
COMP 322 Spring 2012

Lab 12: Map-Reduce
Instructor: Vivek Sarkar

1 Turning in your lab assignments

We’re asking all COMP 322 students to turn in their lab assignments before leaving, as follows:

1. Create a directory called lab 12/ in your SUGAR account.

2. Do all your work for today’s lab in this directory.

3. Before you leave, create a zip file of your work by changing to the parent directory for lab 12/ and
issuing the following command, “ zip -r lab 12.zip lab 12”.

4. Use the turn-in script to submit the contents of the lab 12.zip file as a new lab 12 directory in your
turnin directory. (Transfer the file to your CLEAR account if needed.)

2 Update your HJ/DrHJ Installation

NOTE: for nostalgic (and other) reasons, this last COMP 322 lab will be done using HJ.

Please make sure that your HJ installation is current as of March 13, 2012. The performance measurements
for today’s lab should be done on Sugar, and we’ve already updated the HJ installation there. If you
are also working with a local installation, you can always update it from the HJ download page, https:
//wiki.rice.edu/confluence/display/PARPROG/HJDownload, if needed.

3 Map and Reduce Operations on Sets of Key-Value Pairs

The general idea behind Map-Reduce frameworks was introduced in Lectures 35–36. The map function
on a collection can be defined as follows, map (f , {x1 . . . xn}) = {f(x1), . . . , f(xn)}. Thus, map takes two
parameters as inputs, a unary function, f , and a collection, L, and returns a new list obtained by applying
f to each element in L. It is easy to see that the map function is intrinsically parallel since all applications
of function f are independent.

The reduce operation takes three parameters as inputs in general— a binary function, g, a collection, L, and
an init value that serves as the identity element. It returns as output a reduced value obtained by applying g
on all elements in the collection. For today’s lab, we will assume that all functions used for reduce operations
are both associative and commutative, hence making them amenable to parallel reductions.

It is convenient to extend the above definitions of map and reduce operations to sets of key-value pairs:

• Assume that the input set, L, is of the form {(k1, v1), . . . (kn, vn)}, where each element, (ki, vi) consists
of a key, ki, and a value, vi. Also assume that equality comparison is well defined on all key objects.

• Assume that each application of the map function f generates another set of intermediate key-value
pairs as follows, f(ki, vi) = {(k′1, v′1), . . . (k′m, v′m)}, where each element, (k′j , v

′
j) consists of a key, k′j ,

and a value, v′j . The k′j keys need not have any direct relationship with the ki key used in the input
of the map function.

• If a function f defined as above is used in a map operation, the map will generate a set of subsets of
key-value pairs. Assume that a flatten operation is performed as a post-pass after the map.

1 of 2

https://wiki.rice.edu/confluence/display/PARPROG/HJDownload
https://wiki.rice.edu/confluence/display/PARPROG/HJDownload

COMP 322
Spring 2012

Lab 12: Map-Reduce

• Assume that the reduce operation takes a set of intermediate key-value pairs, {(k′j , v′j)} as input, and
generates a set of reduced key value sets as output, {(k′j , v′′k)}, such that each key, k′j , appears in at
most one pair in the output, and the reduced value v′′k is the result of applying the function g on all
values v′j associated with key k′j in the input set.

Listing 1 shows how the WordCount problem can be solved using map and reduce operations on sets of
key-value pairs. All map operations in step a) (line 4) can execute in parallel with only local data accesses,
making the map step highly amenable to parallelization. Step b) (line 5) can involve a major reshuffle of data
as all key-value pairs with the same key are grouped (gathered) together. Finally, step c) (line 6) performs
a standard reduction algorithm for all values with the same key.

1 Input : set of words

2 Output : set of (word , count) pairs

3 Algorithm :
4 a) For each input word W , emit (W , 1) as a key−value pair (map step) .
5 b) Group together all key−value pairs with the same key (reduce step) .
6 c) Perform a sum reduction on all values with the same key (reduce step)←↩

.

Listing 1: Computing Wordcount using map and reduce operations on sets of key-value pairs

4 HJ’s Map-Reduce Framework

As discussed in the lecture, the MapReduce framework has been primarily designed for use in large distributed
(warehouse-scale) clusters. However, for simplicity, you will run your Map-Reduce jobs on a single SUGAR
node, as in prior lab sessions. Specifically, you will work with a simple MapReduce framework has been
developed for HJ clients.

A sample client can be seen in WordCount.hj. (The accompanying file, MapReduce.hj, will need to be
compiled for your lab to work correctly, but won’t need to be modified.)

The main features in WordCount.hj for using the framework can be found by searching for comments of
the form, “ MapReduce TODO”. As discussed in the lectures, a variety of problems can be solved using the
Map-Reduce approach by just changing the body of map() and reduce() functions.

Your assignment today is twofold:

1. Study the WordCount.hj program, and fill in some code in the body of the reduce() function as
indicated in the comments labeled ‘MapReduce TODO 5”.

Compile the program as follows, hjc -rt w WordCount.hj. (Recall that the “rt -w” option selects
the work-stealing scheduler with a work-first policy.)

Execute the program on a dedicated SUGAR compute node as follows, “hj -places 1:8 WordCount

words.txt 8 8”. (The last two arguments specify the number of map tasks and reduce tasks respec-
tively.)

Finally, re-execute the program on one processor as follows, “ hj -places 1:1 WordCount words.txt

1 1”. What difference do you see between the two performance measurements?

2. Copy the WordCount.hj program to a new filename, Index.hj, and rename the class to Index. The
goal of this part is to created an inverted index of words as outlined in slide 25 of Lecture 36. Since
all words come from one file in this example, the location of a word can just be specified by its start
and end positions. Thus, the inverted index should contain one entry per word, and the entry should
contain a collection of (start, end) position values to identify multiple locations of the given word.

Test your solution using the words.txt file, as with WordCount.

2 of 2

	Turning in your lab assignments
	Update your HJ/DrHJ Installation
	Map and Reduce Operations on Sets of Key-Value Pairs
	HJ's Map-Reduce Framework

