
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 13: Barrier Synchronization
(contd)

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 13 11 February 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Announcements!
•  Homework 4 due by 5pm on Wednesday, Feb 16th

— We will try and return graded homeworks by Feb 23rd

•  Guest lecture on Bitonic Sort by John Mellor-Crummey on
Friday, Feb 18th

•  Feb 23rd lecture will be a Midterm Review
•  No lecture on Friday, Feb 25th since midterm is due that day

— Midterm will be a 2-hour take-home written exam
— Will be given out at lecture on Wed, Feb 23rd
— Must be handed in by 5pm on Friday, Feb 25th

COMP 322, Spring 2011 (V.Sarkar)	

3

Acknowledgments for Todayʼs Lecture!
•  “Principles of Parallel Programming”, Calvin Lin & Lawrence

Snyder, Addison-Wesley, 2009
— Includes resources available at http://www.pearsonhighered.com/

educator/academic/product/0,3110,0321487907,00.html

•  Handout for Lectures 12 and 13

COMP 322, Spring 2011 (V.Sarkar)	

4

Barrier Synchronization using HJʼs “next”
statement (recap of Hello-Goodbye example)!

rank.count = 0; // rank object contains an int field, count!

forall (point [i] : [0:m-1]) {!

 int r;!

 isolated {r = rank.count++;}!

 System.out.println(“Hello from task ranked “ + r);!

 next; // Acts as barrier between phases 0 and 1!

 System.out.println(“Goodbye from task ranked “ + r);!

}
•  next  each forall iteration suspends at next until all iterations arrive

(complete previous phase), after which the phase can be advanced
Observation 1: Scope of synchronization is the closest enclosing forall statement
Observation 2: If a forall iteration terminates before executing “next”, then

the other iterations do not wait for it
Observation 3: Different forall iterations may perform “next” at different

program points e.g., consider a conditional based on the forall index value

Phase 0

Phase 1

COMP 322, Spring 2011 (V.Sarkar)	

5

Impact of barrier on scheduling forall
iterations!

 Modeling a next
operation in the
computation graph

Forall
iterations

Phase 0 Phase 1

i=0
i=1
i=2
i=3

SIG

SIG

SIG

WAIT

SIG
WAIT

WAIT

WAIT

next
signal edges

wait edges

COMP 322, Spring 2011 (V.Sarkar)	

6

Observation 1: Scope of synchronization for
“next” is closest enclosing forall statement!

forall (point [i] : [0:m-1]) {!

 System.out.println(“Starting forall iteration ” + i);!

 next; // Acts as barrier for forall-i!

 forall (point [j] : [0:n-1]) {!

 System.out.println(“Hello from task (“ + i + “,” !

 + j + “)”);!

 next; // Acts as barrier for forall-j!

 System.out.println(“Goodbye from task (“ + i + “,” !

 + j + “)”);!

 } // forall-j!

 next; // Acts as barrier for forall-i!

 System.out.println(“Ending forall iteration ” + i);!

} // forall-i

COMP 322, Spring 2011 (V.Sarkar)	

7

Observation 2: If a forall iteration terminates before
“next”, then other iterations do not wait for it!

1.   forall (point[i] : [0:m-1]) {!
2.   for (point[j] : [0:i]) {!
3.   // Forall iteration i is executing phase j!
4.   System.out.println("(" + i + "," + j + ")");!
5.   next;!
6.   }!
7.   }!

•  Outer forall-i loop has m iterations, 0…m-1
•  Inner sequential j loop has i+1 iterations, 0…i
•  Line 4 prints (task,phase) = (i, j) before performing a next operation.
•  Iteration i = 0 of the forall-i loop prints (0, 0), performs a next, and

then terminates. Iteration i = 1 of the forall-i loop prints (1,0),
performs a next, prints (1,1), performs a next, and then terminates.
And so on.

COMP 322, Spring 2011 (V.Sarkar)	

8

Illustration of previous example!
•  Iteration i=0 of the forall-i

loop prints (0, 0) in Phase 0,
performs a next, and then
ends Phase 1 by terminating.

•  Iteration i=1 of the forall-i
loop prints (1,0) in Phase 0,
performs a next, prints (1,1)
in Phase 1, performs a next,
and then ends Phase 2 by
terminating.

•  And so on until iteration i=8
ends an empty Phase 8 by
terminating

Phase 0

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

Phase 7

Phase 8

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7
 | | | | | | | |
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)
 | | | | | | | |
next ----- next ----- next ----- next ----- next ----- next ----- next ----- next
 | | | | | | | |
 | (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)
 | | | | | | | |
end ----- next ----- next ----- next ----- next ----- next ----- next ----- next
 | | | | | | |

 | (2,2) (3,2) (4,2) (5,2) (6,2) (7,2)
 | | | | | | |
 end ----- next ----- next ----- next ----- next ----- next ----- next

 | | | | | |
 | (3,3) (4,3) (5,3) (6,3) (7,3)

 | | | | | |
 end ----- next ----- next ----- next ----- next ----- next

 | | | | |
 | (4,4) (5,4) (6,4) (7,4)

 | | | | |
 end ----- next ----- next ----- next ----- next

 | | | |
 | (5,5) (6,5) (7,5)

 | | | |
 end ----- next ----- next ----- next

 | | |
 | (6,6) (7,6)

 | | |
 end ----- next ----- next

 | |
 | (7,7)

 | |
 end ----- next

 |
 end

i=0…7 are forall iterations

(i,j) = println output

next = barrier operation

end = termination of a forall iteration

COMP 322, Spring 2011 (V.Sarkar)	

9

Observation 3: Different forall iterations may perform
“next” at different program points!

1.   forall (point[i] : [0:m-1]) {!
2.   if (i % 2 == 1) { // i is odd!
3.   oddPhase0(i);!
4.   next;!
5.   oddPhase1(i);!
6.   } else { // i is even!
7.   evenPhase0(i);!
8.   next;!
9.   evenPhase1(i);!
10.   } // if-else!
11.   } // forall!
•  Barrier operation synchronizes odd-numbered iterations at line 4 with

even-numbered iterations in line 8
•  next statement may even be in a method such as oddPhase1()

COMP 322, Spring 2011 (V.Sarkar)	

10

Recap: incorrect translation of PRAM Array
sum algorithm to task-parallel program!

1.  forall (point[i] : [0:n/2-1]) {
2.  for (point[j] : [0:ceilLog2(n)-1]) {
3.  int exp2j = 1<<j;
4.  if (i % exp2j == 0 && 2*i+exp2j < n)
5.  A[2*i] = A[2*i] + A[2*i+exp2j]
6.  } // for
7.  } // forall
8.  static int ceilLog2(int n) { // returns 0 if n <= 0
9.  int r=0; while (n > 1) { r++; n = n >> 1; } return r;
10.  }
Is there a data race in this program?
If so, why was the PRAM algorithm correct?

COMP 322, Spring 2011 (V.Sarkar)	

11

Correct translation of PRAM Array sum
algorithm to HJ using for-forall structure!

1.  for (point[j] : [0:ceilLog2(n)-1]) {
2.  forall (point[i] : [0:n/2-1]) {
3.  int exp2j = 1<<j;
4.  if (i % exp2j == 0 && 2*i+exp2j < n)
5.  A[2*i] = A[2*i] + A[2*i+exp2j]
6.  } // forall
7.  } // for

•  Moving the forall loop inside the for loop inserts implicit finish
after each step (lines 3, 4, 5)

•  Think of a PRAM program as sequential at the outer level, while
executing each step as a forall loop across all processors

COMP 322, Spring 2011 (V.Sarkar)	

12

Correct translation of PRAM Array sum
algorithm to HJ using forall-for-next!

1.  forall (point[i] : [0:n/2-1]) {
2.  for (point[j] : [0:ceilLog2(n)-1]) {
3.  int exp2j = 1<<j;
4.  if (i \% exp2j == 0 && 2*i+exp2j < n)
5.  A[2*i] = A[2*i] + A[2*i+exp2j]
6.  next; // barrier ensures lock-step semantics
7.  } // for
8.  } // forall

•  You can also think of a PRAM program as parallel at the outer
level with a barrier (next) operation at each step to synchronize
all processors

COMP 322, Spring 2011 (V.Sarkar)	

13

next-end

signal edges

wait edges

next-start

single-statement

Next-with-Single Statement!

 next <single-stmt> is
a barrier in which
single-stmt is
performed exactly
once after all tasks
have completed the
previous phase and
before any task
begins its next phase.

 Modeling next-with-single
in the Computation Graph

COMP 322, Spring 2011 (V.Sarkar)	

14

Use of next-with-single to print a log message
between Hello and Goodbye phases (Listing 6)!

1.  rank.count = 0; // rank object contains an int field, count
2.  forall (point[i] : [0:m-1]) {
3.  // Start of Hello phase
4.  int r;
5.  isolated {r = rank.count++;}
6.  System.out.println("Hello from task ranked " + r);
7.  next { // single statement
8.  System.out.println("LOG: Between Hello & Goodbye Phases");
9.  }
10.  // Start of Goodbye phase
11.  System.out.println("Goodbye from task ranked " + r);
12. } // forall

COMP 322, Spring 2011 (V.Sarkar)	

15

One-Dimensional Iterative Averaging Example!

•  Initialize a one-dimensional array of (n+2) double’s with boundary
conditions, myVal[0] = 0 and myVal[n+1] = 1.

•  In each iteration, each interior element myVal[i] in 1..n is replaced by
the average of its left and right neighbors.
— Two separate arrays are used in each iteration, one for old values and the

other for the new values

•  After a sufficient number of iterations, we expect each element of
the array to converge to myVal[i] = i/(n+1)
— In this case, myVal[i] = (myVal[i-1]+myVal[i+1])/2, for all i in 1..n

Illustration of an intermediate step for n = 8 (source: Figure 6.19 in Lin-Snyder book)

COMP 322, Spring 2011 (V.Sarkar)	

16

HJ code for One-Dimensional Iterative Averaging
using nested for-forall structure (Listing 8)!

1.  double[] myVal = new double[n]; myVal[0] = 0; myVal[n+1] = 1;
2.  for (point [iter] : [0:iterations-1]) {
3.  // Output array MyNew is computed as function of
4.  // input array MyVal from previous iteration
5.  double[] myNew = new double[n]; myNew[0] = 0; myNew[n+1] = 1;
6.  forall (point [j] : [1:n]) { // Create n tasks
7.  myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
8.  } // forall
9.  myVal = myNew; // myNew becomes input array for next iteration
10. } // for

•  How many tasks does this version create?
•  This is an idealized version with no batching of forall iterations and a new

array allocation in each iteration of the for-iter loop

COMP 322, Spring 2011 (V.Sarkar)	

17

HJ code for One-Dimensional Iterative Averaging
using nested forall-for-next structure (Listing 9)!

1.  // Assume that myVal and myNew are mutable fields of type double[]
2.  myNew = new double[n]; myNew[0] = 0; myNew[n+1] = 1;
3.  forall (point [j] : [1:n]) { // Create n tasks
4.  for (point [iter] : [0:iterations-1]) {
5.  next { // single statement
6.  myVal = myNew; // myNew becomes input array for next iteration
7.  myNew = new double[n]; myNew[0] = 0; myNew[n+1] = 1;
8.  }
9.  myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
10.  } // for
11. } // forall
•  How many tasks does this version create?
•  This version uses next-with-single to synchronize array allocation in each

iteration of the for-iter loop

