
COMP 322, Spring 2024 (M.Joyner)

Worksheet: Reverse Engineering a Parallel Program from a
Computation Graph (CG)

Write a parallel program that generates
exactly the same ordering constraints as
the computation graph shown. The
program should be written in pseudocode
using finish and async annotations. The
CG nodes should be clearly identified as
statements in the program e.g., as method
calls A(), B(), etc. Since the CG edges are
not labeled as spawn, continue, or join, you
can make whatever assumptions you
choose about the edges when writing your
program. The only requirement is that the
ordering constraints in your program
coincide with those in the graph. Submit
solution in Canvas.

1

	

COMP 322, Spring 2024 (M.Joyner)

One Possible Solution to Worksheet
(Reverse Engineering a Computation Graph)

2

1.A();
2.finish { // F1
3. async D();
4. B();
5. E();
6. finish { // F2
7. async H();
8. F();
9. } // F2
10. G();
11.} // F1
12.C();

Observations:
•Any node with out-degree > 1 must be an async

(must have an outgoing spawn edge)
•Any node with in-degree > 1 must be an end-finish

(must have an incoming join edge
•Adding or removing transitive edges does not impact

ordering constraints

