
COMP 322: Fundamentals of
Parallel Programming

Lecture 20: Isolated statement (contd),
Monitors, Actors

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 21 7 March 2012

COMP 322, Spring 2012 (V.Sarkar)

Acknowledgments
l Wikipedia – Spanning Tree

l Wolfram Mathworld – Spanning Tree

l Inside the Java Virtual Machine, Chapter 20: Thread
Synchronization
http://www.artima.com/insidejvm/ed2/threadsynch.html

l Concurrency Tutorial: Guarded Blocks
http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

l “Actor-based Programming for Scalable Parallel and Distributed
Systems”, Gul Agha

http://dl.dropbox.com/u/27020702/actors/Actors.pptx

2

COMP 322, Spring 2012 (V.Sarkar)

Outline
• Spanning Tree Example

• Monitors

• Actors

3

COMP 322, Spring 2012 (V.Sarkar)

Spanning Tree
• A spanning tree, T, of a connected undirected graph G is

• rooted at some vertex of G

• defined by a parent map for each vertex

• contains all the vertices of G, i.e. spans all vertices

• contains exactly |v| - 1 edges

• adding any other edge will create a cycle

• contains no cycles (a tree!)

• implies the edges involved in T is a subset of the edges in G

4

COMP 322, Spring 2012 (V.Sarkar)

An Example Graph with 4 possible
spanning trees rooted at vertex A

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

Vertex Parent

A null
B D
C A
D C

Vertex Parent

A null
B A
C D
D B

Vertex Parent

A null
B A
C A
D B

Vertex Parent

A null
B A
C A
D C

Example Graph:

Spanning Trees:

5

COMP 322, Spring 2012 (V.Sarkar)

Parallel Spanning Tree Algorithm using
isolated statement

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree

4. boolean tryLabeling(V n) {
5. isolated if (parent == null) parent=n;

6. return parent == n;
7. } // tryLabeling
8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {
10. V child = neighbors[i];

11. if (child.tryLabeling(this))
12. async child.compute(); //escaping async
13. }

14. } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .

6

COMP 322, Spring 2012 (V.Sarkar)

Parallel Spanning Tree Algorithm using
object-based isolation

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree

4. boolean tryLabeling(V n) {
5. isolated(this) if (parent == null) parent=n;

6. return parent == n;
7. } // tryLabeling
8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {
10. V child = neighbors[i];

11. if (child.tryLabeling(this))
12. async child.compute(); //escaping async
13. }

14. } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .

7

COMP 322, Spring 2012 (V.Sarkar)

Parallel Spanning Tree Algorithm using
java.util.concurrent.atomic.AtomicReference

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree
4. boolean tryLabeling(V n) {
5. return parent.compareAndSet(null ,n);
6.
7. } // tryLabeling
8. void compute() {
9. for (int i=0; i<neighbors.length; i++) {
10. V child = neighbors[i];
11. if (child.tryLabeling(this))
12. async child.compute(); //escaping async
13. }
14. } // compute
15.} // class V
16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();
19.. . .

8

COMP 322, Spring 2012 (V.Sarkar)

Performance trade-offs for Isolated,
Object-based Isolated, and Atomic Variables

• Atomic variables have the best performance of all three cases

• Limitations:

• Body of critical section must match existing method in atomic variable’s interface

• Context-switching needs to be disabled in the middle of an atomic operation

• Standard isolated (“isolated-all”) performs better than object-based isolated in low
contention

• HJ’s standard isolated uses a single lock. The additional parallelism from object-based isolation
does not make a measurable difference if contention is low, while the additional overhead for
object-based isolation can be significant.

• Standard isolated (“isolated-all”) performs better than object-based isolated in high
contention on a single object

• Object-based isolation incurs extra overhead but provides no extra benefit when contention is on
a single object.

• Object-based isolation performs better than standard isolated (“isolated-all”) if critical
sections are distributed across a wide range of objects, there is sufficient contention to
make standard isolated perform poorly, there isn’t too much contention on a single object to
limit object-based contention, and there is enough work in the isolated statement to justify
the overhead

• HJ’s object-based isolation uses one global read-write lock, combined with built-in locks for all
Java objects

9

COMP 322, Spring 2012 (V.Sarkar)

Outline
• Spanning Tree Example

• Monitors

• Actors

10

COMP 322, Spring 2012 (V.Sarkar)

Monitors --- an object-oriented approach to isolation

• A monitor is an object containing

• some local variables (private data)

• some methods that operate on local data (monitor regions)

• Only one task can be active in a monitor at a time, executing some
monitor region

• Analogous to a critical section

• Monitors can also be used for

• Mutual exclusion

• Cooperation

11

COMP 322, Spring 2012 (V.Sarkar)

Mutual Exclusion with Monitors: an Analogy

• A building, many people can enter the building at the same time

• Entering building == entering the monitor

• Leaving building == exiting the mintor

• Special room which can be occupied by a single person at a time

• The room contains some data which can be used/modified

• People must queue up in the hall and compete to enter the room

• Entering room == acquiring the monitor

• Occupying the room == owning the monitor

• Leaving room == releasing the monitor

12

COMP 322, Spring 2012 (V.Sarkar)

Monitors Cooperation - Analogy
• Cooperation == waiting for some condition to be true before

executing the monitor region

• Analogy:

• A fastidious person will only work in the room if it is clean

• If the room is unclean, he will move from the room to a waiting
area, and wait for the room to become cleaner before trying to
re-enter

• Hopefully, a cleaner will come along, gain access to the room and
clean it

• Cleaner needs to notify people waiting after room is clean

• We will revisit this concept when we study “condition
variables” later in the course

13

Figure source: http://www.artima.com/insidejvm/ed2/images/fig20-1.gif

COMP 322, Spring 2012 (V.Sarkar)

Monitors – a Diagrammatic summary

14

COMP 322, Spring 2012 (V.Sarkar)

Converting Standard Java
Libraries to Monitors

Different approaches:

1. Restrict access to a single task è no modification needed

2. Ensure that each call to a public method is isolated è excessive
serialization

3. Use specialized implementations that minimize serialization across
public methods è Java Concurrent Collections

• We will focus on three java.util.concurrent classes that can be
used freely in HJ programs, analogous to Java Atomic Variables

— ConcurrentHashMap, ConcurrentLinkedQueue, CopyOnWriteArraySet

• Other j.u.c. classes can be used in standard Java, but not in HJ
because they may perform blocking operations

— ArrayBlockingQueue, CountDownLatch, CyclicBarrier, DelayQueue,
Exchanger, FutureTask, LinkedBlockingQueue, Phaser
PriorityBlockingQueue, Semaphore, SynchronousQueue

15

COMP 322, Spring 2012 (V.Sarkar)

The Java Map Interface
—Map describes a type that stores a collection of key-value pairs
—A Map associates a key with a value
—The keys must be unique

– the values need not be unique
—Useful for implementing software caches (where a program stores

key-value maps obtained from an external source such as a
database), dictionaries, sparse arrays, …

—A Map is often implemented with a hash table (HashMap)
—Hash tables attempt to provide constant-time access to objects

based on a key (String or Integer)
– key could be your Student ID, your telephone number, social

security number, account number, …
—The direct access is made possible by converting the key to an

array index using a hash function that returns values in the range
0 … ARRAY_SIZE-1, typically by using a (mod ARRAY_SIZE)
operation

16

COMP 322, Spring 2012 (V.Sarkar)

java.util.concurrent.concurrentHashMap
• Implements ConcurrentMap sub-interface of Map

• Allows read (traversal) and write (update) operations to overlap
with each other

• Some operations are atomic with respect to each other e.g.,
—get(), put(), putIfAbsent(), remove()

• Aggregate operations may not be viewed atomically by other
operations e.g.,
—putAll(), clear()

• Expected degree of parallelism can be specified in
ConcurrentHashMap constructor
—ConcurrentHashMap(initialCapacity, loadFactor, concurrencyLevel)
—A larger value of concurrencyLevel results in less serialization, but a

larger space overhead for storing the ConcurrentHashMap

17

COMP 322, Spring 2012 (V.Sarkar)

Concurrent Collection Performance

18

COMP 322, Spring 2012 (V.Sarkar)

Example usage of ConcurrentHashMap in
org.mirrorfinder.model.BaseDirectory

19

COMP 322, Spring 2012 (V.Sarkar)

java.util.concurrent.ConcurrentLinkedQueue

• Queue interface added to java.util
– interface Queue extends Collection and includes

 boolean offer(E x); // same as add() in Collection
 E poll(); // remove head of queue if non-empty
 E remove(o) throws NoSuchElementException;
 E peek(); // examine head of queue without removing it

• Non-blocking operations
—Return false when full
—Return null when empty

• Fast thread-safe non-blocking implementation of Queue
interface: ConcurrentLinkedQueue

20

COMP 322, Spring 2012 (V.Sarkar)

Example usage of ConcurrentLinkedQueue in
org.apache.catalina.tribes.io.BufferPool15Impl

21

COMP 322, Spring 2012 (V.Sarkar)

java.util.concurrent.CopyOnWriteArraySet

• Set implementation optimized for case when sets are not large,
and read operations dominate update operations in frequency

• This is because update operations such as add() and remove()
involve making copies of the array
—Functional approach to mutation

• Iterators can traverse array “snapshots” efficiently without
worrying about changes during the traversal.

22

COMP 322, Spring 2012 (V.Sarkar)

Example usage of CopyOnWriteArraySet in
org.norther.tammi.spray.freemarker.DefaultTemplateLoader

23

COMP 322, Spring 2012 (V.Sarkar)

Outline
• Spanning Tree Example

• Monitors

• Actors

24

COMP 322, Spring 2012 (V.Sarkar)

Actors as concurrent objects

• An actor is an autonomous,
interacting component of a
parallel system.

• An actor has:
—an immutable identity (name,
virtual address)

—a mutable local state
(encapsulated)

—procedures to manipulate
local state (provide an
interface)

—a thread of control

Thread State

Procedure

25

COMP 322, Spring 2012 (V.Sarkar)

The Actor Model: Fundamentals

• An actor may:
—process
messages

—send messages
—change local
state

—create new
actors

Thread

State

Procedure

Threa
d

State

Procedure

Thread
State

Procedure

Interface

Interface

Interface

Messages

create

26

COMP 322, Spring 2012 (V.Sarkar)

Arrival Order Nondeterminism

Communication
is
asynchronous:
no assumption
can be made
about order of
message
delivery

27

COMP 322, Spring 2012 (V.Sarkar)

Actor anatomy

 Actors = encapsulated state + behavior (methods) +

 thread of control + mailbox

28

