
 1 

COMP 322: Fundamentals of Parallel Programming (Spring 2017) 
Instructors: Vivek Sarkar, Mack Joyner 
Worksheet 1: due at end of class today 

 
Name: __________________________             Netid: _______________ 

 
Honor Code Policy for Worksheets: You are free to discuss all aspects of in-class 
worksheets with your other classmates, the teaching assistants and the professor during 
the class. You can work in a group and write down the solution that you obtained as a 
group. If you work on the worksheet outside of class (e.g., due to an absence), then it 
must be entirely your individual effort, without discussion with any other students.  If you 
use any material from external sources, you must provide proper attribution. 
 
1) Parallelizing your weekday/weekend tasks! 
Consider the sequential list of weekday/weekend tasks below.  Assume that you have an 
unbounded number of helpers to help you with your chores and tasks.  Insert async and 
finish pseudocode annotations to maximize parallelism, while ensuring that the parallel 
version has no unintended/undesirable outcomes.  Make any reasonable assumptions e.g., 
you only have one fridge, you have access to multiple washers & dryers, you can reorder 
statements so long as you don’t change the outcome, etc. 
 
Watch COMP 322 video for topic 1.2 by 1pm on Wednesday 
 
Watch COMP 322 video for topic 1.3 by 1pm on Wednesday 
 
Make your bed 
 
Clean out your fridge 
 
Buy food supplies and store them in fridge 
 
// Run two loads of laundry 
{ 
 
 Run load 1 in washer 
 
 Run load 2 in washer 
 
 Run load 1 in dryer 
 
 Run load 2 in dryer 
 
} 
 
Call your family 
 
Post on Facebook that you’re done with all your tasks! 



 2 

2) Parallelizing Matrix Multiply 
 
Consider the sequential version of a matrix-multiply algorithm shown below that 
computes the product of two NxN matrices A and B into an NxN matrix C, assuming that 
all entries in C were initialized to zeros.  (Matrices are represented as 2D arrays in Java.)   
 
Insert async and finish pseudocode annotations to maximize parallelism, while ensuring 
that the parallel version always computes the same result as the sequential version.  Pay 
attention to the scoping of the async and finish constructs. 
 
 
 
for (int i = 0 ; i < N ; i++) { 
 
  for (int j = 0 ; j < N ; j++) { 
 
    for (int k = 0 ; k < N ; k++) { 
 
      C[i][j] = C[i][j] + A[i][k] * B[k][j]; 
 
    } // for-k 
 
  } // for-j 
 
} // for-i 
 
. . . // Print matrix C 
 
 


