
COMP 322: Fundamentals of
Parallel Programming

Lecture 13: Forall Statements & Barriers
(contd)

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 13 8 February 2012

AtomicInteger rank = new AtomicInteger();

forall (point[i] : [0:m-1]) {

 int r = rank.getAndIncrement();

 System.out.println(“Hello from task ranked “ + r);

 next; // Acts as barrier between phases 0 and 1

 System.out.println(“Goodbye from task ranked “ + r);

}

• next è each forall iteration suspends at next until all iterations arrive
(complete previous phase), after which the phase can be advanced
— If a forall iteration terminates before executing “next”, then the other

iterations do not wait for it
— Scope of synchronization is the closest enclosing forall statement
— Special case of “phaser” construct (will be covered in following lectures)

COMP 322, Spring 2012 (V.Sarkar)

HJ’s forall statement = finish + forasync +
barriers (next)

Phase 0

Phase 1

2

COMP 322, Spring 2012 (V.Sarkar)

Recap of Observation 2 (Lecture 12): If a forall iteration
terminates before “next”, then other iterations do not wait for it

1. forall (point[i] : [0:m-1]) {

2. for (point[j] : [0:i]) {

3. // Forall iteration i is executing phase j

4. System.out.println("(" + i + "," + j + ")");

5. next;

6. }

7. }

• Outer forall-i loop has m iterations, 0…m-1

• Inner sequential j loop has i+1 iterations, 0…i

• Line 4 prints (task,phase) = (i, j) before performing a next operation.

• Iteration i = 0 of the forall-i loop prints (0, 0), performs a next, and
then terminates. Iteration i = 1 of the forall-i loop prints (1,0),
performs a next, prints (1,1), performs a next, and then terminates.
And so on.

3

COMP 322, Spring 2012 (V.Sarkar)

Illustration of Observation 2
• Iteration i=0 of the forall-i

loop prints (0, 0) in Phase 0,
performs a next, and then
ends Phase 1 by terminating.

• Iteration i=1 of the forall-i
loop prints (1,0) in Phase 0,
performs a next, prints (1,1)
in Phase 1, performs a next,
and then ends Phase 2 by
terminating.

• And so on until iteration i=8
ends an empty Phase 8 by
terminating

Phase 0

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

Phase 7

Phase 8

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7
 | | | | | | | |
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)
 | | | | | | | |
next ----- next ----- next ----- next ----- next ----- next ----- next ----- next
 | | | | | | | |
 | (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)
 | | | | | | | |
end ----- next ----- next ----- next ----- next ----- next ----- next ----- next
 | | | | | | |

 | (2,2) (3,2) (4,2) (5,2) (6,2) (7,2)
 | | | | | | |
 end ----- next ----- next ----- next ----- next ----- next ----- next

 | | | | | |
 | (3,3) (4,3) (5,3) (6,3) (7,3)

 | | | | | |
 end ----- next ----- next ----- next ----- next ----- next

 | | | | |
 | (4,4) (5,4) (6,4) (7,4)

 | | | | |
 end ----- next ----- next ----- next ----- next

 | | | |
 | (5,5) (6,5) (7,5)

 | | | |
 end ----- next ----- next ----- next

 | | |
 | (6,6) (7,6)

 | | |
 end ----- next ----- next

 | |
 | (7,7)

 | |
 end ----- next

 |
 end

i=0…7 are forall iterations

(i,j) = println output

next = barrier operation

end = termination of a forall iteration

4

COMP 322, Spring 2012 (V.Sarkar)

Recap of Observation 3 (Lecture 12): Different forall
iterations may perform “next” at different program points

1. forall (point[i] : [0:m-1]) {

2. if (i % 2 == 1) { // i is odd

3. oddPhase0(i);

4. next;

5. oddPhase1(i);

6. } else { // i is even

7. evenPhase0(i);

8. next;

9. evenPhase1(i);

10. } // if-else

11. } // forall

• Barrier operation synchronizes odd-numbered iterations at line 4 with
even-numbered iterations in line 8

• next statement may even be in a method such as oddPhase1()

5

COMP 322, Spring 2012 (V.Sarkar)

One-Dimensional Iterative Averaging Example
(Lecture 10)

• Initialize a one-dimensional array of (n+2) double’s with boundary
conditions, myVal[0] = 0 and myVal[n+1] = 1.

• In each iteration, each interior element myVal[i] in 1..n is replaced by
the average of its left and right neighbors.
— Two separate arrays are used in each iteration, one for old values and the

other for the new values

• After a sufficient number of iterations, we expect each element of the
array to converge to myVal[i] = i/(n+1)
— In this case, myVal[i] = (myVal[i-1]+myVal[i+1])/2, for all i in 1..n

Illustration of an intermediate step for n = 8 (source: Figure 6.19 in Lin-Snyder book)

6

COMP 322, Spring 2012 (V.Sarkar)

HJ code for One-Dimensional Iterative Averaging with
nested for-forall structure

1. double[] myVal=new double[n+2]; double[] myNew=new double[n+2];

2. myVal[n+1] = 1; // Boundary condition

3. for (point [iter] : [0:numIters-1]) {

4. // Compute MyNew as function of input array MyVal
5. forall (point [j] : [1:n]) { // Create n tasks

6. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

7. } // forall

8. // Swap myVal and myNew

9. double[] temp=myVal; myVal=myNew; myNew=temp;

10. // myNew becomes input array for next iteration

11.} // for

• Replace “finish async” from Lecture 10 by “forall”

• Overhead issue --- this version creates (numIters * n) async tasks

7

COMP 322, Spring 2012 (V.Sarkar)

HJ code for One-Dimensional Iterative Averaging with
chunked for-forall-for structure

1. double[] myVal=new double[n+2]; double[] myNew=new double[n+2];

2. myVal[n+1] = 1; // Boundary condition

3. // Set desired number of chunks for j loop to total number of workers

4. int Cj = Runtime.getNumOfWorkers();

5. for (point [iter] : [0:numIters-1]) {

6. // Compute MyNew as function of input array MyVal

7. forall (point [jj]:[0:Cj-1]) // Iterate over chunks

8. for (point [j]:getChunk([1:n],[Cj],[jj])) // Iterate within chunk

9. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

10. // Swap myVal and myNew

11. double[] temp=myVal; myVal=myNew; myNew=temp;

12. // myNew becomes input array for next iteration

13.} // for iter

• Chunked forall version creates numIters*Cj async tasks

• Can we do better with barriers?

8

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2]; gVal[n+1] = 1;

2. int Cj = Runtime.getNumOfWorkers();

3. forall (point [jj]:[0:Cj-1]) { // Chunked forall is now the outermost loop

4. double[] myVal = gVal; double[] myNew = gNew; // Local copy of myVal/myNew pointers

5. for (point [iter] : [0:numIters-1]) {

6. // Compute MyNew as function of input array MyVal

7. for (point [j]:getChunk([1:n],[Cj],[jj])) // Iterate within chunk

8. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

9. next; // Barrier before executing next iteration of iter loop

10. // Swap myVal and myNew (each forall iterations swaps its pointers in local vars)

11. double[] temp=myVal; myVal=myNew; myNew=temp;

12. // myNew becomes input array for next iter

13. } // for

14. } // forall

• Use of barrier reduces number of async tasks created to just Cj

• However, these Cj tasks perform Cj*numIters barrier operations
— Good trade-off since, barrier operations have lower overhead than task creation if number of chunks

<= number of workers

COMP 322, Spring 2012 (V.Sarkar)

One-Dimensional Iterative Averaging with
Barrier Synchronization

COMP 322, Spring 2012 (V.Sarkar)

next-end

signal edges

wait edges

next-start

single-statement

Next-with-Single Statement

 next <single-stmt> is
a barrier in which
single-stmt is
performed exactly
once after all tasks
have completed the
previous phase and
before any task
begins its next phase.

 Modeling next-with-single
in the Computation Graph

10

COMP 322, Spring 2012 (V.Sarkar)

Use of next-with-single to print a log message
between Hello and Goodbye phases

1. AtomicInteger rank = new AtomicInteger();

2. forall (point[i] : [0:m-1]) {

3. // Start of Hello phase

4. int r = rank.getAndIncrement();

5. System.out.println("Hello from task ranked " + r);

6. next single {

7. System.out.println("LOG: Between Hello & Goodbye Phases");

8. }

9. // Start of Goodbye phase

10. System.out.println("Goodbye from task ranked " + r);

11.} // forall

11

