Recap:
A binary function \(f \) is **associative** if \(f(f(x,y),z) = f(x,f(y,z)) \).
A binary function \(f \) is **commutative** if \(f(x,y) = f(y,x) \).

Worksheet problems:
1) Claim: a Finish Accumulator (FA) can only be used with operators that are **associative and commutative**. Why? What can go wrong with accumulators if the operator is non-associative or non-commutative?

2) For each of the following functions, indicate if it is associative and/or commutative.

 a) \(f(x,y) = x+y \), for integers \(x, y \)

 b) \(g(x,y) = (x+y)/2 \), for integers \(x, y \)

 c) \(h(s1,s2) = \text{concat}(s1, s2) \) for strings \(s1, s2 \), e.g., \(h(\text{“ab”}, \text{“cd”}) = \text{“abcd”} \)