
COMP 322 Spring 2012

Homework 4: Parallel Constraint-Satisfaction Search
Instructor: Vivek Sarkar

Assigned March 7, 2012, due by 11:55pm on Wednesday, March 21, 2012
(1 programming problem totaling 100 points)

All homeworks should be submitted in a directory named “hw 4” using the turn-in script. It
is important that you start early on this homework to meet the deadline. Sections 1 and 2
contain background information. Your assignment is in Section 3.

Honor Code Policy: All submitted homeworks are expected to be the result of your individual effort. You
are free to discuss course material and approaches to problems with your other classmates, the teaching
assistants and the professor, but you should never misrepresent someone elses work as your own. If you use
any material from external sources, you must provide proper attribution.

1 Constraint Satisfaction Search algorithms

Constraint-satisfaction problems arise frequently in several applications areas including puzzle-solving and
engineering design. These problems are computationally intensive and well suited for speedup through
parallel processing. This assignment explores parallelization of constraint-satisfaction search algorithms that
use forward checking. It is well known that some form of look-ahead, as in forward checking, reduces the
sequential execution time for the application thereby making it a more credible candidate for parallelization
than simple backtracking. This assignment will focus on the use of constraint-satisfaction search in puzzle-
solving, with n-queens and Sudoku puzzles as two use cases.

In general, an intermediate state of a constraint-satisfaction search is characterized by a partial Problem
State in which some variables have a single assigned value, and a Feasible Value Table (FVT), that provides
a set of possible values for the remaining free variables. If the set becomes empty for any variable, then it
implies that no feasible solution can be derived from the given intermediate state. If an FVT has exactly
one value per variable, then it can be combined with the partial Problem State to obtain a complete Problem
State.

In the sequential code given to you, you can find the constraint-satisfaction search code in method search()

of ConstraintSatisfaction.hj, which is also shown in Listing 1 below.

1 public void search (ProblemState s tate , int curVar , FVT fv t) {
2 i f (curVar == fv t . getNumVars ())
3 problem . addSolut ion (s t a t e) ; // f e a s i b l e s o l u t i o n found
4 else {
5 I t e r a t o r<Integer> i t r = f v t . getValues (curVar) . i t e r a t o r () ;
6 while (i t r . hasNext ()) {
7 In t eg e r v = i t r . next () ;
8 ProblemState newState = s t a t e . copy () ;
9 newState . setValue (curVar , v) ;

10 FVT newFvt = forwardCheck (curVar , v , f v t) ;
11 i f (newFvt != null) search (newState , curVar+1, newFvt) ;
12 } // whi l e
13 } // i f
14 } // search ()

Listing 1: search() method in ConstraintSatisfaction.hj

In this method, parameter state (of type ProblemState) contains the partial problem statement on entry,
parameter curVar identifies the current variable to be explored in the search, and parameter fvt contains the

1 of 4

COMP 322
Spring 2012

Homework 4: Parallel Constraint-Satisfaction Search

FVT on entry. Line 2 checks if we are examining the last variable, in which case no further forward checking
is needed; instead, state and fvt together identify one or more solutions that can be added to the set of
feasible solutions. The loop body in lines 7–11 is then repeated for each feasible value v of curVar in fvt.
This can be seen in line 9 which constructs a new state in which curVar = v. The call to forwardCheck()

in line 10 prunes fvt to obtained a reduced newFvt that removes values of variables that are not feasible in
conjunction with curVar = v. If newFvt is null it means that no feasible solution is possible for curVar = v.
Otherwise, the recursive call to search() in line 11 explores feasible values for later variables.

1 public FVT forwardCheck (int curVar , I n t eg e r curVal , FVT fv t) {
2 FVT newFvt = new FVT(f v t . getNumVars ()) ;
3 for (int f r eeVar = curVar+1; f reeVar < f v t . getNumVars () ; f r eeVar++) {
4 I t e r a t o r<Integer> i t r = f v t . getValues (f reeVar) . i t e r a t o r () ;
5 while (i t r . hasNext ()) {
6 In t eg e r v = i t r . next () ;
7 i f (problem . i sCon s i s t e n t (curVar , curVal , f reeVar , v))
8 newFvt . addValue (freeVar , v) ;
9 } // whi l e

10 i f (newFvt . getValues (f reeVar) . s i z e ()==0) return null ;
11 } // f o r
12 return newFvt ;
13 } // forwardCheck ()

Listing 2: forwardCheck() method in ConstraintSatisfaction.hj

Listing 2 contains the sequential code for method forwardCheck() of ConstraintSatisfaction.hj, which
was called in line 10 of Listing 1. Line 3 iterates through the remaining free variables starting with curVar+1,
and line 5 iterates through the values v that can be taken by freeVar. The essence of forwardCheck() is
captured by the call to problem.isConsistent(curVar, curVal, freeVar, v) in line 7, which checks if
the assignment of v to freeVar is consistent with the assignment of curVal to curVar. If so, the assignment
of v to freeVar is added to newFvt (otherwise, it is not added). Line 10 checks if the set of feasible values
for freeVar is empty. If so, a null value is returned instead of newFvt since no feasible solution exists at
this point.

2 The Sequential Constraint-Satisfaction Solver

We have provided you an implementation of a sequential constraint-satisfaction search algorithm in a zip
file containing the following:

1. IConstraintSystem.hj — this interface defines the methods that a game/puzzle should implement in
order for it to be solvable by our solver.

2. ProblemState.hj — this class represents the state of the game.

3. ConstraintSatisfaction.hj — this file contains a sequential implementation of the constraint-satisfaction
search algorithm as described above.

4. NQueens.hj — client solver for the NQueens problem.

5. Sudoku.hj — client solver for Sudoku, with a Reader to read input problems from the disk.

6. NQueensMain.hj — main program that starts and validates the results of the NQueens solver.

7. SudokuMain.hj — main program that starts and validates the results of the Sudoku solver.

2 of 4

COMP 322
Spring 2012

Homework 4: Parallel Constraint-Satisfaction Search

As usual, you can compile the code by typing “hjc Main.hj” and running with “hj -places 1:8 Main”
(for an execution with 8 workers), where Main refers to the appropriate Main class that you plan to use.

Many puzzles can be represented by a set of rules that, applied on the current state of the puzzle, decide
what are the possible actions that can be performed, which lead to a new puzzle state (with an assignment of
values to a subset of free variables), thereby making them amenable to constraint-satisfaction search. This
homework focuses on NQueens and Sudoku as two examples of such puzzles.

Alternative approaches to solving the NQueens puzzle have already been studied in class (Lab 4). The
default size used by NQueensMain for this problem is n = 12.

Sudoku is a popular puzzle game that requires players to fill in missing numbers from 0 to N-1 on a square
N×N board, taking into account the following constraints:

• No square contains more than a number

• Every number appears only once on each column of the board.

• Every number appears only once on each row of the board.

• Every number appears only once in each individual region of the board. Regions are usually rectangular
areas of size

√
N ×

√
N size.

Although Sudoku games are usually 9×9 with 3×3 regions, as in the 9x9.txt file, there are also variations
that take larger board sizes as input, such as 16x16.txt with 4x4 regions. If 9x9 boards use the digits 0..9
to fill the board, larger sizes use 1..9, A, B, C, etc for the same purpose. Furthermore, some variations of
Sudoku allow for multiple solutions, and the solver provided indeed finds all the possible solutions. If a cost
function is specified, the solver must find the “cheapest“ solution. The supplied serial solver already does
that for you; however, it is your responsibility to keep the solver working in all case. The default input used
by SudokuMain.hj is 9x9-2-multisol.txt.

3 Your Assignment: Parallel Constraint-Satisfaction Search

Your assignment is to design and implement a parallel algorithm for constraint-satisfaction search, using the
provided sequential implementation as a starting point. Your homework deliverables are as follows.

1. [Computation of all solutions (30 points)]
Create a new parallel version of ConstraintSatisfaction.hj that is designed to achieve the smallest
execution time using 8 cores on a dedicated Sugar compute node to return all possible solutions to the
problem. (To obtain a dedicated compute node, use the qsub command discussed in the lab exercises
since Lab 4). You will be graded on the real speedup achieved relative to the sequential version.
You can focus your attention on parallelizing the search() method. Keep in mind that the call to
problem.addSolution() in line 3 of Listing 1 is not thread-safe i.e., it can lead to interference and
data races if it is called multiple times (with different solutions) in parallel.

Your solution should work for any constraint-satisfaction problem, but you should test it with NQueensMain.hj,
both for correctness and for achieving the best performance that you can relative to the sequential ver-
sion. The addSolution() method in NQueensCS.hj accumulates all solutions into a single array. (It
does not attempt to find the best solution according to some cost function.)

Please place all files related to this solution in a sub directory named “hw 4/part1”.

3 of 4

COMP 322
Spring 2012

Homework 4: Parallel Constraint-Satisfaction Search

2. [Computation of lowest-cost solution (40 points)]
Create a new parallel version of ConstraintSatisfaction.hj that is designed to achieve the smallest
execution time using 8 cores on a dedicated Sugar compute node to return a single solution with lowest
cost (so long as at least one feasible solution exists). While one approach is to simply reuse the solution
from Part 1 above and return the solution with lowest cost, you can be smarter and reduce the work
done by pruning the exploration of partial solutions that are guaranteed to never lead to a solution
lower than the current best solution. You will be graded on the real speedup achieved by both your
sequential and parallel versions relative to this brute-force approach. (The speedup will come from a
combination of algorithmic improvements and from parallel computing.)

Your solution should work for any constraint-satisfaction problem with a cost function, but you should
test it with SudokiMain.hj, both for correctness and for achieving the best performance that you can.
The addSolution() method in SudokuCS.hj stores the best solution found (if any) using a (artificial)
cost function that corresponds to the single BigInteger value obtained by scanning the digits from
left-to-right and top-down in the solution. accumulates all solutions into a single array.

Please place all files related to this solution in a subdirectory named “hw 4/part2”.

3. [Homework report (30 points)]
You should submit a brief report summarizing the design of your parallel algorithms in Parts 1 and 2
above, explaining why you believe that each implementation is correct and data-race-free.

Your report should also include the following measurements for both parts 1 and 2:

(a) Performance of the sequential version with the default input

(b) Performance of the parallel version with the default input, executed with the “-places 1:1”,
“-places 1:2”, “-places 1:4” and “-places 1:8” options on a Sugar compute node to run
with 1, 2, 4 and 8 workers.

Please place the report file(s) in the top-level hw 4 directory.

4 of 4

	Constraint Satisfaction Search algorithms
	The Sequential Constraint-Satisfaction Solver
	Your Assignment: Parallel Constraint-Satisfaction Search

