
COMP 322: Fundamentals of
Parallel Programming

Lecture 20: Critical Sections and the
Isolated Statement

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 20 5 March 2012

COMP 322, Spring 2012 (V.Sarkar)2

Formal Definition of Data Races
(Recap from Lecture 5)

	
 Formally, a data race occurs on location L in a program
execution with computation graph CG if there exist steps
(nodes) S1 and S2 in CG such that:
1. S1 does not depend on S2 and S2 does not depend on S1 i.e.,

there is no path of dependence edges from S1 to S2 or from S2
to S1 in CG, and

2. Both S1 and S2 read or write L, and at least one of the accesses
is a write.

	
 However, there are many cases in practice when two tasks may
legitimately need to perform conflicting accesses to shared
locations without incurring data races
—Special cases: finish/phaser accumulators, atomic variables
—How should conflicting accesses be handled in general?

COMP 322, Spring 2012 (V.Sarkar)

Example of two tasks performing
conflicting accesses

1. class DoublyLinkedList {

2. DoublyLinkedList prev, next;

3. . . .

4. void delete() {

5. isolated { // start of mutual exclusion region (critical section)

6. this.prev.next = this.next;

7. this.next.prev = this.prev;

8. } // end of mutual exclusion region (critical section)

9. . . .

10. }
11. . . .
12. } // DoublyLinkedList
13. . . .
14. static void deleteTwoNodes(DoublyLinkedList L) {
15. finish {
16. async L.delete();
17. async L.next.delete();
18. }
19. }

3

COMP 322, Spring 2012 (V.Sarkar)

How to enforce mutual exclusion?
• The predominant approach to ensure mutual exclusion proposed

many years ago is to enclose the code region in a critical
section.
—“In concurrent programming a critical section is a piece of code that

accesses a shared resource (data structure or device) that must not
be concurrently accessed by more than one thread of execution. A
critical section will usually terminate in fixed time, and a thread,
task or process will have to wait a fixed time to enter it (aka
bounded waiting). Some synchronization mechanism is required at the
entry and exit of the critical section to ensure exclusive use, for
example a semaphore.”

—Source: http://en.wikipedia.org/wiki/Critical_section

4

COMP 322, Spring 2012 (V.Sarkar)

HJ isolated statement
isolated <body>

• Two tasks executing isolated statements with interfering
accesses must perform the isolated statement in mutual
exclusion
—Two instances of isolated statements, ⟨stmt1⟩ and ⟨stmt2⟩, are said

to interfere with each other if both access a shared location, such
that at least one of the accesses is a write.

èWeak isolation guarantee: no mutual exclusion applies to non-isolated
statements i.e., to (isolated, non-isolated) and (non-isolated, non-
isolated) pairs of statement instances

• Isolated statements may be nested (redundant)

• Isolated statements must not contain any other parallel
statement that performs a blocking operation: finish, get, next

—Non-blocking operations (e.g., async) are fine

5

COMP 322, Spring 2012 (V.Sarkar)

Semantics of Exceptions and Async’s
within an Isolated Statement

1. isolated {

2. int t1 = p.x;

3. p.x++;

4. // Task execution terminates with NullPointerException

5. // if q==null (as in non-isolated case)

6. int t2 = q.x;

7. q.x--;

8. // Async creation (but not execution) is part of mutual

9. // exclusion construct. Async can logically be executed

10. // at end of isolated statement.

11. async { ... t1 ... t2 ... }

12. . . .

13. } // isolated

6

COMP 322, Spring 2012 (V.Sarkar)

Serialized Computation Graph for
Isolated Statements

• Model each instance of an isolated statement as a distinct step
(node) in the CG.

• Need to reason about the order in which interfering isolated
statements are executed
—Complicated because the order may vary from execution to

execution

• Introduce Serialized Computation Graph (SCG) that includes a
specific ordering of all interfering isolated statements.
—SCG consists of a CG with additional serialization edges.
—Each time an isolated step, S′, is executed, we add a serialization

edge from S to S′ for each isolated step, S, that has already
executed such that S and S′ have interfering accesses.

—An SCG represents a set of executions in which all interfering
isolated statements execute in the same order.

7

COMP 322, Spring 2012 (V.Sarkar)

Example of Serialized Computation Graph
with Serialization Edges for v10-v16-v11 order

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Serialization edge v10: isolated { x ++; y = 10; }
v11: isolated { x++; y = 11; }
v16: isolated { x++; y = 16; }

8

	
 Data race definition can be applied to Serialized
Computation Graphs (SCGs) just like regular CGs

— Need to consider all possible orderings of interfering
isolated statements to establish data race freedom

COMP 322, Spring 2012 (V.Sarkar)

Implementations of isolated statement
• isolated statements are convenient for the programmer but pose

significant challenges for the language implementation
—Implementation does not know ahead of time if two dynamic

instances of isolated statements will interfere or not

• HJ implementation used in COMP 322 takes a simple single-lock
approach to implementing isolated statements
—Entry to isolated statement is treated as an acquire() operation on

the lock
—Exit from isolated statement is treated as a release() operation on

the lock
—Though correct, this approach essentially implements isolated

statements as critical sections, thereby serializing all interfering
and non-interfering isolated statement instances.

• How can we do better?

9

COMP 322, Spring 2012 (V.Sarkar)

• Execution of an isolated statement is treated as a transaction
— In database systems, a transaction refers to a “unit of work” that has

“all-or-nothing” semantics. Each unit of work must either complete in its
entirety or have no visible effect.

• A TM system logs all read and write operations performed in a
transaction and optimistically permits transactions to run in parallel,
speculating that there won’t be interference

• At the end of a transaction, a TM system checks if interference
occurred with another transaction
— If not, the transaction can be committed
— If so, the transaction fails and has to be “retried”

• Both software and hardware implementations of TM have been
explored extensively by the research community, but no
implementation has proved suitable for mainstream use as yet

• Example of Software TM system for Java: DSTM2

Research Idea 1: Transactional Memory

10

COMP 322, Spring 2012 (V.Sarkar)11

Research Idea 2: Delegated Isolation

• Challenge: scalable implementation of isolated without using a single
global lock and without incurring transactional memory overheads

• Delegated isolation:
—Restrict attention to “async isolated” case

– replace non-async “isolated” by “finish async isolated”
—Task dynamically acquires ownership of each object accessed in

isolated block (optimistic parallelism)
—On conflict, task A transfers all ownerships to worker executing

conflicting task B and delegates execution of isolated block to B
—Deadlock-freedom and livelock-freedom guarantees

—Reference: “Delegated Isolation”, R. Lublinerman, J. Zhao, Z.
Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2011

COMP 322, Spring 2012 (V.Sarkar)12

Delauney Mesh Refinement in Habanero-Java
using Delegated Isolation

Figure source:
http://lcpc10.rice.edu/Keynote_Speakers_files/PingaliKeynote.pdf

COMP 322, Spring 2012 (V.Sarkar)

Performance: DMR benchmark on 16-core Xeon SMP
(100,770 initial triangles of which 47,768 are “bad”; average # retriangulations is ~ 130,000)

13

0"

2"

4"

6"

8"

10"

12"

14"

1" 2" 4" 6" 8" 10" 12" 14" 16"

(m
e"
in
"se

co
nd

s""

#"threads"

HJ"(Coarse:Grained:Lock)" Java"(Fine:Grained:Locks)"

HJ"(Delegated"Isola(on)"

HJ"(SEQ)"

DSTM2 performance:
962s w/ 1 thread
177s w/ 16 threads

COMP 322, Spring 2012 (V.Sarkar)

Properties of isolated statements
How small or big should an isolated statement be?
• Too small è may lose invariants desired from mutual exclusion

• Too big è limits parallelism

Deadlock freedom guarantees
• Observation: no combination of the following HJ constructs can

create a deadlock cycle among tasks
—finish, async, get, forall, next, isolated

• There are only two HJ constructs that can lead to deadlock
—async await (data-driven tasks)
—explicit phaser wait operation (instead of next)

14

COMP 322, Spring 2012 (V.Sarkar)

Three cases of contention among
isolated statements

1. Low contention: when isolated statements are executed infrequently
— A single-lock approach as in HJ is often the best solution. No visible

benefit from other techniques because they incur overhead that is not
needed since contention is low.

2. Moderate contention: when the serialization of all isolated
statements in a single-lock approach limits the performance of the
parallel program due to Amdahl’s Law, but a finer-grained approach
that only serializes interfering isolated statements results in good
scalability

— Atomic variables usually do well in this scenario since the benefit
obtained from reduced serialization far outweighs any extra overhead
incurred.

3. High contention: when interfering isolated statements dominate the
program execution time in certain phases

— Best approach in such cases is to find an alternative algorithm to using
isolated

15

COMP 322, Spring 2012 (V.Sarkar)

Object-based isolation in HJ
isolated(<object-list>) <body>

• In this case, programmer specifies list of objects for
which isolation is required

• Mutual exclusion is only guaranteed for instances of
isolated statements that have a non-empty
intersection in their object lists

—Standard isolated is equivalent to isolated(*) by
default i.e., isolation across all objects

• Implementation can choose to distinguish between
read/write accesses for further parallelism

—Current HJ implementation supports object-based
isolation, does not exploit read/write distinction

16

COMP 322, Spring 2012 (V.Sarkar)

DoublyLinkedList Example revisited with
Object-Based Isolation

1. class DoublyLinkedList {

2. DoublyLinkedList prev, next;

3. . . .

4. void delete() {

5. isolated (this.prev, this.next) { // start of object-based isolation

6. this.prev.next = this.next;

7. this.next.prev = this.prev

8. } // end of object-based isolation

9. . . .

10. }
11. . . .
12. } // DoublyLinkedList
13. . . .
14. static void deleteTwoNodes(DoublyLinkedList L) {
15. finish {
16. async L.delete();
17. async L.next.delete();
18. }
19. }

17

COMP 322, Spring 2012 (V.Sarkar)

java.util.concurrent.AtomicInteger methods and their
equivalent isolated statements

18

Methods in java.util.concurrent.AtomicInteger class and their
equivalent HJ isolated statements. Variable v refers to an
AtomicInteger object in column 2 and to a standard non-atomic
Java object in column 3. val refers to a field of type int.

COMP 322, Spring 2012 (V.Sarkar)

Implementing AtomicInteger.getAndAdd()
using compareAndSet()

 /** Atomically adds delta to the current value.
1. *
2. * @param delta the value to add
3. * @return the previous value
4. */
5. public final int getAndAdd(int delta) {
6. for (;;) {
7. int current = get();
8. int next = current + delta;
9. if (compareAndSet(current, next))
10. return current;
11. }
12. }

• Source: http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/
atomic/AtomicInteger.java

19

COMP 322, Spring 2012 (V.Sarkar)

java.util.concurrent. AtomicReference methods and
their equivalent isolated statements

20

Methods in java.util.concurrent.AtomicReference class and their
equivalent HJ isolated statements. Variable v refers to an
AtomicReference object in column 2 and to a standard non-atomic
Java object in column 3. ref refers to a field of type Object.

AtomicReference<T> can be used to specify a type parameter.

COMP 322, Spring 2012 (V.Sarkar)

Parallel Spanning Tree Algorithm using
isolated statement

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree

4. boolean tryLabeling(V n) {
5. isolated(this) if (parent == null) parent=n;

6. return parent == n;
7. } // tryLabeling
8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {
10. V child = neighbors[i];

11. if (child.tryLabeling(this))
12. async child.compute(); //escaping async
13. }

14. } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .

21

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure source:
http://en.wikipedia.org/wiki/Spanning_tree

