
COMP 322: Fundamentals of
Parallel Programming

Lecture 25: Linearizability (contd),
Progress Guarantees in HJ programs

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 25 16 March 2012

COMP 322, Spring 2012 (V.Sarkar)

Acknowledgments for Today’s Lecture
• Maurice Herlihy and Nir Shavit. The art of multiprocessor

programming. Morgan Kaufmann, 2008.
—Optional text for COMP 322
—Slides and code examples extracted fromhttp://

www.elsevierdirect.com/companion.jsp?ISBN=9780123705914

• Lecture on “Linearizability” by Mila Oren
—http://www.cs.tau.ac.il/~afek/Mila.Linearizability.ppt

• “Introduction to Synchronization”, Klara Nahrstedt, CS 241
Lecture 10, Spring 2007
—www.cs.uiuc.edu/class/sp07/cs241/Lectures/10.sync.ppt

• “Programming Paradigms for Concurrency”, Pavol Černý, Fall
2010, IST Austria
—http://pub.ist.ac.at/courses/ppc10/slides/Linearizability.pptx

2

COMP 322, Spring 2012 (V.Sarkar)

Safety vs. Liveness

• In a concurrent setting, we need to specify both the safety
and the liveness properties of an object

• Need a way to define
—Safety: when an implementation is correct
—Liveness: the conditions under which it guarantees progress

• Linearizability is a safety property for concurrent objects

3

COMP 322, Spring 2012 (V.Sarkar)

Outline
• Review of formal definition of Linearizability

—Safety property

• Progress guarantees in HJ programs
—Liveness properties

4

COMP 322, Spring 2012 (V.Sarkar)

Legality condition for a sequential
history (Recap)

5

COMP 322, Spring 2012 (V.Sarkar)
6

Sequential Specifications

• If (precondition)
—the object is in such-and-such a state, before you call the

method,

• Then (postcondition)
—the method will return a particular value, or throw a

particular exception.
—the object will be in some other state, when the method

returns,

COMP 322, Spring 2012 (V.Sarkar)
7

Example: Pre and PostConditions
for a deq() operation on a FIFO Queue in a Sequential Program

Case 1:
• Precondition:

—Queue is non-empty

• Postconditions:
—Returns first item in queue
—Removes first item in queue

Case 2:
• Precondition:

—Queue is empty

• Postconditions:
—Throws Empty exception
—Queue state unchanged

COMP 322, Spring 2012 (V.Sarkar)
8

Sequential vs Concurrent Executions

• Sequential:
—Each method described in isolation
—Method call as a single event

– Start and end times do not impact its semantics

• Concurrent
—Method call is an interval from invocation to response
—Must characterize all possible interactions with concurrent calls

– What if two enqs overlap?
– Two deqs? enq and deq? …

COMP 322, Spring 2012 (V.Sarkar)

History H is linearizable if
1) it can be transformed to history G such that G has no
pending invocations,
• For each pending invocation in G, either remove it
from H or append a response in H

2) there exits a legal sequential history S that is
equivalent to G, and

• G and S are equivalent if for each thread A, G|A =
S|A

3) if method call m0 precedes method call m1 in G, m0
must also precede m1 in S

• Mathematically written as èG ⊂ èS

41

Formal definition of Linearizability
(Recap)

9

COMP 322, Spring 2012 (V.Sarkar)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

Example of history H
 (from last lecture)

time

B.q.enq(4)

A. q.enq(3)

B.q.deq(4) B. q.enq(6)

10

If q.deq() returns 4,
then q.enq(4) must take
effect before q.enq(3)

Pending invocations: can be
completed or discarded

COMP 322, Spring 2012 (V.Sarkar)

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example (contd)

time

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

Two legal equivalent sequential histories

11

We (arbitrarily) decided to complete
“A q.enq(3)”, and discard “B q.enq(6)”

B q.enq(4)
B q:void
B q.deq()
B q:4
A q.enq(3)
A q:void

S1 S2

Time line for
sequential
history S1

COMP 322, Spring 2012 (V.Sarkar)

Two Important Properties that follow
from Linearizability

1) Composability

• History H is linearizable if and only if
– For every object x
– H|x is linearizable

– Why is composability important?
— Modularity
— Can prove linearizability of objects in isolation
— Can compose independently-implemented objects

2) Non-blocking

• one method call is never forced to wait on another
• If method invocation “A q.inv(…)” is pending in history H, then
there exists a response “A q:res(…)” such that “H + A q:res(…)” is
linearizable

12

COMP 322, Spring 2012 (V.Sarkar)

Relating Linearizability to the
Computation Graph model (Lecture 23)

• Given a Computation Graph (CG), its reduced CG is
obtained by collapsing also CG nodes belonging to teh
same method call (on the concurrent object) to a
single “macro-node”

• Given a reduced CG, a sufficient condition for
linearizability is that the reduced CG is acyclic

—This means that if the reduced CG is acyclic, then
the underlying execution must be linearizable.

• However, the converse is not necessarily true

13

COMP 322, Spring 2012 (V.Sarkar)

Computation Graph for monitor-based
implementation of FIFO queue (Table 1)

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge
Serialization edge

Task B

Task A

14

COMP 322, Spring 2012 (V.Sarkar)

Creating a Reduced Graph to model
Instantaneous Execution of Methods (Table 1)

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Method q.enq(x)

Method q.enq(y) Method q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Computation Graph

Method-level Reduced Graph

15

Acyclic reduced CG ==> Linearizable execution!

COMP 322, Spring 2012 (V.Sarkar)

Computation Graph for concurrent implementation of
FIFO queue (Table 2)

i-begin q.enq(x)1 i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge Serialization edgeTask B

Task A

q.enq(x)2 i-begin q.enq(x)3 i-end

Computation Graph

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method-level Reduced Graph

16

Cyclic reduced CG ==> Can’t tell if execution is linearizable

COMP 322, Spring 2012 (V.Sarkar)

Making the cycle test more precise for
linearizability

• Approach to make cycle test more precise for linearizability

• Decompose concurrent object method into a sequence of pairs
of “try” and “commit” steps

• Assume that each “commit” step’s execution does not use any
input from any prior “try” step

è Reduced graph can just reduce the “commit” steps to a single
node instead of reducing the entire method to a single node

17

COMP 322, Spring 2012 (V.Sarkar)

Implementing AtomicInteger.getAndAdd()
using compareAndSet()

 /** Atomically adds delta to the current value.
1. *
2. * @param delta the value to add
3. * @return the previous value
4. */
5. public final int getAndAdd(int delta) {
6. for (;;) { // try
7. int current = get();
8. int next = current + delta;
9. if (compareAndSet(current, next))
10. // commit
11. return current;
12. }
13. }

• Source: http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/
atomic/AtomicInteger.java

18

COMP 322, Spring 2012 (V.Sarkar)

Outline
• Review of formal definition of Linearizability

—Safety property

• Progress guarantees in HJ programs
—Liveness properties

19

COMP 322, Spring 2012 (V.Sarkar)

Desirable Properties of Parallel Program
Executions

• Data-race freedom

• Termination

• But some applications are designed to be non-terminating

• Liveness = a program’s ability to make progress in a timely
manner

• Different levels of liveness guarantees (from weaker to
stronger)
—Deadlock freedom
—Livelock freedom
—Starvation freedom

• Today’s lecture discusses progress guarantees for HJ programs
— We will revisit progress guarantees for Java concurrency later

20

COMP 322, Spring 2012 (V.Sarkar)

Terminating Parallel Program Executions
• A parallel program execution is terminating if all sequential tasks in the program

terminate

• Example of a nondeterministic data-race-free program with a nonterminating
execution

1. p.x = false;

2. finish {

3. async { // S1

4. boolean b = false; do { isolated b = p.x; } while (! b);

5. }

6. isolated p.x = true; // S2

7. } // finish

• Some executions of this program may be terminating, and some not

• Cannot assume in general that statement S2 will ever get a chance to execute if
async S1 is nonterminating e.g., consider case when program is run with one worker
(-places 1:1)

21

COMP 322, Spring 2012 (V.Sarkar)

Deadlock-Free Parallel Program Executions
• A parallel program execution is deadlock-free if no task’s execution remains

incomplete due to it being blocked awaiting some condition

• Example of a program with a deadlocking execution

 DataDrivenFuture left = new DataDrivenFuture();

 DataDrivenFuture right = new DataDrivenFuture();

 finish {

 async await (left) right.put(rightBuilder()); // Task1

 async await (right) left.put(leftBuilder()); // Task2

 }

• In this case, Task1 and Task2 are in a deadlock cycle.
– Only two constructs can lead to deadlock in HJ: async await or explicit

phaser wait (instead of next)

—There are many mechanisms that can lead to deadlock cycles in other
programming models (e.g., locks)

22

COMP 322, Spring 2012 (V.Sarkar)

Livelock-Free Parallel Program Executions
• A parallel program execution exhibits livelock if two or more tasks

repeat the same interactions without making any progress (special case
of nontermination)

• Livelock example:
// Task 1
incrToTwo(AtomicInteger ai) {
 // increment ai till it reaches 2
 while (ai.incrementAndGet() < 2);
}

• Many well-intended approaches to avoid deadlock result in livelock
instead

• Any data-race-free HJ program without isolated/atomic-variables/
actors is guaranteed to be livelock-free (may be nonterminating in a
single task, however)

// Task 2
decrToNegativeTwo(AtomicInteger ai) {
 // decrement ai till it reaches -2
 while (a.decrementAndGet() > -2);
}

23

COMP 322, Spring 2012 (V.Sarkar)

Starvation-Free Parallel Program
Executions

• A parallel program execution exhibits starvation if some task is
repeatedly denied the opportunity to make progress
—Starvation-freedom is sometimes referred to as “lock-out freedom”
—Starvation is possible in HJ programs, since all tasks in the same

program are assumed to be cooperating, rather than competing
– If starvation occurs in a deadlock-free HJ program, the

“equivalent” sequential program must have been non-terminating

• Classic source of starvation: “Priority Inversion” problem for OS
threads (usually from different processes)
—Thread A is at high priority, waiting for result or resource from

Thread C at low priority
—Thread B at intermediate priority is CPU-bound
—Thread C never runs, hence thread A never runs
—Fix: when a high priority thread waits for a low priority thread,

boost the priority of the low-priority thread

24

