Worksheet: One-dimensional Iterative Averaging Example

1) Assuming $n=9$ and the input array below, perform a "half-iteration" of the iterative averaging example by only filling in the blanks for odd values of j in the myNew[] array (different from the real algorithm). Recall that the computation is "myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;"

index, j	0	1	2	3	4	5	6	7	8	9	10
myVal	0	0	0.2	0	0.4	0	0.6	0	0.8	0	1
myNew	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1

2) Will the contents of myVal[] and myNew[] change in further iterations?

No, this represents the converged value (equilibrium/fixpoint).
3) Write the formula for the final value of myNew[i] as a function of i and n. In general, this is the value that we will get if m (= \#iterations in sequential for-iter loop) is large enough.
After a sufficiently large number of iterations, the iterated averaging code will converge with myNew[i] $=\operatorname{myVal}[i]=\mathrm{i} /(n+1)$

