
COMP 322: Fundamentals of
Parallel Programming

Lecture 23: Actors and Places,
Linearizability of Concurrent Objects

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 23 12 March 2012

COMP 322, Spring 2012 (V.Sarkar)

Acknowledgments for Today’s Lecture
• Maurice Herlihy and Nir Shavit. The art of multiprocessor

programming. Morgan Kaufmann, 2008.
—Optional text for COMP 322
—Slides and code examples extracted fromhttp://

www.elsevierdirect.com/companion.jsp?ISBN=9780123705914

2

COMP 322, Spring 2012 (V.Sarkar)

Outline

• Actors and Places

• Linearizability of Concurrent Objects

3

COMP 322, Spring 2012 (V.Sarkar)

Places in HJ (Recap)
import hj.lang.place;

here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) = place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”

<place-expr>.id returns the id of the place as an int

<place-expr>.next() returns the next place

= place.factory.place((<place-expr>.id + 1) % place.MAX_PLACES)

async at(P) S

• Creates new task to execute statement S at place P

• async S is equivalent to async at(here) S

• Main program task starts at place.factory.place(0

4

COMP 322, Spring 2012 (V.Sarkar)

Actors in HJ (Recap)
l Create your custom class which extends hj.lang.Actor<Object> ,and

implement the void process() method
import hj.lang.Actor;
class MyActor extends Actor<Object> {
 protected void process(Object message) {
 System.out.println(“Processing “ + message);
} }

l Instantiate and start your actor
!Actor<Object> anActor = new MyActor();

 anActor.start(); //Start actor at same place as parent task

l Send messages to the actor
anActor.send(aMessage); //aMessage can be any object in general

l Call exit() to terminate an actor
 protected void process(Object message) {
 if (message.someCondition()) exit();
 }

l Actor execution implemented as async tasks in HJ

5

COMP 322, Spring 2012 (V.Sarkar)

Adding support for places in HJ actors
l Basic approach: include an optional place parameter in the

start() method

Actor<Object> anActor = new MyActor();

 anActor.start(p); // Start actor at place p

l Example:
 SievePlaceActor nextActor = new SievePlaceActor(...);

 // Start actor at next place, relative to current place
 nextActor.start(here.next());

6

COMP 322, Spring 2012 (V.Sarkar)

Outline

• Actors and Places

• Linearizability of Concurrent Objects

7

COMP 322, Spring 2012 (V.Sarkar)

Concurrent Objects
• A concurrent object is an object that can correctly handle

methods invoked in parallel by different tasks or threads
—Originated as monitors
—Also referred to as “thread-safe objects”

• For simplicity, it is usually assumed that the body of each
method in a concurrent object is itself sequential
—Assume that method does not create child async tasks

• Implementations of methods can be serial as in monitors (e.g.,
enclose each method in an object-based isolated statement) or
concurrent (e.g., ConcurrentHashMap, ConcurrentLinkedQueue
and CopyOnWriteArraySet)

• A desirable goal is to develop implementations that are
concurrent while being as close to the semantics of the serial
version as possible

8

COMP 322, Spring 2012 (V.Sarkar)

The Big Question!

• Consider a simple FIFO (First In, First Out) queue as a
canonical example of a concurrent object
—Method q.enq(o) inserts object o at the tail of the queue

– Assume that there is unbounded space available for all
enq() operations to succeed

—Method q.deq() removes and returns the item at the head of
the queue.
– Throws EmptyException if the queue is empty.

• What does it mean for a concurrent object like a FIFO
queue to be correct?
—What is a concurrent FIFO queue?
—FIFO means strict temporal order
—Concurrent means ambiguous temporal order

9

COMP 322, Spring 2012 (V.Sarkar)

Describing the concurrent via the sequential

time

q.deq

q.enq

 enq deq

 isolated-begin() isolated-end()

isolated-begin() isolated-end()
Behavior is
“Sequential”

enq

deq

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

10

COMP 322, Spring 2012 (V.Sarkar)

Informal definition of Linearizability

• A linearizable execution is one in which the
semantics of a set of method calls performed in
parallel on a concurrent object is equivalent to that
of some legal linear sequence of those method calls.

• A linearizable concurrent object is one for which all
possible executions are linearizable.

11

COMP 322, Spring 2012 (V.Sarkar)

Table 1: Example execution of a monitor-
based implementation of FIFO queue q

Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

12

COMP 322, Spring 2012 (V.Sarkar)

Table 2: Example execution of method calls
on a concurrent FIFO queue q

Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

13

COMP 322, Spring 2012 (V.Sarkar)

Table 3: Example of a non-linearizable
execution on a concurrent FIFO queue q

Is this a linearizable execution?

• No! q.enq(x) must precede q.enq(y) in all linear sequences of
method calls invoked on q. It is illegal for the q.deq() operation
to return y.

14

COMP 322, Spring 2012 (V.Sarkar)

Alternate definition of Linearizability
• Assume that each method call takes effect “instantaneously” at

some distinct point in time between its invocation and return.

• Execution is linearizable if we can choose instantaneous points
that are consistent with a sequential execution in which methods
are executed at those points

15

COMP 322, Spring 2012 (V.Sarkar)

Table 2: Example execution of method calls
on a concurrent FIFO queue q

Is this a linearizable execution?

Yes! Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x”

16

COMP 322, Spring 2012 (V.Sarkar)

An Example

timetime

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

17

COMP 322, Spring 2012 (V.Sarkar)

Example

time

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

18

COMP 322, Spring 2012 (V.Sarkar)

Example

time

q.enq(x)

q.enq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

19

COMP 322, Spring 2012 (V.Sarkar)

Example

time

q.enq(x)

q.enq(y) q.deq():x

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

20

COMP 322, Spring 2012 (V.Sarkar)

Example

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

21

COMP 322, Spring 2012 (V.Sarkar)

Example

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

linearizable
q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

22

COMP 322, Spring 2012 (V.Sarkar)

Another Example (like Table 3)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

23

COMP 322, Spring 2012 (V.Sarkar)

Another Example

time

q.enq(x)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

24

COMP 322, Spring 2012 (V.Sarkar)

Another Example

time

q.enq(x) q.deq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

25

COMP 322, Spring 2012 (V.Sarkar)

Another Example

time

q.enq(x)

q.enq(y)

q.deq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

26

COMP 322, Spring 2012 (V.Sarkar)

Another Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

27

COMP 322, Spring 2012 (V.Sarkar)

Another Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

not linearizable

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

28

COMP 322, Spring 2012 (V.Sarkar)

Figure 1: Computation Graph for monitor-
based implementation of FIFO queue (Table 1)

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge
Serialization edge

Task B

Task A

29

COMP 322, Spring 2012 (V.Sarkar)

Figure 2: Creating a Reduced Graph to model
Instantaneous Execution of Methods

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Method q.enq(x)

Method q.enq(y) Method q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Computation Graph

Method-level Reduced Graph

30

COMP 322, Spring 2012 (V.Sarkar)

Relating Linearizability to the
Computation Graph model

• Given a reduced CG, a sufficient condition for
linearizability is that the reduced CG is acyclic as in
Figure 2.

• This means that if the reduced CG is acyclic, then
the underlying execution must be linearizable.

• However, the converse is not necessarily true, as we
will see later.

31

COMP 322, Spring 2012 (V.Sarkar)

Figure 3: Example Computation Graph for concurrent
implementation of FIFO queue (Table 2)

i-begin q.enq(x)1 i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge Serialization edgeTask B

Task A

q.enq(x)2 i-begin q.enq(x)3 i-end

Computation Graph

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method-level Reduced Graph

32

