COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 13: Barrier Synchronization
(contd)

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

COMP 322 Lecture 13 11 February 2011

Announcements

* Homework 4 due by 5pm on Wednesday, Feb 16
—We will try and return graded homeworks by Feb 23rd

* Guest lecture on Bitonic Sort by John Mellor-Crummey on
Friday, Feb 18

* Feb 23 |ecture will be a Midterm Review

* No lecture on Friday, Feb 25™ since midterm is due that day
— Midterm will be a 2-hour take-home written exam
— Will be given out at lecture on Wed, Feb 23
—Must be handed in by 5pm on Friday, Feb 25

2 COMP 322, Spring 2011 (V.Sarkar) &

Acknowledgments for Today’s Lecture

* "Principles of Parallel Programming”, Calvin Lin & Lawrence
Snyder, Addison-Wesley, 2009

—Includes resources available at http://www.pearsonhighered.com/
educator/academic/product/0,3110,0321487907,00.html

* Handout for Lectures 12 and 13

3 COMP 322, Spring 2011 (V.Sarkar) &

Barrier Synchronization using HJ’s “next”
statement (recap of Hello-Goodbye example)

rank.count = 0; // rank object contains an int field, count
forall (point [i] : [O0:m-1]) {
int r;
isolated {r = rank.count++;} — Phase O
System.out.println(“Hello from task ranked “ + r);

—

next; // Acts as barrier between phases 0 and 1

System.out.println(“Goodbye from task ranked “ + r);} Phase 1
}

* next = each forall iteration suspends at next until all iterations arrive
(complete previous phase), after which the phase can be advanced

Observation 1: Scope of synchronization is the closest enclosing forall statement

Observation 2: If a forall iteration terminates before executing "next”, then
the other iterations do not wait for it

Observation 3: Different forall iterations may perform “next” at different
program points e.g., consider a conditional based on the forall index value

4 COMP 322, Spring 2011 (V.Sarkar) %\?3

Impact of barrier on scheduling forall

iterations
Barrier Region
" v i=0
Forall | e e i=1
iterations i=2
— i=3
Phase O Phase 1 tim e,
Ay Az A %4
Modeling a next K& ;
operation in the signal edges /
computation graph next

wait edges LAl/‘{ \}\3\%4
S S 3

5 COMP 322, Spring 2011 (V.Sarkar) »@J

Observation 1: Scope of synchronization for
“next” is closest enclosing forall statement

forall (point [i] : [O:m-1]) {
System.out.println(“Starting forall iteration ” + 1i);
next; // Acts as barrier for forall-i
forall (point [j] : [0:n-1]) {
System.out.println(“Hello from task (“ + i + “,”
+ 3 o))
next; // Acts as barrier for forall-j
System.out.println(“Goodbye from task (“ + i + “,”
t 3o)
} // forall-j
next; // Acts as barrier for forall-i

System.out.println(“Ending forall iteration ” + i);

} // forall-i

6 COMP 322, Spring 2011 (V.Sarkar))

Observation 2: If a forall iteration terminates before
“next”, then other iterations do not wait for it

1. forall (point[i]
2 for (point[j]
3

4.

5 next;

6 }

7. }

[0:m-17) {
[0:1]) {

// Forall iteration i is executing phase j

System.out.println("(" + i + "," + 3 + ")");

Outer forall-i loop has m iterations, 0..m-1

Inner sequential j loop has i+1 iterations, O..i

Line 4 prints (task,phase) = (i, j) before performing a next operation.

Iteration i = O of the forall-i loop prints (0, 0), performs a next, and
then terminates. Iteration i = 1 of the forall-i loop prints (1,0),
performs a next, prints (1,1), performs a next, and then terminates.
And so on.

COMP 322, Spring 2011 (V.Sarkar)

lllustration of previous example

* Iteration i=0 of the forall-i U A
loop prints (O, O) in Phase O, 00 (0 o G0 6o Gy 60 @0 Phase 0
per'for'ms a neX'l', Clnd then next ----- next ----- next ----- next ----- next ----- next ----- next ----- next
endS Phase 1 by Ter'mma'flﬂg. I (1|,1) (2|,1) (;1,,1) (1,1) (5|,,1) (4,1) (7|,1) Phase 1
I I I I I I I I
° I-'-eration i:l of The fora"_i end -—-- next ----- next ----- next ----- next ----- next -—--next ----- next
. . I I I I I I I
loop prints (1,0) in Phase O, @2 @) @a 2 62 (2 Phase 2
perfor'ms a neXT, prinTs (1,1) end ----- next ----- next ----- next ----- next ----- next ----- next
in Phase 1, per'for'ms a hext, i (:%,3) (+,3) (.r:),a) (%,3) (7:,3) Phase 3
and Then. ends Phase 2 bY end - next ----- next ----- next ----- next ----- next
I I I I I
Term"‘atlng' I (T,4) (5|>,4) (f|5,4) (7I,4) Phase 4
* And so on until iteration i=8 end —— next ——next —next -—next
ends an empty Phase 8 by T P P Phase 5
termmatmg elnd ----- nlext ----- nl—)xt ----- nl—)xt
I I I
I (6.6) (7.6) Phase 6
i=0...7 are forall iterations | | |
end ----- next ----- next
(i,j) = printin output I (;’7) Phase 7
next = barrier operation elnd _____ n!axt
end = termination of a forall iteration elnd Phase 8

8 COMP 322, Spring 2011 (V.Sarkar) F@S

Observation 3: Different forall iterations may perform
“next” at different program points

forall (point[i] : [0:m-1]) {
if (i $2==1) { // i is odd
oddPhaseO (i) ;

next;

1

2

3

4

5. oddPhasel (i) ;

6 } else { // i is even
7 evenPhaseO(1i);
8 next;

9

evenPhasel(i);
10. } // if-else
11. } // forall

* Barrier operation synchronizes odd-numbered iterations at line 4 with
even-numbered iterations in line 8

* next statement may even be in a method such as oddPhasel()

9 COMP 322, Spring 2011 (V.Sarkar) &

Recap: incorrect translation of PRAM Array
sum algorithm to task-parallel program

1. forall (point[i] : [0:n/2-1]) {

2 for (point[j] : [O:ceilLog2(n)-1]) {

3 int exp2j = 1<<j;

4. if (i % exp2j == 0 && 2*i+exp2j < n)

5 A[2*i] = A[2%i] + A[2%i+exp2j]

6 }// for

7. }// forall

8. static int ceilLog2(int n) { // returns O if n <= O

9. int r=0; while (n > 1) {r++; n=n >> 1; } return r;

10. }
Is there a data race in this program?
If so, why was the PRAM algorithm correct?

10 COMP 322, Spring 2011 (V.Sarkar) &

Correct translation of PRAM Array sum
algorithm to HJ using for-forall structure

. for (point[j] : [O:ceilLog2(n)-1]) {
forall (point[i] : [0:n/2-1]) {
int exp2j = 1<<j;
if (i % exp2j == 0 && 2*i+exp2j < n)
A[2*i] = A[2*i] + A[2%i+exp2j]
} // forall
. }// for

No o s wN e

* Moving the forall loop inside the for loop inserts implicit finish
after each step (lines 3, 4, 5)

* Think of a PRAM program as sequential at the outer level, while
executing each step as a forall loop across all processors

11 COMP 322, Spring 2011 (V.Sarkar) &

Correct translation of PRAM Array sum
algorithm to HJ using forall-for-next

1. forall (point[i] : [0:n/2-1]) {

2. for (point[j] : [O:ceilLog2(n)-1]) {

3 int exp2j = 1<<j;

4 if (i \% exp2j == 0 && 2*i+exp2j < n)

5. A[2%i] = A[2*i] + A[2*i+exp2j]

6 next:; // barrier ensures lock-step semantics
7. }Y// for
8. }// forall

* You can also think of a PRAM program as parallel at the outer
level with a barrier (next) operation at each step to synchronize
all processors

12 COMP 322, Spring 2011 (V.Sarkar) &

Next-with-Single Statement

Modeling next-with-single
in the Computation Graph

next <single-stmt> is

a barrier in which %\‘ ;
smgle-sfm‘l' IS signal edg(%N

erformed exactl
5nce after all Tas);(s "e"t'Start
have completed the
Erevnous phase and
efore any task |
begins its nex’r phase. next-end

wait edges t\l/‘{ \}\3\%I
S5 S 3

smgle-statement

13 COMP 322, Spring 2011 (V.Sarkar) &

Use of next-with-single to print a log message
between Hello and Goodbye phases (Listing 6)

1. rank.count = O; // rank object contains an int field, count
2. forall (point[i] : [0:m-1]) {
3. // Start of Hello phase
int r;
isolated {r = rank.count++;}
System.out.printin("Hello from task ranked " + r);
next { // single statement
System.out.printin("LOG: Between Hello & Goodbye Phases");

.
10. // Start of Goodbye phase

11. System.out.printin("Goodbye from task ranked " + r);
12.} // forall

e NSO

14 COMP 322, Spring 2011 (V.Sarkar) &

One-Dimensional lterative Averaging Example

* Initialize a one-dimensional array of (n+2) double's with boundary
conditions, myVal[0] = O and myVal[n+1] = 1.

* In each iteration, each interior element myVal[i] in 1..n is replaced by
the average of its left and right neighbors.

— Two separate arrays are used in each iteration, one for old values and the
other for the new values

* After a sufficient number of iterations, we expect each element of
the array to converge to myVal[i] = i/(n+1)

— In this case, myVal[i] = (myVal[i-1]+myVal[i+1])/2, for all i in 1..n

Illustration of an intermediate step for n = 8 (source: Figure 6.19 in Lin-Snyder book)

m0.34 0.21/0.8610.65|0.11(0.43|10.97|0.51 pesk)
? §

Y = ?

Boundary value Interior values Boundary value

15 COMP 322, Spring 2011 (V.Sarkar) &

HJ code for One-Dimensional Iterative Averaging
using nested for-forall structure (Listing 8)

1. double[] myVal = new double[n]. myVal[O] = O; myVal[n+1] = 1;
2. for (point [iter] : [O:iterations-1]) {
3. // Output array MyNew is computed as function of
// input array MyVal from previous iteration
double[] myNew = new double[n]. myNew[0] = O: myNew[n+1] = 1;
forall (point [j] : [1:n]) { // Create n tasks
myNew[j] = (myVal[j-1] + myVal[j+1])/2.0:;
} // forall

myVal = myNew; // myNew becomes input array for next iteration
10.} // for

0o NOoSO

How many tasks does this version create?

This is an idealized version with no batching of forall iterations and a new
array allocation in each iteration of the for-iter loop

16 COMP 322, Spring 2011 (V.Sarkar) &

HJ code for One-Dimensional Iterative Averaging
using nested forall-for-next structure (Listing 9)

1. // Assume that myVal and myNew are mutable fields of type double[]
2. myNew = new double[n]: myNew([0] = O; myNew[n+1] = 1;

3. forall (point [j] : [1:n]) { // Create n tasks

4. for (point [iter] : [O:iterations-1]) {

5. next { // single statement

6. myVal = myNew; // myNew becomes input array for next iteration
7. myNew = new double[n]; myNew[0] = O: myNew[n+1] = 1;

8. }

9. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

10. } // for

11.} // forall

How many tasks does this version create?

This version uses next-with-single to synchronize array allocation in each
iteration of the for-iter loop

17 COMP 322, Spring 2011 (V.Sarkar) &

