
COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Worksheet: Dynamic Order with Synchronized Statements
Consider a method to transfer a balance from one account to another. Could this result in a deadlock? If not,
please explain why not. If so, explain why it can and if there’s a solution to prevent it.

public class IsThereDeadlock {
 public void transferFunds(Account from,
 Account to,
 int amount) {
 synchronized (from) {
 synchronized (to) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }
 }

1

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Worksheet solution: Dynamic Order with Synchronized Statements
Consider a method to transfer a balance from one account to another. Could this result in a deadlock? If not, please
explain why not. If so, explain why it can and if there’s a solution to prevent it.

public class IsThereDeadlock {
 public void transferFunds(Account from,
 Account to,
 int amount) {
 synchronized (from) {
 synchronized (to) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }
 }

— What if one thread tries to transfer from A to B while another tries to transfer from B to A ?
Inconsistent lock order again – Deadlock!

2

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Worksheet solution: Avoiding Dynamic Order Deadlocks
• The solution is to induce a lock ordering

— Here, uses an existing unique numeric key, acctId, to establish an order

public class SafeTransfer {

 public void transferFunds(Account from, Account to, int amount) {

 Account firstLock, secondLock; 

 if (fromAccount.acctId == toAccount.acctId) 
 throw new Exception(“Cannot self-transfer”); 
 else if (fromAccount.acctId < toAccount.acctId) { 
 firstLock = fromAccount; 
 secondLock = toAccount; 
 } 
 else { 
 firstLock = toAccount; 
 secondLock = fromAccount; 
 } 
 synchronized (firstLock) {

 synchronized (secondLock) {

 from.subtractFromBalance(amount);

 to.addToBalance(amount);

 }

 }

 } 

}

3

