COMP 322 Spring 2012

Lab 11: Message Passing Interface (MPI)

Instructor: Vivek Sarkar

1 Turning in your lab assignments

We'’re asking all COMP 322 students to turn in their lab assignments before leaving. You will need to do
the following;:

1. Create a directory called 1ab_11/ in your SUGAR account.

2. Do all your work for today’s lab in this directory.

3. Before you leave, create a zip file of your work by changing to the parent directory for lab_11/ and
issuing the following command, “ zip -r lab_11.zip lab_11".

4. Use the turn-in script to submit the contents of the 1ab_11.zip file as a new lab_11 directory in your
turnin directory. (Transfer the file to your CLEAR account if needed.)

2 Setup on SUGAR

1. Download the lab11.zip file provided on the course wiki, and unzip its contents in the 1ab_11/ directory.
2. To request a dedicated compute node, you should use the following command (as usual) from a SUGAR
login node, “gsub -g commons -1 -V -l nodes=1:ppn=38,walltime=00:30:00".
When successful, it will give you a command shell on a dedicated 8-core compute node for your use for

30 minutes at a time. Your home directory is the same on both the login and compute nodes.

3. Run the following command in the 1ab_11/ directory to set up the environment for executing mpiJava
programs, “source setup.trt”.

3 Matrix Multiply using MPI-Java

Your assignment today is to fill in incomplete MPI calls in a matrix multiply example that uses mpiJava.
You should complete all the necessary MPI calls in MatrixMult. java, to make it work correctly. There are
comments (TODOs numbered 1 to 14) in the code that will help you with modifying these MPT calls. Also,
look at the slides for Lectures 33 and 34 for the syntax of mpiJava calls.

Though MPI is designed for execution on distributed-memory machines, we will create multiple sequential
MPI Processes within a single SUGAR node for the purpose of this lab. Thus, all parallelism will stem from
the use of multiple MPI processes within a single SUGAR node.

The steps to compile and run the updated MatrixMult. java file on the command line are as follows:

1. Compile the program with the Makefile provided: make
2. Run the program with the Makefile provided, using 8 processes: make run8

3. Repeat with 1, 2 and 4 processes: make runl
make run2
make rung

What performance differences do you see for different numbers of processes?

lofl



	Turning in your lab assignments
	Setup on SUGAR
	Matrix Multiply using MPI-Java

