
COMP 322: Fundamentals of
Parallel Programming

Lecture 16: Summary of Barriers and
Phasers

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 16 15 February 2012

COMP 322, Spring 2012 (V.Sarkar)2

The world according to COMP 322
before Barriers and Phasers

• Most of the parallel constructs that we learned during Lectures 1-12
focused on task creation and termination
— async creates a task

– forasync creates a set of tasks specified by an iteration region
— finish waits for a set of tasks

– forall (like “finish forasync”) creates and waits for a set of tasks
specified by an iteration region

— future get() waits for a specific task
— async await waits for a set of DataDrivenFuture values before starting

• The only construct that we learned for coordination within tasks was
atomic variables
— Accesses to atomic variables are “undirected” and nondeterministic

• Motivation for barriers and phasers
— Directed synchronization within tasks
— Separate from synchronization associated with task creation and termination

COMP 322, Spring 2012 (V.Sarkar)

The world according to COMP 322 after
Barriers and Phasers

• All directed synchronization can be expressed using phasers
— Implicit phaser in a forall supports barriers as “next” statements

– Matching of next statements occurs dynamically during program execution
– Termination signals “dropping” of phaser registration
– next single -- augment barrier with “single” computations

— Explicit phasers
– Can be allocated and transmitted from parent to child tasks
– Phaser lifetime is restricted to its IEF (Immediately Enclosing Flnish)

scope of its creation
– Four registration modes -- SIG, WAIT, SIG_WAIT,

SIG_WAIT_SIGNAL
– signal statement can be used to support “fuzzy” barriers
– phaser accumulators can perform per-phaser reduction
– bounded phasers can limit how far ahead producer gets of consumers
– phaser accumulators with bounded phasers can support bounded buffer

streaming computations

3

COMP 322, Spring 2012 (V.Sarkar)

• Phaser allocation
— phaser ph = new phaser(mode);

– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— phaserMode.SIG, phaserMode.WAIT, phaserMode.SIG_WAIT, phaserMode.SIG_WAIT_SINGLE
— NOTE: phaser WAIT has no relationship to Java wait/notify

• Phaser registration
— async phased (ph1<mode1>, ph2<mode2>, …) <stmt>

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …

– Child task’s capabilities must be subset of parent’s
– async phased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
— next;

– Advance each phaser that current task is registered on to its next phase
– Semantics depends on registration mode

Summary of Phaser Construct

4

COMP 322, Spring 2012 (V.Sarkar)

Capability Hierarchy

• At any point in time, a task can be registered in one of four
modes with respect to a phaser: SIG_WAIT_SINGLE,
SIG_WAIT, SIG, or WAIT. The mode defines the set of
capabilities — signal, wait, single — that the task has with
respect to the phaser. The subset relationship defines a natural
hierarchy of the registration modes.

SIG_WAIT_SINGLE = { signal, wait, single }

SIG_WAIT = { signal, wait }

SIG = { signal } WAIT = { wait }

5

COMP 322, Spring 2012 (V.Sarkar)

Simple Example with Four Async Tasks
and One Phaser

1. finish {

2. ph = new phaser(); // Default mode is SIG_WAIT

3. async phased(ph<phaserMode.SIG>){ //A1 (SIG mode)

4. doA1Phase1(); next;

5. doA1Phase2(); }

6. async phased { //A2 (default SIG_WAIT mode from parent)

7. doA2Phase1(); next;

8. doA2Phase2(); }

9. async phased { //A3 (default SIG_WAIT mode from parent)

10. doA3Phase1(); next;

11. doA3Phase2(); }

12. async phased(ph<phaserMode.WAIT>){ //A4 (WAIT mode)

13. doA4Phase1(); next; doA4Phase2(); }

14. }

6

COMP 322, Spring 2012 (V.Sarkar)

Simple Example with Four Async Tasks
and One Phaser (contd)

7

Semantics of next depends on registration mode!
SIG_WAIT: next = signal + wait!
SIG: next = signal (Don’t wait for any task)!
WAIT: next = wait (Don’t disturb any task)!

signal!

wait!

�� �� �� ��

next!
������

SIG! SIG_WAIT!SIG_WAIT! WAIT!

 A master task receives all signals and broadcasts a barrier completion!

AtomicInteger rank = new AtomicInteger();

forall (point[i] : [0:m-1]) {

 int r = rank.getAndIncrement();

 System.out.println(“Hello from task ranked “ + r);

 next; // Acts as barrier between phases 0 and 1

 System.out.println(“Goodbye from task ranked “ + r);

}

• next è each forall iteration suspends at next until all iterations arrive
(complete previous phase), after which the phase can be advanced
— If a forall iteration terminates before executing “next”, then the other

iterations do not wait for it
— Scope of synchronization is the closest enclosing forall statement
— Special case of “phaser” construct (will be covered in following lectures)

COMP 322, Spring 2012 (V.Sarkar)

HJ’s forall statement = finish + forasync +
barriers (next)

Phase 0

Phase 1

8

COMP 322, Spring 2012 (V.Sarkar)

Impact of barrier on scheduling forall
iterations

 Modeling a next
operation in the
computation graph

Forall
iterations

Phase 0 Phase 1

i=0
i=1
i=2
i=3

SIG

SIG

SIG

WAIT

SIG
WAIT

WAIT

WAIT

next
signal edges

wait edges

9

COMP 322, Spring 2012 (V.Sarkar)

Recap of Observation 1 (Lecture 12): Scope of synchronization
for “next” is closest enclosing forall statement

forall (point [i] : [0:m-1]) {

 System.out.println(“Starting forall iteration ” + i);

 next; // Acts as barrier for forall-i

 forall (point [j] : [0:n-1]) {

 System.out.println(“Hello from task (“ + i + “,”

 + j + “)”);

 next; // Acts as barrier for forall-j

 System.out.println(“Goodbye from task (“ + i + “,”

 + j + “)”);

 } // forall-j

 next; // Acts as barrier for forall-i

 System.out.println(“Ending forall iteration ” + i);

} // forall-i

10

COMP 322, Spring 2012 (V.Sarkar)

Recap of Observation 2 (Lecture 12): If a forall iteration
terminates before “next”, then other iterations do not wait for it

1. forall (point[i] : [0:m-1]) {

2. for (point[j] : [0:i]) {

3. // Forall iteration i is executing phase j

4. System.out.println("(" + i + "," + j + ")");

5. next;

6. }

7. }

• Outer forall-i loop has m iterations, 0…m-1

• Inner sequential j loop has i+1 iterations, 0…i

• Line 4 prints (task,phase) = (i, j) before performing a next operation.

• Iteration i = 0 of the forall-i loop prints (0, 0), performs a next, and
then terminates. Iteration i = 1 of the forall-i loop prints (1,0),
performs a next, prints (1,1), performs a next, and then terminates.
And so on.

11

COMP 322, Spring 2012 (V.Sarkar)

Illustration of Observation 2
• Iteration i=0 of the forall-i

loop prints (0, 0) in Phase 0,
performs a next, and then
ends Phase 1 by terminating.

• Iteration i=1 of the forall-i
loop prints (1,0) in Phase 0,
performs a next, prints (1,1)
in Phase 1, performs a next,
and then ends Phase 2 by
terminating.

• And so on until iteration i=8
ends an empty Phase 8 by
terminating

Phase 0

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

Phase 7

Phase 8

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7
 | | | | | | | |
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)
 | | | | | | | |
next ----- next ----- next ----- next ----- next ----- next ----- next ----- next
 | | | | | | | |
 | (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)
 | | | | | | | |
end ----- next ----- next ----- next ----- next ----- next ----- next ----- next
 | | | | | | |

 | (2,2) (3,2) (4,2) (5,2) (6,2) (7,2)
 | | | | | | |
 end ----- next ----- next ----- next ----- next ----- next ----- next

 | | | | | |
 | (3,3) (4,3) (5,3) (6,3) (7,3)

 | | | | | |
 end ----- next ----- next ----- next ----- next ----- next

 | | | | |
 | (4,4) (5,4) (6,4) (7,4)

 | | | | |
 end ----- next ----- next ----- next ----- next

 | | | |
 | (5,5) (6,5) (7,5)

 | | | |
 end ----- next ----- next ----- next

 | | |
 | (6,6) (7,6)

 | | |
 end ----- next ----- next

 | |
 | (7,7)

 | |
 end ----- next

 |
 end

i=0…7 are forall iterations

(i,j) = println output

next = barrier operation

end = termination of a forall iteration

12

COMP 322, Spring 2012 (V.Sarkar)

Recap of Observation 3 (Lecture 12): Different forall
iterations may perform “next” at different program points

1. forall (point[i] : [0:m-1]) {

2. if (i % 2 == 1) { // i is odd

3. oddPhase0(i);

4. next;

5. oddPhase1(i);

6. } else { // i is even

7. evenPhase0(i);

8. next;

9. evenPhase1(i);

10. } // if-else

11. } // forall

• Barrier operation synchronizes odd-numbered iterations at line 4 with
even-numbered iterations in line 8

• next statement may even be in a method such as oddPhase1()

13

COMP 322, Spring 2012 (V.Sarkar)

Use of next-with-single to print a log message
between Hello and Goodbye phases

1. AtomicInteger rank = new AtomicInteger();

2. forall (point[i] : [0:m-1]) {

3. // Start of Hello phase

4. int r = rank.getAndIncrement();

5. System.out.println("Hello from task ranked " + r);

6. next single {

7. System.out.println("LOG: Between Hello & Goodbye Phases");

8. }

9. // Start of Goodbye phase

10. System.out.println("Goodbye from task ranked " + r);

11.} // forall

14

COMP 322, Spring 2012 (V.Sarkar)

Point-to-point synchronization

iter = i

iter = i+1

Barrier synchronization

Barrier vs Point-to-Point Synchronization for
One-Dimensional Iterative Averaging Example

iter = i

iter = i+1

15

COMP 322, Spring 2012 (V.Sarkar)

Left-Right Neighbor Synchronization
Example for m=3

16

COMP 322, Spring 2012 (V.Sarkar)

Left-Right Neighbor Synchronization Example

COMP 322, Spring 2011 (V.Sarkar)!18

Barrier & P-2-P Sync for 1-D
Averaging!

doPhase1(i)

doPhase2(i)

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

1. finish {
2. phaser[] ph = new phaser[m+2];
3. for(point [i]:[0:m+1]) ph[i] = new phaser();
4. for(point [i] : [1:m])
5. async phased(ph[i]<SIG>, ph[i-1]<WAIT>, ph[i+1]<WAIT>) {
6. doPhase1(i);
7. next; // Signal ph[i] & wait on ph[i-1], ph[i+1]
8. doPhase2(i);
9. }
10.}

17

COMP 322, Spring 2012 (V.Sarkar)

Adding Phaser Operations to the
Computation Graph

CG node = step

Step boundaries are induced by continuation points

• async: source of a spawn edge

• end-finish: destination of join edges

• future.get(): destination of a join edge

• signal, drop: source of signal edges

• wait: destination of wait edges

• next: modeled as signal + wait

CG also includes an unbounded set of pairs of phase transition
nodes for each phaser ph allocated during program execution

• ph.next-start(iài+1) and ph.next-end(iài+1)

18

COMP 322, Spring 2012 (V.Sarkar)

Adding Phaser Operations to the
Computation Graph (contd)

CG edges enforce ordering constraints among the nodes

• continue edges capture sequencing of steps within a task

• spawn edges connect parent tasks to child async tasks

• join edges connect descendant tasks to their Immediately Enclosing
Finish (IEF) operations and to get() operations for future tasks

• signal edges connect each signal or drop operation to the
corresponding phase transition node, ph.next-start(iài+1)

• wait edges connect each phase transition node,
ph.next-end(iài+1) to corresponding wait or next operations

• single edges connect each phase transition node, ph.next-start(iài
+1) to the start of a single statement instance, and from the end
of that single statement to the phase transition node, ph.next-
end(iài+1)

19

COMP 322, Spring 2012 (V.Sarkar)

Computation Graph for m=3 example
(without async/finish nodes and edges)

6

11

16

7-signal 7-wait

12-signal

17-signal

12-wait

17-wait

ph1.next
-start(0à1)

ph1.next
-end(0à1)

ph2.next
-start(0à1)

ph2.next
-end(0à1)

ph3.next
-start(0à1)

ph3.next
-end(0à1)

8

13

18

spawn continue signal wait join

20

COMP 322, Spring 2012 (V.Sarkar)

Full Computation Graph for m=3
example

1,2,3,4

6

11

16

7-signal 7-wait

12-signal

17-signal

12-wait

17-wait

ph1.next
-start(0à1)

ph1.next
-end(0à1)

ph2.next
-start(0à1)

ph2.next
-end(0à1)

ph3.next
-start(0à1)

ph3.next
-end(0à1)

8

13

18

20-drop 20-end-finish

spawn continue signal wait join

21

COMP 322, Spring 2012 (V.Sarkar)

Signal statement
• When a task T performs a signal operation, it notifies all the

phasers it is registered on that it has completed all the work
expected by other tasks in the current phase (“shared” work).
—Since signal is a non-blocking operation, an early execution of signal

cannot create a deadlock.

• Later, when T performs a next operation, the next degenerates
to a wait since a signal has already been performed in the
current phase.

• The execution of “local work” between signal and next is
performed during phase transition
—Referred to as a “split-phase barrier” or “fuzzy barrier”

22

COMP 322, Spring 2012 (V.Sarkar)

Example of Split-Phase Barrier

23

COMP 322, Spring 2012 (V.Sarkar)

Computation Graph for Split-Phase Barrier Example
(without async and finish nodes and edges)

4

11

5-signal 7-wait

12-signal 14-wait

ph.next
-start(0à1)

ph.next
-end(0à1)

8

15

spawn continue signal wait join

6

13

24

COMP 322, Spring 2012 (V.Sarkar)

Full Computation Graph for Split-Phase
Barrier Example

2

4

11

5-signal 7-wait

12-signal 14-wait

ph.next
-start(0à1)

ph.next
-end(0à1)

8

15

20-drop 20-end-finish

spawn continue signal wait join

6

13

25

COMP 322, Spring 2012 (V.Sarkar)

Operations on Phaser Accumulators
• Creation

 accumulator ac = accumulator.factory.accumulator(op, type, phaser);
– operator can be Operator.SUM, Operator.PROD, Operator.MIN, or Operator.MAX

(as in finish accumulators)
– type can be int.class or double.class (as in finish accumulators)
– an extra “true” parameter results in lazy accumulation as in finish accumulators e.g.,

accumulator.factory.accumulator(op, type, phaser, true)

• Accumulation

 ac.put(data);
– data must be of type java.lang.Number, int, or double
– Provides data for accumulation in current phase (can only be performed by a task

registered on the phaser)

• Retrieval

 Number n = ac.get();
– get() returns value from previous phase (can only be performed by a task registered

on the phaser)
– get() is non-blocking because the synchronization is handled by “next”
– result from get() will be deterministic if HJ program does not use atomic or isolated

constructs and is data-race-free (ignoring nondeterminism due to non-commutativity
of arithmetic operations, e.g., underflow, overflow, rounding)

26

COMP 322, Spring 2012 (V.Sarkar)

1. double gblMin = Double.MAX_VALUE; double threshold = …;
2. SearchSpace gss = new SearchSpace(…); // Whole search space
3. finish {
4. phaser ph = new phaser();
5. accumulator a = accumulator.factory.accumulator(accumulator.MIN,
6. double.class, ph);
7. calcMin(ph, gss, a);
8. }
9. . . .
10. void calcMin(phaser ph, SearchSpace mySs, accumulator a) {
11. while (gblMin > threshold) {
12. if (mySs.tooLarge()) {
13. SearchSpace childSs = split(mySs);
14. async phased { calcMin(ph, childSs, a); }
15. }
16. double localMin = findMin(mySs);
17. a.put(localMin);
18. next;
19. gblMin = a.get().doubleValue();
20. // update search spaces ...
21. } // while
22.} // calcMin

Example of Phaser Accumulators with Dynamic Parallelism:
Search for Minimum Cost Solution

27

COMP 322, Spring 2012 (V.Sarkar)

Execution of previous HJ program

28

COMP 322, Spring 2012 (V.Sarkar)

Bound option in phasers
• Extra parameter in constructor

— new phaser(phaserMode m, int bound_size);

• next operation
—A task registered in SIG mode will block if it is >= bound_size

phases past the current phase

29

COMP 322, Spring 2012 (V.Sarkar)

Single-Producer Single-Consumer
Bounded Buffer

1. finish {

2. phaser ph = new phaser(<SIG_WAIT>, bound_size);

3. async phased (ph<SIG>)

4. while (…) { insert(); next; } // producer

5. async phased (ph<WAIT>)

6. while (…) { next; remove(); } // consumer

7. }

30

COMP 322, Spring 2012 (V.Sarkar)

• Accumulator is now a bounded buffer
—Stores results from bounded number of previous phase

Expanding Accumulators to support
Bounded Buffers

…
a.put(…);
next;
a.put(…);
next;

T2<SIG>…
a.put(…);
next;
a.put(…);
next;

T1<SIG> T3<WAIT>
…
next;
prev = a.get(-1);
cur = a.get(0);

accumulator
(sum ope)

phaser ph = new phaser(SIG_WAIT, bound);
accumulator a = new accumulator(ph, SUM, double.class);

bound=3

31

COMP 322, Spring 2012 (V.Sarkar) 32

• Producer task (filter)
—Insert data into stream
—Can go ahead of consumers
—Registered on phaser in SIG mode

• Consumer task (filter)
—Consume data from stream
—Must wait for producer
—Registered on phaser in WAIT mode

• Streams
—Manage communication among tasks

– Retain data in bounded buffer
—Accumulators can be expanded to implement bounded buffers
—Need explicit phaser wait operation if a task needs to be both a

producer and a consumer

Streaming Computations: Application of
Bounded Buffer Computations

phaser ph = new phaser();
async phased (ph<SIG>) {
 while(...) {
 wait;
 ...;
 ...
} }
async phased (ph<WAIT>) {
while(...) {
 ...
 next;
 ...
} }

producer

consumer

9

COMP 322, Spring 2012 (V.Sarkar)

Streaming Computation: Pipeline
void Pipeline() {
 phaser phI = new phaser(SIG_WAIT, bnd);
 accumulator I = new accumulator(phI, accumulator.ANY);
 phaser phM = new phaser(SIG_WAIT, bnd);
 accumulator M = new accumulator(phM, accumulator.ANY);
 phaser phO = new phaser(SIG_WAIT, bnd);
 accumulator O = new accumulator(phO, accumulator.ANY);
 async phased (phI<SIG>) source(I);
 async phased (phI<WAIT>, phM<SIG>) avg(I,M);
 async phased (phM<WAIT>, phO<SIG>) abs(M,O);
 async phased (phO<WAIT>) sink(O);
}
void avg(accumulator I, accumulator M) {
 while(...) {
 wait; wait; // wait for two elements on I
 v1 = I.get(0); // read first element
 v2 = I.get(-1); // read second element (offset = -1)
 M.put((v1+v2)/2); // put result on M
 signal;
} }

33

source(I) avg(I, M) abs(M, O) sink(O)
I M O

COMP 322, Spring 2012 (V.Sarkar)

Streaming Patterns: Split-join

34

void Splitjoin() {
 phaser phI = new phaser(SIG_WAIT, bnd);
 accumulator I = new accumulator(phI, accumulator.ANY);
 phaser phJ = new phaser(SIG_WAIT, bnd);
 accumulator J = new accumulator(phJ, accumulator.SUM);

 async phased (phI<SIG>) source(I);
 forasync (point [s] : [0:N-1])
 phased (phI<WAIT>, phJ<SIG>) split(I, J);
 async phased (phJ<WAIT>) join(J);
}
split(I, J) {
 while(...) {
 wait;
 v = foo(I.get());
 J.put(v);
 signal;
} }

source(I)

split(I, J)

.

..

split(I, J)

sum join(J, O)

I

I J

J

OJ

N parallel split stages

COMP 322, Spring 2012 (V.Sarkar)

General Streaming Graphs with Dynamic Parallelism

• Dynamic split-join
 dynamicSplit(I, J) {
 while(...) {
 if (spawnNewNode()) async phased dynamicSplit(I, J);
 if (terminate()) break;
 wait; ...
 } }

source(I)

split(I, J)

.

..

split(I, J)

sum join(J, O)

I

I J

J

OJ

Stages can be spawned/terminated dynamically

split(I, J)

35

COMP 322, Spring 2012 (V.Sarkar)

Announcements (REMINDER)
• Homework 3 due on Wednesday, Feb 22nd

—Performance results for parts 2 and 3 of assignment must be
obtained on Sugar (see Section 4)

—Start early --- you should complete the ideal parallel version this
week

• No lab next week
—Use the time for HW3 and to prepare for Exam 1

• Exam 1 will be held in the lecture on Friday, Feb 24th
—Closed book 50-minute exam
—Scope of exam includes lectures up to Monday, Feb 20th
—Feb 22nd lecture will be a midterm review before exam
—Contact me ASAP if you have an extenuating circumstance and need

to take the midterm at an alternate time

36

