
COMP 322 Spring 2012

Lab 5: Tiny Matlab
Instructor: Vivek Sarkar

1 Matrix Expression Language

We have provided a sequential program, MatrixEval.hj, to evaluate matrix expressions consisting of the
following terms and operators:

• The only leaf terms supported are identifiers which can be of two forms:

Identity Matrix: An identifier of the form m〈num1〉 represents a square identity matrix of size
〈num1〉×〈num1〉. For example, m100 represents the 100 × 100 identity matrix. (The expres-
sion language has no variable declarations, so there’s no significance to the name m other than
the fact that it denotes a matrix.)

Random Matrix: An identifier of the form m〈num1〉x〈num2〉s〈seed〉 represents a random matrix of
size 〈num1〉×〈num2〉, for which the elements are generated using java.util.Random starting with
an integer (long) seed, and calling nextInt() to generate successive elements of the matrix. For
example, m100x200s5 represents the 100 × 200 random matrix generated using 5 as the initial
seed.

• The + operator represents matrix addition. An exception is thrown if the matrices don’t have the
same dimension sizes i.e., if they are not conformable. Otherwise, the matrix sum is returned.

• The − operator represents matrix subtraction. An exception is thrown if the matrices don’t have the
same dimension sizes i.e., if they are not conformable. Otherwise, the matrix difference is returned.

• The ∗ operator represents matrix multiplication. An exception is thrown if the number of columns in
the first matrix operand does not equal the number of rows in the second matrix operand i.e., if they
are not compatible for matrix multiplication. Otherwise, the matrix product is returned.

• Usual precedence and evaluation rules apply for the above operators, and parentheses can also be used.

As an example, “m3 + m3 * m3”, will be evaluated as follows:1 0 0
0 1 0
0 0 1

 +

1 0 0
0 1 0
0 0 1

×
1 0 0

0 1 0
0 0 1

 =

2 0 0
0 2 0
0 0 2

2 Parallelization using Data-Driven Tasks

The code in MatrixEval.hj parses the input expression, and then calls the eval() methods to evaluate
the expression. The major potential for parallelism is in the eval() method in class Binary, shown in
Listing 1. Given the semantics of expression evaluation, the calls to lft.eval() and rgt.eval() can
execute in parallel.

Your assignment today is to use the async await feature in HJ to parallelize the evaluation of these two
calls using data-driven tasks (DDTs) and data-driven futures (DDFs) (Lecture 8). HJ’s DataDrivenFuture

class now accepts type parameters, so you can use the DataDrivenFuture<Matrix> type for DDFs in this
assignment.

You should run your program on SUGAR, to evaluate the parallelization. As before, you can compile the
program as follows, after repeating the setup from Lab 4:

1 of 2

COMP 322
Spring 2012

Lab 5: Tiny Matlab

hjc MatrixEval.hj

To run the program, use the following command on a compute node (obtained using the “qsub -I . . .”
command discussed in Lab 4):

hj -places 1:8 MatrixEval test.txt

where test1.txt is a text file containing the input expression. What speedups do you see with paralleliza-
tion?

You’re welcome to test your code with other input expressions, both for correctness (with small matrices)
and for performance (with larger matrices). There is a PrintMatrix() method included that you may choose
to use when debugging your code with small inputs such as test0.txt.

1 public MatrixEval . Matrix eva l () {
2 switch (opr) {
3 case Lex i ca l . p lus :
4 return MatrixEval . matrixAdd (l f t . eva l () , r g t . eva l ()) ;
5 case Lex i ca l . minus :
6 return MatrixEval . matrixMinus (l f t . eva l () , r g t . eva l ()) ;
7 case Lex i ca l . t imes :
8 return MatrixEval . matr ixMult ip ly (l f t . eva l () , r g t . eva l ()) ;
9 default :

10 e r r o r (”Unhandled binary operator ”) ;
11 }
12 return null ;
13 }

Listing 1: Sequential implementation of eval() method in class Binary

2 of 2

	Matrix Expression Language
	Parallelization using Data-Driven Tasks

