
COMP 322: Fundamentals of
Parallel Programming

Lecture 2: Async-Finish Parallel Programming
and Computation Graphs

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 2 11 January 2012

COMP 322, Spring 2012 (V.Sarkar)2

Acknowledgments for Today’s Lecture
• Cilk lectures, http://supertech.csail.mit.edu/cilk/

• PrimeSieve.java example
—http://introcs.cs.princeton.edu/java/14array/PrimeSieve.java.html

COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture
• Discussion of Async and Finish constructs

• Understanding when two statements can run in parallel

• Understanding limits to ideal parallelism (critical path length)

3

COMP 322, Spring 2012 (V.Sarkar)4

Async and Finish Statements for Task
Creation and Termination (Recap)

async S

• Creates a new child task that
executes statement S

finish S
§ Execute S, but wait until all

asyncs in S’s scope have
terminated.

// T0(Parent task)
STMT0;
finish { //Begin finish
 async {
 STMT1; //T1(Child task)
 }
 STMT2; //Continue in T0
 //Wait for T1
} //End finish
STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

COMP 322, Spring 2012 (V.Sarkar)

Some Properties of Async & Finish constructs
1. Scope of async/finish can be any arbitrary statement

— async/finish constructs can be arbitrarily nested e.g.,
— finish { async S1; finish { async S2; S3; } S4; } S5;

2. A method may return before all its async’s have terminated
— Enclose method body in a finish if you don’t want this to happen
— main() method is enclosed in an implicit finish e.g.,
— main(){ foo();} void foo() {async S1; S2; return;}

3. Each dynamic async task will have a unique Immediately Enclosing
Finish (IEF) at runtime

4. Async/finish constructs cannot “deadlock”
— Cannot have a situation where both task A waits for task B to finish,

and task B waits for task A to finish

5. Async tasks can read/write shared data via objects and arrays
— Local variables have special restrictions (next slide)

5

COMP 322, Spring 2012 (V.Sarkar)6

Local Variables
Three rules for accessing local variables across tasks in HJ:

1) An async may read the value of any final outer local var
 final int i1 = 1; async { ... = i1; /* i1=1 */ }

2) An async may read the value of any non-final outer local var
(copied on entry to async like method parameters)

 int i2 = 2; // i2=2 is copied on entry to the async

 async { ... = i2; /* i2=2*/}

 i2 = 3; // This assignment is not seen by the above async

3) An async is not permitted to modify an outer local var
 int[] A; async { A = ...; /*ERROR*/ A[i] = ...; /*OK*/ }

COMP 322, Spring 2012 (V.Sarkar)7

Converting sequential Java programs to
parallel Async-Finish HJ programs

One possible approach:
1. Create “ideal” parallel version
— Insert async’s at all points where parallelism can
logically be exploited

— Insert finish’s to ensure that the parallel version
produces the same results as the sequential version

2. Transform ideal parallelism to useful parallelism
— Merge or remove async’s to amortize overhead
— Replace finish by more efficient synchronization
constructs (to be covered later in course)

COMP 322, Spring 2012 (V.Sarkar)8

Java Example: Sieve of Eratosthenes
1. // initially assume all integers are prime

2. boolean[] isPrime = new boolean[N + 1];

3. for (int i = 2; i <= N; i++) isPrime[i] = true;

4. // mark non-primes <= N using Sieve of Eratosthenes

5. for (int i = 2; i*i <= N; i++)

6. // if i is prime, then mark multiples of i as nonprime

7. if (isPrime[i])

8. for (int j = i; i*j <= N; j++)

9. isPrime[i*j] = false;

10. // count primes

11. int primes = 0;

12. for (int i = 2; i <= N; i++) if (isPrime[i]) primes++;

How should we parallelize the sieve computation in lines 5-9?

COMP 322, Spring 2012 (V.Sarkar)9

Ideal Parallelization of Sieve Computation
1. // initially assume all integers are prime

2. boolean[] isPrime = new boolean[N + 1];

3. for (int i = 2; i <= N; i++) isPrime[i] = true;

4. // mark non-primes <= N using Sieve of Eratosthenes

5. for (int i = 2; i*i <= N; i++)

6. // if i is prime, then mark multiples of i as nonprime

7. if (isPrime[i])

8. finish for (int j = i; i*j <= N; j++)

9. async isPrime[i*j] = false;

10. // count primes

11. int primes = 0;

12. for (int i = 2; i <= N; i++) if (isPrime[i]) primes++;

Is this approach correct? Is it efficient?

COMP 322, Spring 2012 (V.Sarkar)10

Which statements can potentially be
executed in parallel with each other?

1. finish { // F1

2. async A1;

3. finish { // F2

4. async A3;

5. async A4;

6. } // F2

7. S5;

8. } // F1

F1-endF1-start F2-start F2-end

A1

A3

A4

S5

Computation Graph

spawn join

COMP 322, Spring 2012 (V.Sarkar)11

Computation Graphs for HJ Programs
• A Computation Graph (CG) captures the dynamic

execution of an HJ program, for a specific input

• CG nodes are “steps” in the program’s execution
— A step is a sequential subcomputation without any
async, begin-finish and end-finish operations

• CG edges represent ordering constraints
— “Continue” edges define sequencing of steps within a
task

— “Spawn” edges connect parent tasks to child async
tasks

— “Join” edges connect the end of each async task to
its IEF’s end-finish operations

COMP 322, Spring 2012 (V.Sarkar)12

Example HJ Program with statements v1 … v23
// Task T1

v1; v2;

finish {

 async {

 // Task T2

 v3;

 finish {

 async { v4; v5; } // Task T3

 v6;

 async { v7; v8; } // Task T4

 v9;

 } // finish

 v10; v11;

// Task T2 (contd)

 async { v12; v13;

 v14; } // Task T5

 v15;

 } // end of task T2

 v16; v17; // back in Task T1

} // finish

v18; v19;

finish {

 async {

 // Task T6

 v20; v21; v22; }

}

v23;

COMP 322, Spring 2012 (V.Sarkar)13

Computation Graph for previous HJ Example

Example: Step v16 can potentially execute in parallel with steps v3 … v15

COMP 322, Spring 2012 (V.Sarkar)14

Complexity Measures for Computation Graphs

Define

• TIME(N) = execution time of node N

• WORK(G) = sum of TIME(N), for all nodes N in CG G
—WORK(G) is the total work to be performed in G

• CPL(G) = length of a longest path in CG G, when
adding up execution times of all nodes in the path
—Such paths are called critical paths
—CPL(G) is the length of these paths (critical path
length)

COMP 322, Spring 2012 (V.Sarkar)15

Ideal Speedup

Define ideal speedup of
Computation G Graph as the ratio,
WORK(G)/CPL(G)

Ideal Speedup is independent of
the number of processors that the
program executes on, and only
depends on the computation graph

COMP 322, Spring 2012 (V.Sarkar)16

Example
• Assume time(N) = 1 for all nodes in this graph

WORK(G) = 18

COMP 322, Spring 2012 (V.Sarkar)17

Example (contd)
• Assume time(N) = 1 for all nodes in this graph

CPL(G) = 9

Ideal speedup
= WORK(G)/CPL(G)
= 2

COMP 322, Spring 2012 (V.Sarkar)

Homework 1 Reminder
• Written assignment, due by Friday, Jan 13th

• Submit a softcopy of your solution in Word, PDF, or plain text
format
—Try and use turn-in script for submission, if possible
—Otherwise, email your homework to comp322-staff at

mailman.rice.edu

• See course web site for penalties for late submissions
—Send me email if you have an extenuating circumstance for delay

18

