
COMP 322 Spring 2012

Lab 10: Java Locks
Instructor: Vivek Sarkar

1 Turning in your lab assignments — NEW!

We’re asking all COMP 322 students to turn in their lab assignments before leaving. You will need to do
the following:

1. Create a directory called lab 10/ in your SUGAR account.

2. Do all your work for today’s lab in this directory.

3. Before you leave, create a zip file of your work by changing to the parent directory for lab 10/ and
issuing the following command, “ zip -r lab 10.zip lab 10”.

4. Use the turn-in script to submit the contents of the lab 10.zip file as a new lab 10 directory in your
turnin directory. (Transfer the file to your CLEAR account of needed.)

2 Setup on SUGAR

As before, run the following command on SUGAR to setup the environment for executing HJ and Java
programs:
source /users/COMP322/hjsetup.txt

To request a dedicated compute node, you should use the following command (as usual) from a SUGAR login
node:
qsub -q commons -I -V -l nodes=1:ppn=8,walltime=00:30:00
When successful, it will give you a command shell on a dedicated 8-core compute node for your use for 30
minutes at a time. Your home directory is the same on both the login and compute nodes.

3 Sorted Linked List Example using Java’s Synchronized Methods

NOTE: see slides for Lectures 29 and 30 for a recap of Java’s synchronized statement and locking libraries
respectively.

Download the lab10.zip archive from the course web page. It consist of six files: SyncList.java, ListDriver.java,
ListCounter.java, ListSet.java, ListTest.java, RWMix.java. Of these, you only need to focus on
SyncList.java, which contains a thread-safe implementation of a sorted linked list that supports contains(),
add() and remove() methods. The default driver options creates 8 threads that repeatedly calls these three
methods with a distribution that aims for 98% read operations (calls to contains()), 1% add operations,
and 1% remove operations.

For this section, your tasks are as follows:

1. Compile all Java files by issuing the command, javac *.java.

2. Execute the SyncList class with the default driver options by issuing the command,
java ListDriver -b ListTest -s SyncList

Observe the performance reported next to the text “Operations per seconds:”. Since this is a through-
put metric, a larger value will indicate better performance.

1 of 2



COMP 322
Spring 2012

Lab 10: Java Locks

4 Use of Coarse-Grained Locking instead of Java’s Synchronized
Methods

The goal of this section is to replace the use of Java’s synchronized method in SyncList.java by explicit
locking instead. For this section, your tasks are as follows:

1. Make a copy of SyncList.java named CoarseList.java.

2. Replace two occurrences of “SyncList” by “CoarseList” in CoarseList.java.

3. Allocate a single instance of ReentrantLock when creating an instance of CoarseList. See slides 19
and 20 in Lecture 30 for this step, and the remaining steps below.

4. Replace the three occurrences of “synchronized” by appropriate calls to lock() and unlock(). Re-
member to use a try-finally block as follows to ensure that unlock() is always called:

lock.lock();

try { ... }

finally { lock.unlock(); }

5. Compile all Java files by issuing the command, javac *.java.

6. Execute the CoarseList class with the default driver options by issuing the command,
java ListDriver -b ListTest -s CoarseList

How does the performance compare with the performance observed for SyncList?

7. You can change the number of threads by using the “-t” option in the driver. Re-run the SyncList and
CoarseList classes with 1 thread instead of the default 8 threads by issuing the following commands:
java ListDriver -t 1 -b ListTest -s SyncList

java ListDriver -t 1 -b ListTest -s CoarseList

Can you explain the performance differences that you observe between 8 threads and 1 thread?

5 Use of Read-Write Locks

The goal of this section is to replace the use of a ReentrantLock in CoarseList.java by a ReadWriteReentrantLock,
so as to leverage the fact that the majority of the operations (98% by default) are calls to contains() which
are read-only in nature. For this section, your tasks are as follows:

1. Make a copy of CoarseList.java named CoarseRWList.java.

2. Replace two occurrences of “CoarseList” by “CoarseRWList” in CoarseRWList.java.

3. Replace the instance of ReentrantLock by an instance of ReadWriteReentrantLock. See slides 26 and
27 in Lecture 30 for this step, and the remaining steps below.

4. Replace the calls to lock() by readLock.lock() or writeLock.lock() where appropriate. Likewise for
unlock().

5. Compile all Java files by issuing the command, javac *.java.

6. Execute the CoarseRWList class with the default driver options by issuing the command,
java ListDriver -b ListTest -s CoarseRWList

How does the performance compare with the performance observed for CoarseList? Can you explain
the difference?

2 of 2


	Turning in your lab assignments — NEW!
	Setup on SUGAR
	Sorted Linked List Example using Java's Synchronized Methods
	Use of Coarse-Grained Locking instead of Java's Synchronized Methods
	Use of Read-Write Locks

