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Acknowledgments for Today’s Lecture
• Maurice Herlihy and Nir Shavit. The art of multiprocessor 

programming. Morgan Kaufmann, 2008.
—Optional text for COMP 322
—Slides and code examples extracted fromhttp://

www.elsevierdirect.com/companion.jsp?ISBN=9780123705914 
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Outline 

• Actors and Places

• Linearizability of Concurrent Objects
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Places in HJ (Recap)
import hj.lang.place;

here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) =  place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”

<place-expr>.id returns the id of the place as an int

<place-expr>.next() returns the next place

= place.factory.place((<place-expr>.id + 1) %  place.MAX_PLACES)

async at(P) S

• Creates new task to execute statement S at place P

• async S is equivalent to async at(here) S

• Main program task starts at place.factory.place(0
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Actors in HJ (Recap)
l Create your custom class which extends hj.lang.Actor<Object> ,and 

implement the void process() method
import hj.lang.Actor;
class MyActor extends Actor<Object> {
  protected void process(Object message) {
    System.out.println(“Processing “ + message);
} }

l Instantiate and start your actor 
!Actor<Object> anActor = new MyActor(); 

    anActor.start(); //Start actor at same place as parent task 

l Send messages to the actor
anActor.send(aMessage); //aMessage can be any object in general

l Call exit() to terminate an actor
  protected void process(Object message) {
    if (message.someCondition()) exit(); 
  }

l Actor execution implemented as async tasks in HJ
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Adding support for places in HJ actors
l Basic approach: include an optional place parameter in the 

start() method

Actor<Object> anActor = new MyActor();
 
    anActor.start(p);    // Start actor at place p

l Example:
   SievePlaceActor nextActor = new SievePlaceActor(...); 

   // Start actor at next place, relative to current place
   nextActor.start(here.next());
 

6



COMP 322, Spring 2012 (V.Sarkar)

Outline 

• Actors and Places

• Linearizability of Concurrent Objects
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Concurrent Objects
• A concurrent object is an object that can correctly handle 

methods invoked in parallel by different tasks or threads
—Originated as monitors
—Also referred to as “thread-safe objects”

• For simplicity, it is usually assumed that the body of each 
method in a concurrent object is itself sequential
—Assume that method does not create child async tasks

• Implementations of methods can be serial as in monitors (e.g., 
enclose each method in an object-based isolated statement) or 
concurrent (e.g., ConcurrentHashMap, ConcurrentLinkedQueue 
and CopyOnWriteArraySet)

• A desirable goal is to develop implementations that are 
concurrent while being as close to the semantics of the serial 
version as possible  
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The Big Question!

• Consider a simple FIFO (First In, First Out) queue as a 
canonical example of a concurrent object
—Method q.enq(o) inserts object o at the tail of the queue

– Assume that there is unbounded space available for all 
enq() operations to succeed

—Method q.deq() removes and returns the item at the head of 
the queue. 
– Throws EmptyException if the queue is empty. 

• What does it mean for a concurrent object like a FIFO 
queue to be correct?
—What is a concurrent FIFO queue?
—FIFO means strict temporal order
—Concurrent means ambiguous temporal order
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Describing the concurrent via the sequential 

time

q.deq

q.enq

 enq  deq

   isolated-begin() isolated-end()

isolated-begin() isolated-end()
Behavior is 
“Sequential”

enq

deq

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Informal definition of Linearizability

• A linearizable execution is one in which the 
semantics of a set of method calls performed in 
parallel on a concurrent object is equivalent to that 
of some legal linear sequence of those method calls.

• A linearizable concurrent object is one for which all 
possible executions are linearizable.
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Table 1: Example execution of a monitor-
based implementation of FIFO queue q

Is this a linearizable execution?

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”
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Table 2: Example execution of method calls 
on a concurrent FIFO queue q

Is this a linearizable execution?

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”
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Table 3: Example of a non-linearizable 
execution on a concurrent FIFO queue q

Is this a linearizable execution?

• No! q.enq(x) must precede q.enq(y) in all linear sequences of 
method calls invoked on q.  It is illegal for the q.deq() operation 
to return y.
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Alternate definition of Linearizability
• Assume that each method call takes effect “instantaneously” at 

some distinct point in time between its invocation and return.

• Execution is linearizable if we can choose instantaneous points 
that are consistent with a sequential execution in which methods 
are executed at those points
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Table 2: Example execution of method calls 
on a concurrent FIFO queue q

Is this a linearizable execution?

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

16



COMP 322, Spring 2012 (V.Sarkar)

An Example

timetime

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example

time

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example

time

q.enq(x)

q.enq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example

time

q.enq(x)

q.enq(y) q.deq():x

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

linearizable
q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Another Example (like Table 3)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Another Example

time

q.enq(x)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Another Example

time

q.enq(x) q.deq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Another Example

time

q.enq(x)

q.enq(y)

q.deq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Another Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Another Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

not linearizable

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Figure 1: Computation Graph for monitor-
based implementation of FIFO queue (Table 1)

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge
Serialization edge

Task B

Task A
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Figure 2: Creating a Reduced Graph to model 
Instantaneous Execution of Methods

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Method q.enq(x)

Method q.enq(y) Method q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Computation Graph

Method-level Reduced Graph

30



COMP 322, Spring 2012 (V.Sarkar)

Relating Linearizability to the 
Computation Graph model

• Given a reduced CG, a sufficient condition for 
linearizability is that the reduced CG is acyclic as in 
Figure 2. 

• This means that if the reduced CG is acyclic, then 
the underlying execution must be linearizable. 

• However, the converse is not necessarily true, as we 
will see later.
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Figure 3: Example Computation Graph for concurrent 
implementation of FIFO queue (Table 2)

i-begin q.enq(x)1 i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge Serialization edgeTask B

Task A

q.enq(x)2 i-begin q.enq(x)3 i-end

Computation Graph

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method-level Reduced Graph

32


