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Spanning Tree
• A spanning tree, T, of a connected undirected graph G is

• rooted at some vertex of G

• defined by a parent map for each vertex

• contains all the vertices of G, i.e. spans all vertices

• contains exactly |v| - 1 edges

• adding any other edge will create a cycle

• contains no cycles (a tree!)

• implies the edges involved in T is a subset of the edges in G
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An Example Graph with 4 possible 
spanning trees rooted at vertex A
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Parallel Spanning Tree Algorithm using 
isolated statement

1. class V  {
2.   V [] neighbors; // adjacency list for input graph
3.   AtomicReference parent; // output value of parent in spanning tree

4.   boolean tryLabeling(V n) {
5.     isolated if (parent == null) parent=n;

6.     return parent == n; 
7.   } // tryLabeling
8.   void compute() {

9.     for (int i=0; i<neighbors.length; i++) { 
10.      V child = neighbors[i];  

11.      if (child.tryLabeling(this))
12.          async child.compute(); //escaping async
13.     } 

14.  } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .

6



COMP 322, Spring 2012 (V.Sarkar)

Parallel Spanning Tree Algorithm using 
object-based isolation

1. class V  {
2.   V [] neighbors; // adjacency list for input graph
3.   AtomicReference parent; // output value of parent in spanning tree

4.   boolean tryLabeling(V n) {
5.     isolated(this) if (parent == null) parent=n;

6.     return parent == n; 
7.   } // tryLabeling
8.   void compute() {

9.     for (int i=0; i<neighbors.length; i++) { 
10.      V child = neighbors[i];  

11.      if (child.tryLabeling(this))
12.          async child.compute(); //escaping async
13.     } 

14.  } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .
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Parallel Spanning Tree Algorithm using 
java.util.concurrent.atomic.AtomicReference

1. class V  {
2.   V [] neighbors; // adjacency list for input graph
3.   AtomicReference parent; // output value of parent in spanning tree
4.   boolean tryLabeling(V n) {
5.     return parent.compareAndSet(null ,n);
6.  
7.   } // tryLabeling
8.   void compute() {
9.     for (int i=0; i<neighbors.length; i++) { 
10.      V child = neighbors[i];  
11.      if (child.tryLabeling(this))
12.          async child.compute(); //escaping async
13.     } 
14.  } // compute
15.} // class V
16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();
19.. . .
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Performance trade-offs for Isolated, 
Object-based Isolated, and Atomic Variables

• Atomic variables have the best performance of all three cases

• Limitations: 

• Body of critical section must match existing method in atomic variable’s interface 

• Context-switching needs to be disabled in the middle of an atomic operation

• Standard isolated (“isolated-all”) performs better than object-based isolated in low 
contention

• HJ’s standard isolated uses a single lock. The additional parallelism from object-based isolation 
does not make a measurable difference if contention is low, while the additional overhead for 
object-based isolation can be significant.

• Standard isolated (“isolated-all”) performs better than object-based isolated in high 
contention on a single object

• Object-based isolation incurs extra overhead but provides no extra benefit when contention is on 
a single object.

• Object-based isolation performs better than standard isolated (“isolated-all”) if critical 
sections are distributed across a wide range of objects, there is sufficient contention to 
make standard isolated perform poorly, there isn’t too much contention on a single object to 
limit object-based contention, and there is enough work in the isolated statement to justify 
the overhead

• HJ’s object-based isolation uses one global read-write lock, combined with built-in locks for all 
Java objects
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Monitors --- an object-oriented approach to isolation

• A monitor is an object containing 

• some local variables (private data)

• some methods that operate on local data (monitor regions) 

• Only one task can be active in a monitor at a time, executing some 
monitor region

• Analogous to a critical section

• Monitors can also be used for 

• Mutual exclusion

• Cooperation
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Mutual Exclusion with Monitors: an Analogy

• A building, many people can enter the building at the same time

• Entering building == entering the monitor 

• Leaving building == exiting the mintor

• Special room which can be occupied by a single person at a time

• The room contains some data which can be used/modified

• People must queue up in the hall and compete to enter the room

• Entering room == acquiring the monitor

• Occupying the room == owning the monitor

• Leaving room == releasing the monitor
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Monitors Cooperation - Analogy
• Cooperation == waiting for some condition to be true before 

executing the monitor region

• Analogy:

• A fastidious person will only work in the room if it is clean

• If the room is unclean, he will move from the room to a waiting 
area, and wait for the room to become cleaner before trying to 
re-enter

• Hopefully, a cleaner will come along, gain access to the room and 
clean it  

• Cleaner needs to notify people waiting after room is clean

• We will revisit this concept when we study “condition 
variables” later in the course
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Monitors – a Diagrammatic summary
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Converting Standard Java 
Libraries to Monitors

Different approaches:

1. Restrict access to a single task è no modification needed

2. Ensure that each call to a public method is isolated è excessive 
serialization

3. Use specialized implementations that minimize serialization across 
public methods è Java Concurrent Collections

• We will focus on three java.util.concurrent classes that can be 
used freely in HJ programs, analogous to Java Atomic Variables

— ConcurrentHashMap, ConcurrentLinkedQueue, CopyOnWriteArraySet

• Other j.u.c. classes can be used in standard Java, but not in HJ 
because they may perform blocking operations

— ArrayBlockingQueue, CountDownLatch, CyclicBarrier, DelayQueue, 
Exchanger, FutureTask, LinkedBlockingQueue, Phaser 
PriorityBlockingQueue, Semaphore, SynchronousQueue
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The Java Map Interface
—Map describes a type that stores a collection of key-value pairs
—A Map associates a key with a value
—The keys must be unique 

– the values need not be unique
—Useful for implementing software caches (where a program stores 

key-value maps obtained from an external source such as a 
database), dictionaries, sparse arrays, …

—A Map is often implemented with a hash table (HashMap)
—Hash tables attempt to provide constant-time access to objects 

based on a key (String or Integer)
– key could be your Student ID, your telephone number, social 

security number, account number, …
—The direct access is made possible by converting the key to an 

array index using a hash function that returns values in the range 
0 … ARRAY_SIZE-1, typically by using a (mod ARRAY_SIZE) 
operation
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java.util.concurrent.concurrentHashMap
• Implements ConcurrentMap sub-interface of Map

• Allows read (traversal) and write (update) operations to overlap 
with each other

• Some operations are atomic with respect to each other e.g.,
—get(), put(), putIfAbsent(), remove()

• Aggregate operations may not be viewed atomically by other 
operations e.g.,
—putAll(), clear()

• Expected degree of parallelism can be specified in 
ConcurrentHashMap constructor
—ConcurrentHashMap(initialCapacity, loadFactor, concurrencyLevel)
—A larger value of concurrencyLevel results in less serialization, but a 

larger space overhead for storing the ConcurrentHashMap
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Concurrent Collection Performance
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Example usage of ConcurrentHashMap in 
org.mirrorfinder.model.BaseDirectory
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java.util.concurrent.ConcurrentLinkedQueue

• Queue interface added to java.util
–  interface Queue extends Collection and includes

    boolean offer(E x); // same as add() in Collection
 E poll(); // remove head of queue if non-empty
 E remove(o) throws NoSuchElementException;
 E peek(); // examine head of queue without removing it

• Non-blocking operations
—Return false when full
—Return null when empty

• Fast thread-safe non-blocking implementation of Queue 
interface: ConcurrentLinkedQueue
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Example usage of ConcurrentLinkedQueue in 
org.apache.catalina.tribes.io.BufferPool15Impl
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java.util.concurrent.CopyOnWriteArraySet

• Set implementation optimized for case when sets are not large, 
and read operations dominate update operations in frequency

• This is because update operations such as add() and remove() 
involve making copies of the array
—Functional approach to mutation

• Iterators can traverse array “snapshots” efficiently without 
worrying about changes during the traversal.
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Example usage of CopyOnWriteArraySet in 
org.norther.tammi.spray.freemarker.DefaultTemplateLoader
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Actors as concurrent objects

• An actor is an autonomous, 
interacting component of a 
parallel system.  

• An actor has: 
—an immutable identity (name, 
virtual address)

—a mutable local state 
(encapsulated)

—procedures to manipulate 
local state (provide an 
interface)

—a thread of control

Thread State

Procedure
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The Actor Model: Fundamentals

• An actor may: 
—process 
messages 

—send messages
—change local 
state

—create new 
actors

Thread

State

Procedure

Threa
d

State

Procedure

Thread
State

Procedure

Interface

Interface

Interface

Messages

create
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Arrival Order Nondeterminism

Communication 
is 
asynchronous: 
no assumption 
can be made 
about order of 
message 
delivery

27



COMP 322, Spring 2012 (V.Sarkar)

Actor anatomy

 Actors = encapsulated state + behavior (methods)  + 
   
                 thread of control + mailbox
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