COMP 322: Fundamentals of
Parallel Programming

Lecture 20: Isolated statement (contd),
Monitors, Actors

Vivek Sarkar
Department of Computer Science, Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 21 7 March 2012

Acknowledgments

* Wikipedia - Spanning Tree
* Wolfram Mathworld - Spanning Tree

* Inside the Java Virtual Machine, Chapter 20: Thread
Synchronization

* Concurrency Tutorial: Guarded Blocks
* "Actor-based Programming for Scalable Parallel and Distributed

Systems”, Gul Agha

http://dl.dropbox.com/u/27020702/actors/Actors.pptx

2 COMP 322, Spring 2012 (V.Sarkar) &

Outline

« Spanning Tree Example

* Monitors

 Actors

3 COMP 322, Spring 2012 (V.Sarkar)

Spanning Tree

* A spanning tree, T, of a connected undirected graph G is

* rooted at some vertex of G

defined by a parent map for each vertex

contains all the vertices of G, i.e. spans all vertices

contains exactly |v| - 1 edges

* adding any other edge will create a cycle

contains no cycles (a treel)

* implies the edges involved in T is a subset of the edges in 6

4 COMP 322, Spring 2012 (V.Sarkar) D

An Example Graph with 4 possible
spanning trees rooted at vertex A

Example Graph:

Spanning Trees:

A

C

A null A null A null A null
B D B A B A B A

C A C D C A C A

D C D B D B D C

¥ COMP 322, Spring 2012 (V.Sarkar) A

Parallel Spanning Tree Algorithm using
isolated statement

1. class V {

2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree
4. boolean tryLabeling(V n) {

5. isolated if (parent == null) parent=n;

6. return parent == n;

7. } // tryLabeling

8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {

10. V child = neighbors[i];

11. if (child.trylLabeling(this))

12, async child.compute(); //escaping async
13. }

14. } // compute

15.} // class V

l16.. . .

17. root.parent = root; // Use self-cycle to identify root
18. finish root.compute();

19.. . .

6 COMP 322, Spring 2012 (V.Sarkar) &,

Parallel Spanning Tree Algorithm using
object-based isolation

1. class V {

2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree
4. boolean tryLabeling(V n) {

5. isolated(this) if (parent == null) parent=n;

6. return parent == n;

7. } // tryLabeling

8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {

10. V child = neighbors[i];

11. if (child.trylLabeling(this))

12, async child.compute(); //escaping async
13. }

14. } // compute

15.} // class V

l16.. . .

17. root.parent = root; // Use self-cycle to identify root
18. finish root.compute();

19.. . .

7 COMP 322, Spring 2012 (V.Sarkar) &,

Parallel Spanning Tree Algorithm using
java.util.concurrent.atomic.AtomicReference

1. class V {

2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree
4. boolean tryLabeling(V n) {

5. return parent.compareAndSet(null ,n):

6.

7. } // tryLabeling

8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {

10. V child = neighbors[i];

11. if (child.trylLabeling(this))

12, async child.compute(); //escaping async
13. }

14. } // compute

15.} // class V
16. L] L] L]
17.root.parent = root; // Use self-cycle to identify root

18. finish root.compute();
19. L] L] L]

8 COMP 322, Spring 2012 (V.Sarkar) &,

Performance trade-offs for Isolated,
Object-based Isolated, and Atomic Variables

. Atomic variables have the best performance of all three cases

. Limitations:
. Body of critical section must match existing method in atomic variable's interface
. Context-switching needs to be disabled in the middle of an atomic operation

« Standard isolated (“isolated-all”) performs better than object-based isolated in low
contention
. HJ's standard isolated uses a single lock. The additional parallelism from object-based isolation

does not make a measurable difference if contention is low, while the additional overhead for
object-based isolation can be significant.

. Standard isolated (“isolated-all”) performs better than object-based isolated in high
contention on a single object

. Object-based isolation incurs extra overhead but provides no extra benefit when contention is on
a single object.

. Object-based isolation performs better than standard isolated (“isolated-all”) if critical
sections are distributed across a wide range of objects, there is sufficient contention to
make standard isolated perform poorly, there isn't too much contention on a single object to
limit object-based contention, and there is enough work in the isolated statement to justify
the overhead

. HJ's object-based isolation uses one global read-write lock, combined with built-in locks for all
Java objects

9 COMP 322, Spring 2012 (V.Sarkar) &

Outline

« Spanning Tree Example

 Monitors

 Actors

10 COMP 322, Spring 2012 (V.Sarkar)

A

Monitors --- an object-oriented approach to isolation

* A monitor is an object containing
* some local variables (private data)
* some methods that operate on local data (monitor regions)

* Only one task can be active in a monitor at a time, executing some
monitor region

* Analogous to a critical section
* Monitors can also be used for
* Mutual exclusion

* Cooperation

11 COMP 322, Spring 2012 (V.Sarkar) %ﬂ

Mutual Exclusion with Monitors: an Analogy

A building, many people can enter the building at the same time
* Entering building == entering the monitor

* Leaving building == exiting the mintor

Special room which can be occupied by a single person at a time

The room contains some data which can be used/modified

People must queue up in the hall and compete to enter the room
* Entering room == acquiring the monitor
* Occupying the room == owning the monitor

* Leaving room == releasing the monitor

12 COMP 322, Spring 2012 (V.Sarkar)

Monitors Cooperation - Analogy

* Cooperation == waiting for some condition to be true before
executing the monitor region

* Analogy:
* A fastidious person will only work in the room if it is clean

* If the room is unclean, he will move from the room to a waiting
area, and wait for the room to become cleaner before trying to
re-enter

* Hopefully, a cleaner will come along, gain access to the room and
clean it

* Cleaner needs to notify people waiting after room is clean

* We will revisit this concept when we study “condition
variables” later in the course

13 COMP 322, Spring 2012 (V.Sarkar) %}Q

Monitors — a Diagrammatic summary

The Owner

Entry Set Wait Set

LINV Q (l((/ty I(/um. O O
| O (lu/llllt O O

release and

O A Waiting Thread

An Active Thread

Figure 20-1. A Java monitor.

Figure source:

5T
14 COMP 322, Spring 2012 (V.Sarkar) 2

Converting Standard Java
Libraries to Monitors

Different approaches:
1. Restrict access to a single task = no modification needed

2. Ensure that each call to a public method is isolated = excessive
serialization

3. Use specialized implementations that minimize serialization across
public methods = Java Concurrent Collections

« We will focus on three java.util.concurrent classes that can be
used freely in HJ programs, analogous to Java Atomic Variables

— ConcurrentHashMap, ConcurrentlLinkedQueue, CopyOnWriteArraySet

« Other j.u.c. classes can be used in standard Java, but not in HJ
because they may perform blocking operations
— ArrayBlockingQueue, CountDownLatch, CyclicBarrier, DelayQueue,

Exchanger, FutureTask, LinkedBlockingQueue, Phaser
PriorityBlockingQueue, Semaphore, SynchronousQueue

15 COMP 322, Spring 2012 (V.Sarkar) D

The Java Map Interface

—Map describes a type that stores a collection of key-value pairs
— A Map associates a key with a value
— The keys must be unique

- the values need not be unique

—Useful for implementing software caches (where a program stores
key-value maps obtained from an external source such as a
database), dictionaries, sparse arrays, ..

—A Map is often implemented with a hash table (HashMap)
—Hash tables attempt to provide constant-time access to objects
based on a key (String or Integer)
- key could be your Student ID, your telephone number, social
security number, account number, ..
—The direct access is made possible by converting the key to an
array index using a hash function that returns values in the range

16 COMP 322, Spring 2012 (V.Sarkar) &

java.util.concurrent.concurrentHashMap

« Implements ConcurrentMap sub-interface of Map

« Allows read (traversal) and write (update) operations to overlap
with each other

- Some operations are atomic with respect to each other e.g.,
—get(), put(), putIfAbsent(), remove()

- Aggregate operations may not be viewed atomically by other
operations e.qg.,

—putAll(), clear()

« Expected degree of parallelism can be specified in
ConcurrentHashMap constructor

— ConcurrentHashMap(initialCapacity, loadFactor, concurrencylevel)

—A larger value of concurrencylLevel results in less serialization, but a
larger space overhead for storing the ConcurrentHashMap

17 COMP 322, Spring 2012 (V.Sarkar) D

3.5

el
2]

Throughput (normalized)l)

0.5

18

N
L

(%]
L

-
1

Concurrent Collection Performance

Throughput in Thread-safe Maps

§

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 24 32 40 48

Threads

- ConcurrentHashMap

- ConcurrentSkipListMap
SynchronizedHashMap

- SynchronizedTreeMap

Java 6 B77
8-Way System
40% Read Only
60% Insert

2% Removals

COMP 322, Spring 2012 (V.Sarkar)

Example usage of ConcurrentHashMap in
org.mirrorfinder.model.BaseDirectory

1| public abstract class BaseDirectory extends Baseltem implements Directory {
2 Map files = new ConcurrentHashMap ();

3 Coe

4 public Map getFiles () {

5 return files;

6|}

7 public boolean has(File item) {

8 return getFiles ().containsValue(item);

9 1}

10 public Directory add(File file) {

11 String key = file .getName();

12 if (key = null) throw new Error(. . .);

13 getFiles ().put(key, file);

14 Coe

15 return this;

16| }

17 public Directory remove(File item) throws NotFoundException {
18 if (has(item)) {

19 getFiles ().remove(item.getName ());

20 Coe

21 } else throw new NotFoundException(”can’t_remove_unrelated_item”);
2| 1}

23| }

Listing 1: Example usage of ConcurrentHashMap in org.mirrorfinder.model.BaseDirectory

19 COMP 322, Spring 2012 (V.Sarkar) %}

java.util.concurrent.ConcurrentLinkedQueue

* Queue interface added to java.util
- interface Queue extends Collection and includes
boolean offer(E x); // same as add() in Collection
E poll(): // remove head of queue if non-empty
E remove(o) throws NoSuchElementException;
E peek(): // examine head of queue without removing it
* Non-blocking operations
—Return false when full

—Return null when empty

* Fast thread-safe non-blocking implementation of Queue
inferface: ConcurrentlLinkedQueue

20 COMP 322, Spring 2012 (V.Sarkar) &

Example usage of ConcurrentLinkedQueue in
org.apache.catalina.tribes.io.BufferPool15Iimpl

1| class BufferPooll5Impl implements BufferPool.BufferPoolAPI {

2 protected int maxSize;

3 protected AtomicInteger size = new AtomicInteger (0);

4 protected ConcurrentLinkedQueue queue = new ConcurrentLinkedQueue ();
) Coe

6 public XByteBuffer getBuffer(int minSize, boolean discard) {

7 XByteBuffer buffer = (XByteBuffer) queue.poll ();

8 if (buffer != null) size.addAndGet(—buffer.getCapacity ());

9 if (buffer = null) buffer = new XByteBuffer (minSize , discard);
10 else if (buffer.getCapacity () <= minSize) buffer.expand(minSize);
11 Coe

12 return buffer;

13 }

14 public void returnBuffer (XByteBuffer buffer) {

15 if ((size.get() + buffer.getCapacity()) <= maxSize) {

16 size .addAndGet(buffer . getCapacity ());

17 queue. offer (buffer);

18 }

19| }

20| }

Listing 2: Example usage of ConcurrentLinkedQueue in org.apache.catalina.tribes.io.BufferPooll15Impl

21 COMP 322, Spring 2012 (V.Sarkar) &

java.util.concurrent.CopyOnWriteArraySet

« Set implementation optimized for case when sets are not large,
and read operations dominate update operations in frequency

« This is because update operations such as add() and remove()
involve making copies of the array

—Functional approach to mutation

« Iterators can traverse array “snapshots” efficiently without
worrying about changes during the traversal.

22 COMP 322, Spring 2012 (V.Sarkar) D

Example usage of CopyOnWriteArraySet in
org.norther.tammi.spray.freemarker.DefaultTemplateLoader

I
1 public class DefaultTemplateLoader implements TemplateLoader, Serializable
2| {
3 private Set resolvers = new CopyOnWriteArraySet ();
4 public void addResolver (ResourceResolver res)
5| |
6 resolvers.add(res);
7|}
8 public boolean templateExists(String name)
9 A
10 for (Iterator i = resolvers.iterator(); i.hasNext();) {
11 if (((ResourceResolver) i.next()).resourceExists(name)) return true
12
13 return false;
14 }
15 public Object findTemplateSource(String name) throws [OException
16 {
17 for (Iterator i = resolvers.iterator(); i.hasNext();) {
18 CachedResource res = ((ResourceResolver) i.next()).getResource(name);
19 if (res != null) return res;
20 }
21 return null;
2 }
23}
|

23 COMP 322, Spring 2012 (V.Sarkar) %\%‘

Outline

« Spanning Tree Example
* Monitors

 Actors

24 COMP 322, Spring 2012 (V.Sarkar)

A

Actors as concurrent objects

- An actor is an autonomous,
interacting component of a
parallel system.

- An actor has:

—an immutable identity (name,
virtual address)

—a mutable local state @
(enCGPSUIaTed) Procedure

—procedures to manipulate
local state (provide an
interface)

—a thread of control

COMP 322, Spring 2012 (V.Sapkar) %\5

26

The Actor Model: Fundamentals

Thread

- An actor may:

—process
messages

—send messages

—change local
state

—create new
actors

COMP 322, Spring 2012 (V.Sarkar)

Arrival Order Nondeterminism

n n+1
- =k
MAIL QUEUE
Communication
send— 7 ~ - IS
Message 4 — — / state
5 / change asynchronous:
/create .
/ no assumption
’ MAIL QUEUE
_., =l can be made
ADDRESS
\ about order of
@ message
delivery

27 COMP 322, Spring 2012 (V.Sarkar) S,

Actor anatomy

Actors = encapsulated state + behavior (methods) +

thread of control + mailbox

Interface

Thread State

0,

Methods

Asynchronous
messages

\

Mailbox

28 COMP 322, Spring 2012 (V.Sarkar) D

