level
that can be implemented more efficiently.

Loop interchange is the key transformation to realize forall-coarsening. However,
we do not stop the coarsening pass after a successful loop interchange. We keep iterat-
ing in search of further gains. The key loop-interchange rule discussed before requires

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:24 V. K. Nandivada et al.

Fig. 17. Sample interprocedural translation rule.

that the body of the for loop should consist of only a forall loop. The other transfor-
mations used in both simple forall-coarsening and forall-coarsening with synchro-
nization are used to fulfill that requirement.

4.2.1. Cleanup Optimizations and Discussion. The forall-coarsening techniques ex-
plained in the previous section may result in many next barriers inserted in the code.
As part of our cleanup optimizations, we use an algorithm called Redundant Next/next-
Single Elimination (RNSE). We use the following three heuristics:

— A next statement is considered redundant if the task drops the corresponding
phaser without accessing any shared state (updated by another task in the same
phase) after the barrier call.

— A next-single statement {next S;} can be replaced by {next;S;} if multiple parallel
instances of the statement S can be executed independent of each other.

— A next statement is considered redundant if it always precedes another barrier,
and the two sets of tasks registered on the phasers of these barriers are identical.

We invoke a post-pass of copy propagation, dead-code assignment elimination, and
loop fusion (rule 7, Figure 9) that helps us further fine-tune our output.

We make a simple interprocedural extension to all the transformation rules de-
scribed earlier. We present a sample interprocedural transformation for loop inter-
change in Figure 17. The remaining rules are similar in nature and effect.

While the two forall-coarsening phases explained in this section consist of multiple
transformations, only two of them (serial-parallel loop interchange and loop fusion)
actually contribute to any reduction in task creation and termination overhead.
The rest of the transformations aid in increasing the scope and impact of these two
transformations.

Traditional loop interchange transformation has a known history of impact on the
cache behavior. For example, loop interchange transformation on the example given
next can improve the cache performance of accessing b[j][i], but it can degrade the
reuse of a[i] and c[i].

for (i: [1:10000])
for (j : [1:10000])

a[i] = a[i] + b[j][i] * c[i];

As a result, the overall performance may be degraded after loop interchange. Now
say that the inner loop is a forall loop. Loop interchange interestingly can improve/-
worsen the cache behavior of a[i], c[i], and b[j,i] (depending on the cache protocol).
Studying the impact of cache on loop interchange would be an interesting problem in
itself, and we leave it for future work. Increasing task granularity without any control

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:25

Fig. 18. Applying the forall coarsening described in Figure 16. (a) the input program; (b) simple forall-
coarsening: serial loop distribution; (c) simple forall-coarsening: loop unswitching; (d) simple forall-
coarsening: serial loop distribution; (e) simple forall-coarsening: serial-parallel loop interchange; (f) forall-
coarsening with synchronization: loop unpeeling; (g) forall-coarsening with synchronization: serial-parallel
loop interchange; (h) cleanup optimization: loop fusion. The changes are shown in bold font.

can also have a negative effect on load balancing (as the total parallelism is reduced).
Identifying the optimal task size is a quite challenging problem in itself and is be-
yond the scope of this article. We assume that the compiler that invokes our forall-
coarsening phase knows the maximum allowed task size and accordingly can control
the coarsening phase to generate tasks with optimal size.

Another key point to note is that though transformations such as loop fusion and
loop unpeeling can decrease task creation and termination overheads, they may in-
crease memory overheads due to the possible increase in the number of tasks live at
a certain point in time. However, the loop-chunking phase that follows the forall-
coarsening phase ameliorates this issue to a large extent.

We now present the effect of invoking our framework on an input program shown
in Figure 18(a). Figure 18(b)–(h) show the results of applying our transformations on
the input program. As described in Figure 16, simple forall-coarsening is applied
first. There is no cyclic dependency between S1 and the rest of the loop body, thus
enabling loop distribution (shown in Figure 18(b)). Next, the serial loop unswitching
rule is applied, and the conditional construct is moved out of the for loop (shown in

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:26 V. K. Nandivada et al.

Fig. 19. Semantically equivalent translation of the code shown in Figure 3.

Fig. 20. Block diagram for the loop-chunking pass.

Figure 18(c)). Next, the serial loop distribution rule is applied (shown in Figure 18(d)).
Note that, due to the cyclic dependency between S2 and S3, the loop cannot be further
distributed. After the application of the serial-parallel loop interchange rule (shown in
Figure 18(e)), there is no more scope for simple forall-coarsening and we proceed to
apply forall-coarsening with synchronization.

First, the loop unpeeling rule is applied (shown in Figure 18(f)). After that, the serial-
parallel loop interchange rule is applied again (shown in Figure 18(g)); at this point, no
other forall loop occurs in the body of any for loop. To increase the granularity, the
two forall loops can be merged by loop fusion (shown in Figure 18(h)); this is done in
the context of cleanup optimizations. Comparing the original code (in Figure 18(a)) and
the final code (in Figure 18(h)) clearly shows that forall-coarsening is not a straight-
forward transformation. Likewise, Figure 19 shows the correct transformation for the
code snippet in Figure 3(a).

4.3. Loop-Chunking

In this section we present our chunking phase to enable chunking of foreach loops
containing synchronization operations. The synchronization operation that we will fo-
cus on in this description is the next statement for clocks and phasers; as mentioned
in Section 2, the phaser next statement can be used to support both barrier and point-
to-point synchronizations.

Figure 20 shows a block diagram for our chunking phase. The general strategy to
chunk parallel loops containing synchronization operations is as follows. The foreach
loop is first strip mined into two nested parallel loops. If the loop body contains no
next statements, then the inner loop can be serialized, and a chunked version can
be obtained after performing some cleanup transformations (the “NO” case in the
flowchart). If the loop body contains next statements, then a combination of three
transformations—parallel loop distribution, parallel-serial loop interchange, and par-
allel loop unswitching (presented in Figure 9)—is applied repeatedly until: (a) no next

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:27

Fig. 21. Example foreach loop containing next statements.

statements occur inside any instance of an inner foreach loop, or (b) no further change
is possible. In case (a), we can proceed to the serialization and cleanup transformations
as before to obtain a chunked parallel loop. In case (b), the compiler is unable to chunk
the parallel loop and the foreach statement is left unchanged. The motivation for
selecting the preceding three transformations to iterate on is to attempt to isolate the
next statements by moving the inner parallel loop as far inward as possible. The three
transformations used in this framework are monotonic—though they may be applied
in any order, the resulting transformed code is guaranteed to be deterministic. Of
these three transformations, the parallel loop distribution is the basic transformation
needed for chunking by isolating next operations. Interchange and unswitching
increase the opportunities for isolation. Next contraction (described shortly) and
choice of chunking policy are used to improve the efficiency of the chunked version.

Next Contraction:
i-forall (point p : R1)

next

// Region R1 is non-empty.
�⇒

⎧⎨
⎩ next

Next contraction is a new transformation that is specific to X10 clocks and HJ
phasers. If we have an i-forall loop that contains only a next statement, then we
can replace it by a single next statement provided that its region is nonempty. This is
because the only visible effect of an “i-forall next” statement is synchronization with
other activities, which can be achieved just as well by a single next statement.

In this work, we assume that all programmer-specified conditions guarding a next
statement are invariant in the initial foreach loop, that is, the conditions are single-
valued [Yelick et al. 2007]. However, as we will see in Section 5.3, our transformation
framework can handle cases in which a next statement is guarded by implicit excep-
tion conditions.

Figure 21 contains an example foreach loop with next statements. In this exam-
ple, all iterations of the foreach loop are registered in signal-wait mode on phaser
ph, which means that the next statements serve as barrier operations. However, the
transformation framework is also applicable to other phaser registration modes for
which a next statement may result in point-to-point synchronizations instead of a bar-
rier operation. It is obvious that a standard chunking of the foreach loop in Figure 21
will not be legal. The following sections describe the transformations performed by a
framework that can lead to a legal chunking.

4.3.1. Strip Mining. The classical strip mining transformation results in chunks of
contiguous iterations. However, for generality, we will define strip mining of a region

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:28 V. K. Nandivada et al.

Fig. 22. Iteration sets for block and cyclic chunking policies for region R = [ 0 : N − 1] and P chunks.

Fig. 23. foreach strip mining transformation rule.

(iteration space) R to be an ordered pair (Ig, Ie), where Ig(R) is an iterator over
multiple chunks and for each chunk g, Ie(R, g) returns an iterator over the different
indices in the chunk. In addition to the ability to specify chunks of noncontiguous
iterations, this formulation allows us to specify chunking of multidimensional loops
since regions can be multidimensional in HJ. Figure 22 shows the iteration spaces for
block and cyclic chunking policies for region R = [ 0 : N − 1] with P chunks.

Our rule for strip mining foreach loops is shown in Figure 23. The i-forall is a
special “inner forall” construct that is defined only for our transformation frame-
work. It is not available to the programmer, and it will not be present in the final
output code. This new construct carries forward the dependence information and the
exception semantics until we do the actual transformation. If chunking is successful,
then all instances of i-forall are replaced by sequential for loops; otherwise the orig-
inal foreach loop remains unchanged. This all-or-nothing approach is proposed for
simplicity; extensions to support partial chunking is a topic for future work. Also, the
real benefit of chunking in practice will only be realized when it is performed across
all statements in the original foreach, since even a single unchunked statement will
result in the creation of a large number of fine-grained activities.

The i-forall loop is very similar to the standard forall loop, except that it has no
phased clause, thereby registering on all the parent’s phasers with the same modes
as the parent activity, that is, the outer foreach. Also, though transmission of clocks
and phasers is not permitted through explicit finish operations in HJ, it is permitted
through the implicit finish in an i-forall because we know that all i-foralls will
eventually be replaced by sequential loops if a chunking transformation is performed.
Considering the similarities between the i-forall and forall loop, all the transfor-
mations, listed in Figure 9 are applicable for i-forall as well.

The strip mining transformation (shown in Figure 23) is always legal, since the in-
ner i-forall loop is still parallel. The fact that the inner i-forall has an implicit
finish does not limit the parallelism in the original loop. Figure 24 shows the result
of the strip mining transformation when applied to the code example in Figure 21 (the
changes are shown in bold).

Our serialization mechanism (described in Section 4.3.2) requires that no next op-
erations appear in any i-forall construct. In this section, we describe an iterative
approach to either move all next operations out of the i-forall loops targeted for se-
rialization or declare the original foreach loop to be non-chunkable. This approach
is based on repeated applications of the transformations shown in Figure 20 and de-
scribed in Figure 9 and Figure 10.

Figure 25(a)–(d) shows the results of applying our transformations on the strip
mined code in Figure 24. First, Figure 25(a) shows the result of interchanging the
i-forall loop with the sequential for-j loop. Next, Figure 25(b) shows the result of
distributing the i-forall into three new i-forall loops. Then, Figure 25(c) shows the

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:29

Fig. 24. Strip mining of foreach loop: (a) original code; (b) transformed code.

Fig. 25. Applying our iterative transformation framework on the strip mined code in Figure 24. The changes
in each step are shown in bold.

result of applying the rules next contraction and loop unswitching to move the third
i-forall further inwards. Finally, Figure 25(d) shows the result of applying loop inter-
change, loop distribution, and next contraction transformations; it achieves our desired
goal of isolating all next statements.

4.3.2. Serialization. The job of serialization is to confirm that no i-forall statement
contains a next and (if so) to serialize all the i-forall constructs. If such an i-forall
loop contains only a for loop nest and they are perfectly nested, we have the flexibility
to apply additional parallel-serial loop interchanges. As a preprocessing of serial-
ization, we readjust the position of th ei-forall loop so as to improve spatial data

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:30 V. K. Nandivada et al.

Fig. 26. The chunked code for the running example shown in Figure 21.

locality. This loop readjustment pass brings performance improvements especially
when the loop index of he i-forall loop is used in the innermost dimension of arrays,
for example, i-forall(i:[...]) { for(j:[...]) { A[j][i] ...}}. Figure 26 shows
the generated code after the serialization pass is performed on the transformed code in
Figure 25(d). The last next operation in Figure 26 is necessary because it is performed
dynamically in each iteration of its immediately enclosing for–k loop. For example, if
S2 is chosen to be “A[k][i+C] = A[k+1][i] + 1;” and offset C is chosen to be larger
than the chunk size, there can be a data race among the foreach iterations if the
next statement is removed. A quick comparison with the original code in Figure 21
confirms that loop-chunking of parallel loops is not a straightforward transformation.

5. EXTENSIONS FOR EXCEPTIONS

In this section, we discuss the impact of exception semantics on the three optimization
techniques discussed in Section 3 by extending the rules presented in Figure 9 and
Figure 10. The rules in this section are presented in the context of the HJ and X10 v1.5
exception model (which in turn builds on the Java exception model), but the overall
approach should be relevant to other languages with exception semantics (such as
C++).

As discussed in Section 2, an uncaught exception thrown inside an async state-
ment terminates the async but not its parent activity. It is caught by the surround-
ing (explicit or implicit) finish. This finish bundles all the caught exceptions into a
MultiException data structure and throws this collection instead of a single excep-
tion – which unless handled will in turn terminate the activity invoking the finish.
Exceptions thrown in the iterations of a foreach loop are handled similarly (they do
not impact the execution of other iterations), as each iteration of the foreach state-
ment can be viewed as an independent async statement. Thus, an uncaught exception
thrown inside the iterations of a forall are only caught by the surrounding implicit
finish, after all the activities forked in the forall have terminated.

Thus, for the rules described in Figure 9 and Figure 10 that involve modifying
the scope of any possible exception throwing statement, the semantics have to be
maintained explicitly. Considering the complexity of these rules, we present separate
discussions to explain the impact of exceptions on each of the three optimizations
presented in this article.

5.1. Finish-Elimination in the Presence of Exceptions

In this section, we discuss the impact of exception semantics on the finish-elimination
techniques discussed in Section 4.1.1 by extending the used transformation rules. We

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:31

Fig. 27. Transformation rules for finish-elimination in the presence of exceptions.

follow the same overall approach as shown in Figure 12 even in the presence of ex-
ceptions. Figure 27 presents the rules that need to be modified to handle exceptions,
which are briefly discussed shortly. Similar to rules presented in earlier sections, each
rule has preconditions presented as comments under each rule. The preconditions on
each rule fall into two categories: (i) required for semantically correct translations (in-
dexed by numerals), and (ii) profitability constraints that are employed for efficient
compilation (indexed by letters). As can be seen, the rules have now become more com-
plicated than the ones in Figure 9 and Figure 10, thereby underscoring the importance
of compiler transformation.

When the scope of a finish statement is reduced by taking a statement outside the
scope of the finish node, any exception that is thrown in the body of that statement
has to be handled in accordance with the exception semantics. As shown in the rule
for finish distribution, we catch any exception caught in the statement S1, bundle

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:32 V. K. Nandivada et al.

it in a MultiException, and throw it again. Similar translation can be seen in the
rules given for redundant finish elimination and tail finish elimination. The rules for
finish unswitching, loop/finish interchange, and interprocedural finish unswitching are
applied only when the predicate cond does not throw any exception.

5.2. Forall-Coarsening in the Presence of Exceptions

In this section, we discuss the impact of exception semantics on the forall-coarsening
phase discussed in Section 4.2. We follow the same overall approach as shown in
Figure 16 even in the presence of exceptions. Figure 28 presents the rules to han-
dle exceptions, and are briefly discussed shortly. Besides presenting a new rule (loop
switching (try-catch)), we modify the existing rules for some of the transformations.

The serial loop distribution rule is applied only if S2 does not throw any exceptions.
It first evaluates S1, and any exception thrown in a certain iteration (maxItr) is remem-
bered and is thrown after maxItr−1 number of iterations of S2 have been executed.

The serial-parallel loop interchange rule generates code to check for any thrown
exceptions after each evaluation of the statement S. In the generated code, each outer
parallel iteration waits for other parallel iterations to finish executing one sequential
iteration of S, then each parallel iteration checks if an exception was thrown in any of
the iterations (by checking the flag excp) and breaks out of the inner for loop if the
flag is set. If an exception is thrown by an iteration, then it is communicated to all the
other threads, which in turn terminate their execution.

The loop unpeeling and loop fusion rules generate code to evaluate the statement S2
under the condition that no instance of S1 has thrown an exception. The loop unpeeling
rule ensures that only one instance of S2 is executed. This execution happens in a try-
catch block. We save any thrown exception in the variable ex, which is checked outside
the forall loop; if ex is set, then it is thrown upward. The loop fusion rule does not
evaluate S2 inside a try-catch block. Since in the original code S2 is inside the forall,
the semantics are preserved.

The loop unswitching (try-catch) is a new rule that is relevant only in the presence of
exceptions. It generates code to execute each iteration of S1 inside a try-catch block and
saves the thrown exception in a MultiException data structure. The pushException
method avoids data races by using appropriate synchronization mechanisms. After
the forall loop has terminated, we check if any exception was thrown and invoke S2
accordingly.

5.3. Loop-Chunking in the Presence of Exceptions

In this section, we discuss rules to perform loop-chunking transformations in the pres-
ence of exceptions. We first discuss the exception semantics of the i-forall statement.
Since the i-forall loop is generated from a foreach statement, we must execute each
iteration of the i-forall regardless of exceptions thrown in other iterations. Thus, we
define the exception semantics of the i-forall as follows: all the exceptions thrown
by different iterations of the i-forall are thrown as independent asynchronous ex-
ceptions, that is, they are inserted into the MultiException collection gathered at the
explicit IEF (Immediately Enclosing Finish) instance for the i-forall (ignoring im-
plicit finish operations in i-forall statements).

We follow the same overall approach as shown in Figure 20, even in the presence
of exceptions. However, we modify the rules for some of the transformations to handle
exceptions and present the new rules in Figure 29; these are briefly discussed next.

Strip mining: We reuse the strip mining rule presented in Figure 23; the exception
semantics of the i-forall statement guarantees correct translation, keeping in mind
that the implicit finish in an i-forall does not collect exceptions like an explicit
finish.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:33

Fig. 28. Transformation rules for forall-coarsening in the presence of exceptions.

Loop interchange: Loop interchange (rule 1) requires special handling in the pres-
ence of exceptions since an exception thrown in the original inner for loop terminates
the rest of the iterations of the for loop, but does not impact other iterations of the
i-forall loop. Thus, in the transformed program, for any iteration of the outer se-
quential for loop, the inner i-forall should be invoked at program point Q only if no

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:34 V. K. Nandivada et al.

Fig. 29. Transformation rules for loop-chunking in the presence of exceptions.

exception was thrown by any of the previous sequential iterations while executing the
activity at point Q. We capture this behavior by maintaining a region of points (newR)
for which no exception has been thrown. For any exception thrown, it is stored in an
array and after the whole loop is executed, the contents of the array are individually
thrown in an asynchronous manner.

Loop unswitching: If the predicate of the if statement is loop invariant and is side-
effect free, then we can compute the predicate outside the loop as shown in rule 2.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:35

Table I. Classfication of Transformations

Class Optimizations Dependencee analysis
High-level finish-elimination yes (execution order can be changed)
(group A) Simple forall-coarsening
Low-level forall-coarsening with synchronization no (execution order is preserved)
(Group B) parallel loop-chunking

Loop unswitching (try-catch): A try-block within a foreach statement can be lifted
out of the loop, by treating the try-block and the catch-block as two computations in
sequence (the catch-block is executed conditionally). We have to catch all the excep-
tions that might be thrown in the try-block. We do so by first unswitching and then
enclosing the inner i-forall with a finish statement. Any exception thrown in S1 is
caught by the finish and is thrown as a MultiException. In the catch statement, we
analyze the multiexception and execute S2 inside a i-forall loop over all the points
for which we have caught an exception while executing S1 (newR). All the exceptions
that are not caught by the catch-clause (exception not of type E) are thrown to the next
level.

Parallel loop distribution: Given the body of a foreach loop to be {S1; S2}, after
the loop distribution, S2 is executed only by those iterations where S1 did not throw
any exception. We create a new region newR to represent the collection of points that
executes S1 normally (did not throw an exception outside) and use it to iterate over S2.

Serialization of i-forall statements must respect their exception semantics. We
present next the rule for serialization in the presence of exceptions.

i-forall (p: Ie(R, g)) phased
S

�⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

for(p:Ie(R, g))

try {S}
catch (Exception e)

{async throw e;}
In each iteration, we catch any exception that is thrown and throw it asynchronously.
This guarantees that we throw all the caught exceptions with the same semantics as
the original foreach loop.

6. INTEGRATION OF INDIVIDUAL OPTIMIZATIONS

In this section, we describe how the optimizations introduced in Section 4 and Section 5
can be integrated and organized in a compiler framework. We classify the optimiza-
tions proposed in this article into two groups: (A) one that requires data-dependence
analysis (as the listed optimizations may alter sequential execution order), and
(B) one that does not require data-dependence analysis (although the listed optimiza-
tion may replace pairs of task creation and termination by barrier operations, the
original execution order is preserved). Another interesting facet of the first group of
transformations is that they increase the sizes of parallel activities. A natural way
of organizing all transformations is to first apply the optimizations of Group-A so as
to increase the ideal parallelism in a given program and then apply optimizations
listed in Group-B to help derive required useful parallelism, which may take into con-
sideration different target machine-specific information. Such a division fits well into
a compiler framework, where the machine-dependent (low-level) optimizations follow
the machine-independent (high-level) ones.

6.1. High-Level Optimizer

The high-level optimizer includes finish-elimination and simple forall-coarsening
optimizations. In Figure 30(a), we show the transformation resulting from the

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:36 V. K. Nandivada et al.

Fig. 30. (a) Effect of invoking high-level optimizer; (b) effect of invoking low-level optimizer for the input
code of Figure 5(a).

application of the high-level optimizations on the HJ example discussed in Figure 5.
After the high-level optimization, the task termination overhead due to finish (line 5
of Figure 5) is reduced by the factor of n, which is the loop iteration count of for-i loop,
and the granularity of foreach loop (line 7 of Figure 30) increases by a factor of n.

6.2. Low-Level Optimizer

The low-level optimization phase applies forall-coarsening with synchronization fol-
lowed by loop-chunking. Note that the loop-chunking framework discussed in Sec-
tion 4.3 can handle arbitrary parallel loops with barrier synchronizations created by
the coarsening pass.

In Figure 30(b), we show the transformation resulting from the application of the
low-level optimizations on the HJ code shown in Figure 30(a). The forall-coarsening
with synchronization is applied to the first loop nest (lines 1–5 of Figure 30(a)), and
the barrier in the inner forall loop is compensated with a lightweight next operation.
Furthermore, parallel loop-chunking is applied to both forall loops to reduce exces-
sive task creation. The details of the actual distribution used for the chunking are
abstracted out by means of two symbolic iterators Ig and Ie that iterate on the groups
and the elements of individual groups, respectively.

7. IMPLEMENTATION

The transformation framework discussed in this article was implemented in the con-
text of the Habanero-Java Compiler framework (HJC) [Habanero 2009], which trans-
lates Habanero-Java (HJ) (see Section 2) source code to Java bytecode, along with calls
to some relevant runtime APIs (RT APIs). Figure 31 presents the overall structure of
the HJC compiler. The Polyglot [Nystrom et al. 2003]-based front-end for HJ was mod-
ified to emit a new Parallel Intermediate Representation (PIR) extension [Zhao and
Sarkar 2011] to the Jimple intermediate representation used in the SOOT bytecode
analysis and transformation framework [Vallée-Rai et al. 1999]. In addition to stan-
dard Java operators, the PIR includes explicit constructs for parallel operations, such
as async, finish, and isolated.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:37

Fig. 31. Habanero-Java Compiler framework.

The analysis and transformations described in Section 4 and Section 5 are imple-
mented in the HJC as additional optimization passes over the PIR. All the analyses
and the transformations presented in this article are interprocedural in nature.

Some of the applied analysis and optimizations are shown on the right side of
Figure 31. To help in the following phases of optimizations, we employed some
preoptimization passes, such as constant propagation, loop-invariant code motion,
copy propagation [Muchnick 1997], and method inlining within our compilation
framework as the initial stage. After the preoptimization passes, we invoked several
analysis passes to assist the following passes of alias analysis and dependence
analysis, including class-hierarchy analysis [Dean et al. 1995], call graph construction
[Muchnick 1997], and points-to analysis [Lhoták and Hendren 2003]. Our proposed
data-dependence analysis uses some of the following analysis: region-level (e.g.,
finish, HJ method) escape analysis, interprocedural side-effect, and purity analysis,
which is similar to the analysis presented in Salcianu and Rinard [2005]. For depen-
dence analysis in loops, we used the GCD test [Muchnick 1997] adapted to Java with
value numbering of array references [Sarkar and Fink 2001].

We start with building a Program Structure Graph (PSG), then proceed with our
proposed three optimizations that may use the discussed dependence analysis: finish-
elimination, forall-coarsening, and loop-chunking. After the coarsening phase, we
apply redundant barrier elimination to remove the redundant lightweight barriers
[Nicolau et al. 2009] and several postoptimization passes to clean up the code, includ-
ing copy propagation and dead assignment elimination. Finally, the loop-chunking
phase chunks fine-grained parallel loops into coarse-grained parallel tasks.

8. EMPIRICAL EVALUATION

In this section, we present experimental results for evaluating the transformation
framework described in this article using the HJ compiler and runtime system
[Habanero 2009; Zhao et al. 2010]. All transformations were performed using the
rules in Section 5, which assume the possibility of exceptions. We discuss the details
of the experimental setup in Section 8.1 and present the overall improvement of
the optimization framework compared with unoptimized parallelism in Section 8.2.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:38 V. K. Nandivada et al.

Table II. Benchmarks

Bench. Prog. code PSG Transformations % incr in
Suite Name size nodes finish forall loop comp time

elimination coarsening chunking
Cilk lud 1121 531 × × 15.3

BOTS

fft 4480 290 × × 17.4
floorplan 327 110 × × 9.35
health 470 188 × × 7.85
strassen 655 117 × 8.22

NPB
cg 1160 821 × × 15.5
mg 1810 847 × × 20.2

JGF
sor 175 72 × × 18.7
lufact 467 118 × × 15.2
moldyn 741 168 × × 12.3

To understand the impact of each of the optimizations, we present a discussion on
the incremental gains resulting from each of the three optimizations in the reverse
order in which they are applied: effect of only loop-chunking (in Section 8.3), effect
of forall-coarsening on top of loop-chunking (in Section 8.4), and the effect of
finish-elimination on top of forall-coarsening and loop-chunking (in Section 8.5).

8.1. Experimental Setup

We used three multicore platforms for our experimental evaluation: (a) a 128-thread
(dual-socket, 8 cores per socket, 8 threads per core) 1.2 GHz UltraSPARC T2 (Nia-
gara 2) with 32GB main memory, running Solaris 10 and Sun JDK 1.5 (32-bit version);
(b) a 16-core (quad-socket, quad-core per socket) Intel Xeon 2.4 GHz system with 30GB
of memory, running Red Hat Linux (RHEL 5) and Sun JDK 1.6 (64-bit version); and (c)
a 32-core (quad-socket, 8 cores per socket) 3.55 GHz Power7 with 256GB main mem-
ory, running Red Hat Linux (RHEL 5.4) with SMT=1 and IBM JDK 1.6 (64-bit ver-
sion). This variation in platforms enables us to study the impact of different hardware
on the performance improvements. For all the runs, the main program was extended
with a 30-iteration loop within the same Java process, and the best of the 30 times was
reported in each case so as to reduce the impact of JIT compilation overhead in the
performance results, in accordance with the methodology reported by Georges et al.
[2007]. The HJ runtime option, “-places 1:W”, was used to set up an HJ execution for
all runs with 1 place and W worker threads per place.

To evaluate our transformation framework, we use the following benchmarks
ported to HJ by using the parallel constructs of HJ such as finish, async, foreach,
forall, isolated, and phasers: four BOTS benchmarks7 [Duran et al. 2009] (health,
floorplan, strassen and fft); two NAS parallel benchmarks [Bailey et al. 1991] (cg,
mg); one Cilk benchmark [Feng and Leiserson 1997] (lud); and three Java Grande
Benchmarks [JGF 2000] (lufact, sor, and moldyn). We chose those benchmarks that
can get benefit from more than one of the three transformations discussed in this ar-
ticle. Table II gives some details of the benchmarks, including the source-code size,
number of PSG nodes, and the transformations applied. The last column depicts the
incurred overhead in terms of the percent increase in the compilation time due to our
optimization passes.

7The HJ versions of the BOTS benchmarks were obtained by porting the OpenMP versions to HJ. The
OpenMP 3.0 task, taskwait, and critical directives were replaced by async, finish, and isolated state-
ments in HJ, respectively.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:39

Fig. 32. Performance improvement by overall transformations. “unopt”: Compilation with the base HJ com-
piler, with none of the optimizations discussed in this article; “opt”: Compilation with the base HJ compiler,
extended with all the three optimizations passes discussed in the work.

8.2. Overall Improvement

Figure 32 shows the comparison of the speedups between the unoptimized parallel
benchmarks and the optimized versions that were generated by the transformation
framework discussed in this article. This shows the overall improvement by applying
the three stages of optimizations. The last column shows the geometric mean average
improvement of the optimized and the unoptimized versions, each compared to the
Java serial version. In the charts, we show the comparison with respect to the Java
serial version to show the reader that the ported benchmarks do not perform worse
than the serial benchmarks (an indication to the goodness of the ported benchmarks).
Compared to the unoptimized version, the minimum, maximum, and geometric mean
average improvements of our optimized version are as follows: on T2 Niagara 1.09×,
2049.04×, and 9.68×, respectively; on Xeon 1.05×, 1103.90×, and 6.28×, respectively;
on Power7 1.03×, 3935.88×, and 10.3×, respectively.

We now present the impact of the individual optimizations introduced in this article.
We follow a practice similar to that of optimizing compiler evaluations where back-end
optimizations are used to establish a baseline for evaluating the impact of higher-
level optimizations. In our evaluation, the results for the lower-level optimizations are
presented first, and higher-level optimizations are then added incrementally to study
their impact.

8.3. Impact Due to Foreach Loop-Chunking

Chunking the fine-grain parallel loops into coarse-grained parallel tasks eliminates
the significant overhead for task spawning and scheduling. This section presents the
effect of loop-chunking on nine benchmarks; lud and strassen were not included in

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:40 V. K. Nandivada et al.

Fig. 33. Performance improvement by loop-chunking. “unopt”: Compilation with the base HJ compiler, with
none of the optimizations discussed in this article; “opt”: Compilation with the base HJ compiler, extended
with loop-chunking.

this discussion since there are no parallel loops in these two benchmarks to show any
gains from chunking. Figure 33 shows the speedups on the three SMP platforms. The
bar charts show the comparison of the speedups (HJ parallel program versus Java se-
quential program and chunked HJ parallel program versus Java sequential program).
Compared to the unoptimized version, the geometric mean average improvements of
the version optimized using loop-chunking are 6.56×, 6.28×, and 9.77× on T2, Xeon,
and Power7, respectively.

8.4. Impact Due to Forall-Coarsening

The benefits of forall-coarsening can be categorized into two heads: (a) direct im-
provements: reduced task creation, termination, synchronization, and scheduling over-
heads; and (b) indirect improvements: transformations like loop interchange and loop
fusion may improve locality. Regarding the scope of impact, not all of the benchmarks
can benefit from this optimization; only those that contain SPMDizable forall loops
can be transformed by coarsening. Figure 34 gives the performance comparison be-
tween the programs optimized with forall-coarsening + loop-chunking (tagged as
“opt”) and programs optimized with only loop-chunking (tagged as “unopt”). An shown
in these charts, forall-coarsening leads to significant improvements. The amount of
gains in the coarsened version (compared to the non-coarsened version) depends on the
granularity of the parallel tasks in the input programs. Benchmarks with finer-grain
tasks (i.e., CG, SOR and LUFact) report higher gains. Compared to the “unopt” version

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:41

Fig. 34. Performance improvement by forall-coarsening. “unopt”: Compilation with the base HJ compiler,
extended with loop-chunking; “opt”: Compilation with the base HJ compiler, extended with loop-chunking
and forall-coarsening; “opt-rnse”: opt + redundant next/next-single elimination.

the geometric mean average improvements of the “opt” version are 3.19×, 1.93×, and
1.17× on T2, Xeon, and Power7, respectively.

In these charts we have an additional evaluation point, namely that of the “opt”
version further optimized with the Redundant Next/Next-Single Elimination (RNSE)
phase (see Section 4.2). Compared to the “unopt” version the geometric mean average
improvements of the “opt+RNSE” version are 3.35×, 1.99×, and 2.81× on T2, Xeon,
and Power7, respectively.

One interesting aspect of this study was that the behavior of these benchmarks
varied between Xeon, Niagara, and Power7 systems. For instance, RNSE is effective
on MG and SOR on Niagara, on CG on Xeon, and MG and SOR on Power7. We at-
tribute this to the significantly varying system architecture (Niagara and Power7 are
multithreaded, Xeon is not; in Niagara all cores on a chip share the same L2 cache,
Xeon contains two L2 caches each shared by two cores, and in POWER7 each core has
32KB L1 and 256KB L2 cache, and 32MB L3 cache is shared by 8 cores on a chip).

8.4.1. Coarsening and Data Locality. The improvements shown in Figure 34 result from
two factors, and the data locality plays an important role for performance improve-
ment, especially for those loop parallelism benchmarks. We now present a study to un-
derstand the contribution of these factors in the improvements cited in Section 8.4. To
understand the impact of these two underlying factors, we conducted a simple exper-
iment: for each of the benchmarks presented in Figure 34, we compared the following
three versions:

— “unopt”: parallel version of the benchmark with no coarsening;
— “opt”: manually apply the forall-coarsening;

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:42 V. K. Nandivada et al.

Table III. Execution Time (in seconds) Numbers to Identify the
Impact of Locality

Benchmark 8 hardware threads 64 hardware threads
unopt locality opt unopt locality opt

cg 16.40 10.87 9.37 11.67 12.07 1.40
mg 19.03 12.28 12.07 4.11 4.00 2.81
sor 11.37 6.89 6.56 2.72 2.79 1.01
lufact 32.34 19.53 18.39 13.28 14.28 3.19
moldyn 65.51 33.19 32.69 10.45 7.97 5.58

— “locality”: we counted the reduction in the number of activities and barriers in the
“opt” version, and manually inserted code to create an equal number of dummy
activities and the corresponding barriers to achieve comparable task overheads to
the “unopt” version while preserving the locality of the “opt” version.

The locality version gives a rough estimate of the impact due to improvements in data
locality only (by comparing it to the “opt” version). For instance, the locality version
for the code shown in Figure 15(b) is generated by adding the following compensation
code.

for(i=0;i<n-1;++i){forall(j:[1..m]){/* empty */}}

Table III presents the execution time numbers for each of the three versions of the
benchmarks shown in Table II. We only present the numbers on Niagara T2 system,
by setting the number of parallel threads to 8 (when all the 8 threads are scheduled
on one socket and share L2 cache), and 64 (the 64 threads could be scheduled on both
two sockets). In the numbers shown for 8 threads, we see that most of the gains are
coming mainly from the improvements to locality (similar behavior was observed for 1,
2, and 4 number of threads), reduction in activities further improves the code. For the
case with 64 threads, it can be seen that the locality version may improve the perfor-
mance depending on the underlying computation (for instance, in MG, and MolDyn).
The gains in the “opt” version here are significant enough to show improvements, irre-
spective of the impact due to locality. For benchmarks like CG, SOR, and LUFact most
of the benefits are coming mainly from reduction in the number of tasks and barriers.
We have observed similar behavior for 16, 32, and 128 number of hardware threads,
thus emphasizing the importance of reducing task creation overhead in the context of
systems with higher number of cores/hardware threads.

We conclude that the direct impact from the reduction in activities and barriers is
significant, and the forall-coarsening may also aid in improving the data locality (may
be significant when all the threads share the L1 cache).

8.5. Impact Due to Finish Elimination

This section demonstrates the impact of our finish-elimination by discussing both
the static and dynamic results. We present two metrics: the number of eliminated
finish operations (static and dynamic) and the performance improvement. Similar
to the behavior of the previous two optimizations, even the finish-elimination opti-
mization may not be universally effective; finish-elimination has been typically found
effective in programs where parallel tasks are spawned conditionally, such as some
system-specific threshold. Such instances are common in programs written using the
divide-conquer pattern; the recursive nature of the parallel program makes it other-
wise tricky to optimize using an automated tool like a compiler. Table IV shows the
dynamic count of the finish operations before and after finish-elimination among the

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:43

Table IV. Dynamic Counts of Finish Operations for Unoptimized and
Optimized Code

lud floorplan health strassen fft
no finish-elim 17,082 3,613,785 2,124,789 400 6,959
with finish-elim 13,176 622 6,588 8 4,634

Fig. 35. Performance improvement by finish-elimination. “unopt”: enables forall-coarsening and loop-
chunking but disables finish-elimination, “opt”: enables all three optimizations.

selected benchmarks. As the table shows, the finish-elimination pass can significantly
reduce the dynamic number of finish statements in many cases.

Figure 35 gives the performance comparison between the programs optimized
with finish-elimination + forall-coarsening + loop-chunking (tagged as “opt”) and
programs optimized with only forall-coarsening + loop-chunking (tagged as “unopt”).
The actual performance improvement depends on: (a) the number of dynamic finish
operations eliminated and the cost of finish operation on that architecture for the
underlying runtime system8 and (b) the number of tasks spawned within a finish

8We measured the overhead of an empty finish statement as 6 microseconds, 35 microseconds, and 6 mi-
croseconds on the Xeon, Niagara, and Power7 platforms, respectively, for the same runtime systems as those
used to obtain the experimental results shown in Figure 35.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:44 V. K. Nandivada et al.

region. Compared to the “unopt” version the geometric mean average improvements of
the “opt” version are 1.10×, 1.09×, and 1.10× on T2, Xeon, and Power7, respectively.
Item (a) impacted all benchmarks, especially health. Item (b) impacted lud, strassen,
health, and fft; elimination of redundant finish operations enlarged the parallel
tasks and resulted in better load balance for these benchmarks. The floorplan bench-
mark showed the smallest speedups and the least improvement due to optimization
because it contains isolated constructs that limit the available parallelism.

Across all the benchmarks, our proposed transformations have not resulted in any
performance degradation on any of the platforms. Further, it can be seen that all the
three proposed optimizations work in a synergistic way to derive significant perfor-
mance benefits.

9. RELATED WORK

We divide the related work into four different subsections, one for each of the main
contributions of this article.

9.1. Analysis of Task-Parallel Programs

Happens-Before Analysis. The happens-before relationship was first studied by
Lamport [1978] in the context of distributed systems. It has been widely used for par-
allel computing, especially in the areas related to concurrency analysis and data race
detection. Duesterwald and Soffa [1991] applied happens-before/happens-after infor-
mation to the context of dataflow analysis for concurrent programs. Their framework
expresses a partial execution ordering for program regions that have happens-
before/happens-after relation. In our work, we generalized the happens-before
relation to define happens-before dependency, which is used to build legal program
transformations.

Data-Dependence Analysis. Data-dependence analysis for sequential programs has
been extensively studied [Kennedy and Allen 2002; Wolfe and Banerjee 1987], and
those techniques have been widely applied. We extend the traditional notions of data
dependence to happens-before dependence by taking into account features in task-
parallel programs. We present a set of constraints (which depend on not only the
happens-before dependence information, but also the program structure) to ensure
the legality of our proposed compiler transformation.

9.2. Barrier Synchronization and Task Creation optimization

Many previous studies have optimized parallel loops to reduce task spawning and
synchronization overheads [Heinz and Philippsen 1993; Tseng 1995; Yonezawa et al.
2006]. Compared to these works that optimize only parallel loops, we have built a
general compiler framework that focuses on eliminating arbitrary redundant finish
barrier operations by applying sophisticated analysis and transformations. The use of
global split barriers [Bikshandi et al. 2009] as an efficient translation of outermost
finish operations can be used to further improve the performance.

Nicolau et al. [2009] presented an approach to optimize point-to-point synchroniza-
tion by eliminating redundant wait operations and relocating post/wait operations to
minimize barrier overhead. Compared to their approach, we present an interprocedu-
ral transformation that optimizes arbitrary finish barriers in task-parallel languages.
Further, we present a transformation scheme that preserves exception semantics.

Bikshandi et al. [2009] present the notion of inlinable async statements for which
they avoid the activity creation overhead. They make a static compile-time decision to
serialize an async based on the structure of the body of async. Compared to that, our

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:45

proposed seq clause helps make dynamic decisions on serializing an async based on
programmer-decided constraint or runtime resources.

9.3. Forall-Coarsening

There has been a lot of past work on reducing thread creation and synchronization
overheads. These include SPMDization [Amarasinghe and Lam 1993; Bikshandi
et al. 2009; Cytron et al. 1990; Tseng 1995], synchronization optimizations [Diniz
and Rinard 1997], and barrier elimination [Tseng 1995]. Cytron et al. [1990] present
an approach for transforming code written in fork-join style to SPMD code. Tseng
[1995] furthers the work of Cytron et al. by translating fork-join parallel loops into
(merged) SPMD regions. Once SPMD regions have been formed, the barrier commu-
nications among them are targeted for optimization using communication analysis.
Our forall-coarsening has similarities to the traditional SPMDization techniques.
Some of the rules like parallel loop fusion and serial-parallel loop interchange used in
Section 4.2 are similar to the translation scheme suggested by Tseng [1995]. However,
there are three main differences: (a) While their target is to reduce the number of
synchronization operations, our main goal is to reduce the number of dynamic activ-
ities created, thus our rules are more aggressive; (b) the result of our transformation
is a task-parallel program that can contain fork (async) and join (finish) operations,
and is not necessarily an SPMD program; (c) we handle programs with exceptions and
perform further cleanup optimizations to gain performance.

Recently, Bikshandi et al. applied SPMDization to task-parallel languages
[Bikshandi et al. 2009], where they identify a subset of X10 (called Flat X10) and
use it to derive output programs in SPMD form. In our work, we preserve the task-
parallelism language features and perform the translation implicitly in the compiler
back-end. Further, we handle programs with arbitrary async operations, forall loops,
and exceptions.

Nicolau et al. [2009] present an approach to optimize point-to-point synchronization
by eliminating redundant wait operations. Their approach has similarities only to our
postoptimization pass, where we eliminate some redundant barriers.

Ferrer et al. [2009] present techniques to unroll sequential loops that contain par-
allel loops. They aggregate the multiple generated loops in the body of the sequential
unrolled loop to reduce the number of activity creation tasks. Our forall-coarsening
phase can be invoked as a postpass to their phase to further increase the gains.

9.4. Chunking of Parallel Loops

There has been a lot of past work on reducing synchronization and thread creation
overheads. These include SPMDization [Bikshandi et al. 2009], synchronization opti-
mizations [Diniz and Rinard 1997], and barrier elimination [Tseng 1995]. Researchers
have studied the impact of loop chunking on different parameters of interest. Hari et
al. [Narayanan et al. 2005] use loop chunking as a means of efficient scheduling of
temperature-aware code. OpenMP 3.0 [OpenMP 2008] supports different loop schedul-
ing policies, as specified by the programmer, in parallel loops. However, the OpenMP
language framework is restrictive in its support for synchronization operations inside
parallel loops.

There has also been significant interest in loop scheduling [Kennedy and Allen
2002]. Akin to chunking, loop scheduling has been directed at reducing the number
of overall barriers and thread creation overheads. The loop scheduling techniques
also use different loop transformation techniques (for example, loop interchange and
loop coarsening) to identify chunks of iterations that can be scheduled together. Loop-
chunking can be seen as a special version of loop scheduling where all the iterations
scheduled to be executed on the same processor are executed sequentially.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:46 V. K. Nandivada et al.

We are not aware of any past work that supports chunking of parallel loops in the
presence of synchronization, as in this article, for languages that support dynamic
parallelism with fine-grain synchronization.

10. CONCLUSION

In this article, we present a transformation framework for optimizing task-parallel
programs. Our framework includes: (a) finish-elimination: an iterative algorithm
to eliminate the redundant termination operations and increase parallelism, (b)
forall-coarsening: a scheme to replace task creation/termination optimizations by
lighterweight barrier synchronizations, and (c) loop-chunking: an iterative algorithm
to realize useful parallelism from given specifications of ideal parallelism by chunking
parallel loops. All of these transformations preserve the exception semantics. To
ensure the legality of transformation, we presented a definition of data dependence in
task-parallel programs and a happens-before dependence analysis algorithm.

Experimental results were obtained for a collection of task-parallel benchmarks on
three platforms: a dual-socket 128-thread (16-core) Niagara T2 system, a quad-socket
16-core Intel Xeon SMP, and a quad-socket 32-core Power7 SMP. These results show
geometric average performance improvements of 6.56×, 6.28×, and 9.77× on the three
platforms, respectively, due to the optimizations introduced in this article. For cer-
tain benchmarks for which the original versions were highly inefficient, the maximum
improvements on these three platforms ranged from 1103.90× to 3935.88×. Though
these results were obtained in the context of HJ, we are confident of deriving simi-
lar improvements in other task-parallel programming languages such as X10, Chapel,
and OpenMP, among others.

ACKNOWLEDGMENTS

We would like to thank the members of the Habanero group at Rice University and the X10 team at IBM
for valuable discussions related to this work. We would like to thank the anonymous reviewers for their
comments and suggestions on past conference publications and submissions related to this work. In partic-
ular, the example in Figure 8(a) was provided by one of the reviewers. Finally, we would like to thank Keith
Cooper for providing access to the Xeon system, Doug Lea for providing access to the UltraSPARC T2 sys-
tem, and the Research Computing Support Group at Rice University for providing access to the POWER7
system used to obtain the performance results reported in this article.

REFERENCES

Agarwal, S., Barik, R., Sarkar, V., and Shyamasundar, R. K. 2007. May-Happen-In-Parallel analysis of x10
programs. In Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’07). ACM Press, New York, 183–193.

Amarasinghe, S. P. and Lam, M. S. 1993. Communication optimization and code generation for distributed
memory machines. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’93). ACM Press, New York, 126–138.

Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum, L., Fatoohi, R. A.,
Frederickson, P. O., Lasinski, T. A., Schreiber, R. S., Simon, H. D., Venkatakrishnan, V., and
Weeratunga, S. K. 1991. The nas parallel benchmarks - Summary and preliminary results. In Pro-
ceedings of the ACM/IEEE Conference on Supercomputing. 158–165.

Bikshandi, G., Castanos, J. G., Kodali, S. B., Nandivada, V. K., Peshansky, I., Saraswat, V. A., Sur, S.,
Varma, P., and Wen, T. 2009. Efficient, portable implementation of asynchronous multi-place programs.
In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP’09). ACM Press, New York, 271–282.

Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall, K. H., and Zhou, Y. 1995. Cilk: An
efficient multithreaded runtime system. SIGPLAN Not. 30, 8, 207–216.

Chamberlain, B. L., Eun Choi, S., Deitz, S. J., And Snyder, L. 2004. The high-level parallel language ZPL
improves productivity and performance. In Proceedings of the IEEE International Workshop on Produc-
tivity and Performance in High-End Computing. IEEE, 66–75.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

A Transformation Framework for Optimizing Task-Parallel Programs 3:47

Chapel. 2005. Chapel. 2005. The chapel language specification version 0.4.
http://chapel.cray.com/spec/spec-0.4.pdf.

Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., Von Praun, C., and Sarkar, V.
2005. X10: An object-oriented approach to non-uniform cluster computing. In Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA’05). ACM Press, New York, 519–538.

Cytron, R., Lipkis, J., and Schonberg, E. 1990. A compiler-assisted approach to SPMD execution. In Proceed-
ings of the ACM/IEEE Conference on Supercomputing (Supercomputing’90). IEEE Computer Society
Press, Los Alamitos, CA, 398–406.

Dean, J., Grove, D., and Chambers, C. 1995. Optimization of object-oriented programs using static class
hierarchy analysis. In Proceedings of the 9th European Conference on Object-Oriented Programming
(ECOOP’95). Springer, 77–101.

Diniz, P. and Rinard, M. 1997. Synchronization transformations for parallel computing. In Proceedings of the
24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’97). ACM
Press, New York, 187–200.

Duesterwald, E. and Soffa, M. L. 1991. Concurrency analysis in the presence of procedures using a data-flow
framework. In Proceedings of the Symposium on Testing, Analysis, and Verification (TAV4). ACM Press,
New York, 36–48.

Duran, A., Teruel, X., Ferrer, R., Martorell, X., and Ayguade, E. 2009. Barcelona openmp tasks suite: A set of
benchmarks targeting the exploitation of task parallelism in openmp. In Proceedings of the International
Conference on Parallel Processing (ICPP’09). IEEE Computer Society, Los, Alamitos, CA, 124–131.

Feng, M. and Leiserson, C. E. 1997. Efficient detection of determinacy races in cilk programs. In Proceedings
of the 9th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’97). ACM Press,
New York, 1–11.

Ferrer, R., Duran, A., Martorell, X., and Ayguade, E. 2009. Unrolling loops containing task parallelism. In
Proceedings of the 22nd International Workshop on Languages and Compilers for Parallel Computing.
Lecture Notes in Computer Science, vol. 5898, Springer, 416–423.

Flynn, L. E. and Hummel, S. F. 1990. Scheduling variable-length parallel subtasks. Tech. rep. RC 15492,
IBM.

Gao, G. R. and Sarkar, V. 2000. Location consistency-A new memory model and cache consistency protocol.
IEEE Trans. Comput. 49, 798–813.

Georges, A., Buytaert, D., and Eeckhout, L. 2007. Statistically rigorous java performance evaluation. In
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems
and Applications (OOPSLA’07). ACM Press, New York, 57–76.

Guo, Y., Barik, R., Raman, R., and Sarkar, V. 2009. Work-First and help-first scheduling policies for async-
finish task parallelism. In Proceedings of the IEEE International Symposium on Parallel and Dis-
tributed Processing. IEEE Computer Society, Los Alamitos, CA, 1–12.

Gupta, R. 1989. The fuzzy barrier: A mechanism for high speed synchronization of processors. In Proceed-
ings of the 3rd International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM Press, New York, 54–63.

Habanero. 2009. Habanero Java. http://habanero.rice.edu/hj.
Heinz, E. A. and Philippsen, M. 1993. Synchronization barrier elimination in synchronous foralls. Tech. rep.

13/93, Department of Informatics, University of Karlruhe.
JGF. 2000. The java grande forum benchmark suite. http://www.epcc.ed.ac.uk/javagrande/javag.html.
Kennedy, K. and Allen, J. R. 2002. Optimizing Compilers for Modern Architectures: A Dependence-Based

Approach. Morgan Kaufmann, San Francisco, CA.
Kruskal, C. and Weiss, A. 1985. Allocating independent subtasks on parallel processors. IEEE Trans. Softw.

Engin. SE-11, 10.
Lamport, L. 1978. Time clocks, and the ordering of events in a distributed system. Comm. ACM 21,

558–565.
Lamport, L. 1979. How to make a multiprocessor computer that correctly executes multiprocess programs.

IEEE Trans. Comput. 28, 690–691.
Larus, J. R. and Rajwar, R. 2006. Transactional Memory. Morgan and Claypool.
Lhotak, O. and Hendren, L. 2003. Scaling java points-to analysis using spark. In Proceedings of the 12th

International Conference on Compiler Construction (CC’03). Springer, 153–169.
Metcalfe, M. and Reid, J. 1990. Fortran 90 Explained. Oxford Science Publishers.
Muchnick, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann, San

Francisco, CA.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.



�

�

�

�

�

�

�

�

3:48 V. K. Nandivada et al.

Narayanan, S. H. K., Chen, G., Mahmut Kandemir, M. X., and Xie, Y. 2005. Temperature-Sensitive loop
parallelization for chip multiprocessors. In Proceedings of the International Conference on Computer
Design (ICCD’05). IEEE Computer Society, Los Alamitos, CA, 677–682.

Nicolau, A., Li, G., Veidenbaum, A. V., and Kejariwal, A. 2009. Synchronization optimizations for efficient ex-
ecution on multi-cores. In Proceedings of the 23rd International Conference on Supercomputing (ICS’09).
ACM Press, New York, 169–180.

Nystrom, N., Clarkson, M. R., and Myers, A. C. 2003. Polyglot: An extensible compiler framework for Java. In
Proceedings of the 12th International Conference on Compiler Construction (CC’03). Springer, 138–152.

OpenMP. 2008. OpenMP application program interface, version 3.0.
http://www.openmp.org/mpdocuments/spec30.pdf

Peierls, T., Goetz, B., Bloch, J., Bowbeer, J., Lea, D., and Holmes, D. 2005. Java Concurrency in Practice.
Addison-Wesley Professional.

Polychronopoulos, C. D. and Kuck, D. J. 1987. Guided self-scheduling: A practical scheduling scheme for
parallel supercomputers. IEEE Trans. Comput. C-36, 12.

Salcianu, R. D. and Rinard, M. C. 2005. Purity and side effect analysis for Java programs. In Proceed-
ings of the 6th International Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI).199–215.

Sarkar, V. 1988. Synchronization using counting semaphores. In Proceedings of the 2nd International Con-
ference on Supercomputing (ICS’88). ACM Press, New York, 627–637.

Sarkar, V. and Fink, S. J. 2001. Efficient dependence analysis for Java arrays. In Proceedings of the 7th
International Euro-Par Conference on Parallel Processing (Euro-Par’01). Springer, 273–277.

Shirako, J., Peixotto, D. M., Sarkar, V., and Scherer, W. N. 2008. Phasers: A unified deadlock-free construct
for collective and point-to-point synchronization. In Proceedings of the 22nd Annual International Con-
ference on Supercomputing (ICS’08). ACM Press, New York, 277–288.

Shirako, J., Zhao, J. M., Nandivada, V. K., and Sarkar, V. N. 2009. Chunking parallel loops in the presence of
synchronization. In Proceedings of the 23rd International Conference on Supercomputing (ICS’09). ACM
Press, New York, 181–192.

Tseng, C.-W. 1995. Compiler optimizations for eliminating barrier synchronization. In Proceedings of the
5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP’95). ACM
Press, New York, 144–155.

Vallee-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., and Sundaresan, V. 1999. Soot - A java bytecode
optimization framework. In Proceedings of the Conference of the Centre for Advanced Studies on Collab-
orative Research (CASCON’99). IBM Press, 125–135.

Wolfe, M. 1996. High Performance Compilers for Parallel Computing. Addison-Wesley.
Wolfe, M. and Banerjee, U. 1987. Data dependence and its application to parallel processing. Int. J. Parallel

Program. 16, 137–178.
Yelick, K., Bonachea, D., Chen, W.-Y., Colella, P., Datta, K., Duell, J., Graham, S. L., Hargrove, P.,

Hilfinger, P., Husbands, P., Iancu, C., Kamil, A., Nishtala, R., Su, J., Michael, W., and Wen, T. 2007.
Productivity and performance using partitioned global address space languages. In Proceedings of the
International Workshop on Parallel Symbolic Computation (PASCO’07). ACM Press, New York, 24–32.

Yonezawa, N., Wada, K., And Aida, T. 2006. Barrier elimination based on access dependency analysis for
OpenMP. In Proceedings of the 4th International Symposium on Parallel and Distributed Processing
and Applications (ISPA’06), M. Guo, L. T. Yang, B. D. Martino, H. P. Zima, J. Dongarra, and F. Tang
Eds., Lecture Notes in Computer Science, vol. 4330, Springer, 362–373.

Zhao, J. and Sarkar, V. 2011. Intermediate language extensions for parallelism. In Proceedings of the 5th
Workshop on Virtual Machines and Intermediate Languages (VMIL’11). 333–334.

Zhao, J., Shirako, J., Nandivada, V. K., and Sarkar, V. 2010. Reducing task creation and termination over-
head in explicitly parallel programs. In Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques (PACT’10). ACM Press, New York, 169–180.

Received December 2011; revised October 2012; accepted November 2012

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 1, Article 3, Publication date: April 2013.


