
COMP 322 Spring 2012

Lab 5: Data-Driven Tasks
Instructor: Vivek Sarkar

1 Update your HJ/DrHJ Installation

The performance measurements for today’s lab should be done on Sugar, and we’ve already updated the HJ
installation there. (See Lab 4 handout on instructions to access the HJ installation in the COMP 322 userid
on Sugar.)

However, if you’re also working with a local installation, please update it from the HJ download page,
https://wiki.rice.edu/confluence/display/PARPROG/HJDownload, to make sure that you have the lat-
est updates and bug fixes.

2 Matrix Expression Language

We have provided a sequential program, MatrixEval.hj, to evaluate matrix expressions consisting of the
following terms and operators:

• The only leaf terms supported are identifiers which can be of two forms:

Identity Matrix: An identifier of the form m〈num1〉 represents a square identity matrix of size
〈num1〉×〈num1〉. For example, m100 represents the 100 × 100 identity matrix. (The expres-
sion language has no variable declarations, so there’s no significance to the name m other than
the fact that it denotes a matrix.)

Random Matrix: An identifier of the form m〈num1〉x〈num2〉s〈seed〉 represents a random matrix of
size 〈num1〉×〈num2〉, for which the elements are generated using java.util.Random starting with
an integer (long) seed, and calling nextInt() to generate successive elements of the matrix. For
example, m100x200s5 represents the 100 × 200 random matrix generated using 5 as the initial
seed.

• The + operator represents matrix addition. An exception is thrown if the matrices don’t have the
same dimension sizes i.e., if they are not conformable. Otherwise, the matrix sum is returned.

• The − operator represents matrix subtraction. An exception is thrown if the matrices don’t have the
same dimension sizes i.e., if they are not conformable. Otherwise, the matrix difference is returned.

• The ∗ operator represents matrix multiplication. An exception is thrown if the number of columns in
the first matrix operand does not equal the number of rows in the second matrix operand i.e., if they
are not compatible for matrix multiplication. Otherwise, the matrix product is returned.

• Usual precedence and evaluation rules apply for the above operators, and parentheses can also be used.

As an example, “m3 + m3 * m3”, will be evaluated as follows:1 0 0
0 1 0
0 0 1

 +

1 0 0
0 1 0
0 0 1

×
1 0 0

0 1 0
0 0 1

 =

2 0 0
0 2 0
0 0 2

1 of 3

https://wiki.rice.edu/confluence/display/PARPROG/HJDownload

COMP 322
Spring 2012

Lab 5: Data-Driven Tasks

3 Recap of Data-Driven Tasks

Data-driven tasks were covered in lecture 8. To use this feature, be sure to include the following import
statement at the start of your program: “import hj.lang.DataDrivenFuture;”

This extension is enabled by adding an await clause to the async statement as follows:

async await (DDF a, DDF b, · · ·) 〈 statement 〉

Each of DDF a, DDF b, · · · is an instance of the standard DataDrivenFuture class in HJ. A DDF acts as a
container for a single-assignment value, like regular future objects. However, unlike future objects, DDF’s
can be used in an await clause, and any async task can be a potential producer for a DDF (though only
one task can be the actual producer at runtime because of the single-assignment property).

The example HJ code fragment in Figure 1 shows five logically parallel tasks and how they are synchronized
through DDFs. Initially, two DDFs are created as containers for data items left and right. Then a finish

is created with five async tasks. The tasks, leftReader and rightReader, include left or right in their
await clauses respectively. The fifth task, bothReader, includes both both left and right in its await

clause. Regardless of the underlying scheduler, the first two asyncs are guaranteed to execute before the
fifth async.

DataDrivenFuture left = new DataDrivenFuture();

DataDrivenFuture right = new DataDrivenFuture();

finish { // begin parallel region

async left.put(leftBuilder()); // Task1
async right.put(rightBuilder()); // Task2
async await (left) leftReader(left.get()); // Task3
async await (right) rightReader(right.get());// Task4
async await (left, right) bothReader(left.get(), right.get()); //Task5

} // end parallel region

Figure 1: Example Habanero Java code fragment with Data-Driven Futures.

4 Parallelizing MatrixEval using Data-Driven Tasks

The code in MatrixEval.hj parses the input expression, and then calls the eval() methods to evaluate
the expression. The major potential for parallelism is in the eval() method in class Binary, shown in
Listing 1. Given the semantics of expression evaluation, the calls to lft.eval() and rgt.eval() can
execute in parallel.

Your assignment today is to use the async await feature in HJ to parallelize the evaluation of these two
calls using data-driven tasks (DDTs) and data-driven futures (DDFs) (Lecture 8). HJ’s DataDrivenFuture

class now accepts type parameters, so you can use the DataDrivenFuture<MatrixEval.Matrix> type for
DDFs in this assignment.

WARNING: you may need to modify method call interfaces e.g., adding a DDF parameter to eval(), to
complete this assignment.

You should run your program on SUGAR, to evaluate the parallelization. As before, you can compile the
program as follows, after repeating the setup from Lab 4:

hjc MatrixEval.hj

To run the program, use the following command on a compute node (obtained using the “qsub -I . . .”
command discussed in Lab 4):

2 of 3

COMP 322
Spring 2012

Lab 5: Data-Driven Tasks

hj -places 1:8 MatrixEval test.txt

where test1.txt is a text file containing the input expression. What speedups do you see with paralleliza-
tion?

You’re welcome to test your code with other input expressions, both for correctness (with small matrices)
and for performance (with larger matrices). There is a PrintMatrix() method included that you may choose
to use when debugging your code with small inputs such as test0.txt.

1 public MatrixEval . Matrix eva l () {
2 switch (opr) {
3 case Lex i ca l . p lus :
4 return MatrixEval . matrixAdd (l f t . eva l () , r g t . eva l ()) ;
5 case Lex i ca l . minus :
6 return MatrixEval . matrixMinus (l f t . eva l () , r g t . eva l ()) ;
7 case Lex i ca l . t imes :
8 return MatrixEval . matr ixMult ip ly (l f t . eva l () , r g t . eva l ()) ;
9 default :

10 e r r o r (”Unhandled binary operator ”) ;
11 }
12 return null ;
13 }

Listing 1: Sequential implementation of eval() method in class Binary

3 of 3

	Update your HJ/DrHJ Installation
	Matrix Expression Language
	Recap of Data-Driven Tasks
	Parallelizing MatrixEval using Data-Driven Tasks

