
COMP 322, Spring 2024 (M. Joyner)

Worksheet: Parallelizing the Split step in Radix Sort
The Radix Sort algorithm loops over the bits in the binary
representation of the keys, starting at the lowest bit, and executes
a split operation for each bit as shown below. The split operation
packs the keys with a 0 in the corresponding bit to the bottom of a
vector, and packs the keys with a 1 to the top of the same vector.
It maintains the order within both groups.

The sort works because each split operation sorts the keys with
respect to the current bit and maintains the sorted order of all the
lower bits. Your task is to show how the split operation (complete
I-down) can be performed in parallel

1

 [101 111 011 001 100 010 111 010]

1.A = [5 7 3 1 4 2 7 2]
2.A⟨0⟩ = [1 1 1 1 0 0 1 0] //lowest bit
3.A←split(A,A⟨0⟩) = [4 2 2 5 7 3 1 7]
4.A⟨1⟩ = [0 1 1 0 1 1 0 1] // middle bit
5.A←split(A,A⟨1⟩) = [4 5 1 2 2 7 3 7]
6.A⟨2⟩ = [1 1 0 0 0 1 0 1] // highest bit
7.A←split(A,A⟨2⟩) = [1 2 2 3 4 5 7 7]

1.4 Recurrence Equations 47

procedure split(A, Flags)

I-down ← +-prescan(not(Flags))

I-up ← n - +-scan(reverse-order(Flags))

in parallel for each index i
if (Flags[i])
Index[i] ← I-up[i]

else

Index[i] ← I-down[i]
result ← permute(A, Index)

A = [5 7 3 1 4 2 7 2]
Flags = [1 1 1 1 0 0 1 0]

I-down = [0 0 0 0 0 1 2 2]
I-up = [3 4 5 6 6 6 7 7]
Index = [3 4 5 6 0 1 7 2]

permute(A, Index) = [4 2 2 5 7 3 1 7]

FIGURE 1.9

The split operation packs the elements with a 0 in the corresponding flag
position to the bottom of a vector, and packs the elements with a 1 to the
top of the same vector. The permute writes each element of A to the index
specified by the corresponding position in Index.

PRAM.2 If we assume that n keys are each O(lg n) bits long, then the overall
algorithm runs in time:

O((
n

p
+ lg p) lg n) = O(

n

p
lg n + lg n lg p).

1.4
Recurrence Equations

This section shows how various recurrence equations can be solved using
the scan operation. A recurrence is a set of equations of the form

xi = fi(xi−1, xi−2, · · · , xi−m), m ≤ i < n (1.3)

2On an CREW PRAM we can use the scan described in Chapter 4 to get a time of O(n/p+

lg p/ lg lg p).

rev(n - scan(+, rev(Flags)) // rev = reverse
scan(+, not(Flags))

COMP 322, Spring 2024 (M. Joyner)

Parallel Scan Sum (I-Down): Upward Sweep

2

Upward sweep is just like Parallel Reduction, except that partial sums are also
stored along the way

1. Receive values from left and right children
2. Compute left+right and store in box
3. Send left+right value to parent

not(Flags):

0

0

3

2 1

3

0

1

0 0 0 0 1 1 0 1

COMP 322, Spring 2024 (M. Joyner)

Parallel Scan Sum (I-Down): Downward Sweep

3

1. Receive value from parent (root receives 0)
2. Send parent’s value to LEFT child (prefix sum for elements to left of left

child’s subtree)
3. Send parent’s value+ left child’s box value to RIGHT child (prefix sum for

elements to left of right child’s subtree)

scan (I-down)

0

0

0
3

2 1

3

0

0 0

0

0 0 0
0 0 0 01 1

0 1 2

2

2

not(Flags)

COMP 322, Spring 2024 (M. Joyner)

Parallel Pre-scan Sum (I-Up): Upward Sweep

4

Upward sweep is just like Parallel Reduction, except that partial sums are also
stored along the way

1. Receive values from left and right children
2. Compute left+right and store in box
3. Send left+right value to parent

rev(Flags):

1

1

5

2 2

4

0

1

0 1 0 0 1 1 1 1

COMP 322, Spring 2024 (M. Joyner)

Parallel Scan Sum (I-Up): Downward Sweep

5

prescan

0

1

1
5

2 2

4

scan

0

1 1

1

0 1 1

0 1 0 11 1

1 2 3

3

4

rev(Flags)

0 1 1 1 2 3 4 5

n - scan 8 7 7 7 6 5 4 3

rev(n - scan): I-Up 3 4 5 6 7 7 7 8

