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Acknowledgments for Today’s Lecture
• Maurice Herlihy and Nir Shavit. The art of multiprocessor 

programming. Morgan Kaufmann, 2008.
—Optional text for COMP 322
—Slides and code examples extracted fromhttp://

www.elsevierdirect.com/companion.jsp?ISBN=9780123705914

• Lecture on “Linearizability” by Mila Oren
—http://www.cs.tau.ac.il/~afek/Mila.Linearizability.ppt

• “Introduction to Synchronization”, Klara Nahrstedt, CS 241 
Lecture 10, Spring 2007
—www.cs.uiuc.edu/class/sp07/cs241/Lectures/10.sync.ppt

• “Programming Paradigms for Concurrency”, Pavol Černý, Fall 
2010, IST Austria
—http://pub.ist.ac.at/courses/ppc10/slides/Linearizability.pptx 
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Safety vs. Liveness

• In a concurrent setting, we need to specify both the safety 
and the liveness properties of an object

• Need a way to define 
—Safety: when an implementation is correct
—Liveness: the conditions under which it guarantees progress

• Linearizability is a safety property for concurrent objects
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Outline
• Review of formal definition of Linearizability

—Safety property

• Progress guarantees in HJ programs
—Liveness properties
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Legality condition for a sequential 
history (Recap)
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Sequential Specifications

• If (precondition) 
—the object is in such-and-such a state, before you call the 

method,

• Then (postcondition)
—the method will return a particular value, or throw a 

particular exception.
—the object will be in some other state, when the method 

returns,
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Example: Pre and PostConditions 
for a deq() operation on a FIFO Queue in a Sequential Program

Case 1:
• Precondition:

—Queue is non-empty

• Postconditions:
—Returns first item in queue
—Removes first item in queue

Case 2:
• Precondition:

—Queue is empty

• Postconditions:
—Throws Empty exception
—Queue state unchanged
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Sequential vs Concurrent Executions

• Sequential:
—Each method described in isolation
—Method call as a single event 

– Start and end times do not impact its semantics

• Concurrent
—Method call is an interval from invocation to response
—Must characterize all possible interactions with concurrent calls 

– What if two enqs overlap?
– Two deqs? enq and deq? …
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History H is linearizable if 
1) it can be transformed to history G such that G has no 
pending invocations,
• For each pending invocation in G, either remove it 
from H or append a response in H

2) there exits a legal sequential history S that is 
equivalent to G, and 

• G and S are equivalent if for each thread A, G|A = 
S|A

3) if method call m0 precedes method call m1 in G, m0 
must also precede m1 in S

• Mathematically written as èG ⊂ èS

41

Formal definition of Linearizability 
(Recap)
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A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

Example of history H
 (from last lecture)

time

B.q.enq(4)

A. q.enq(3)

B.q.deq(4) B. q.enq(6)
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If q.deq() returns 4, 
then q.enq(4) must take 
effect before q.enq(3)

Pending invocations: can be 
completed or discarded
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B.q.enq(4) B.q.deq(4)

A.q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example (contd)

time

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

Two legal equivalent sequential histories
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We (arbitrarily) decided to complete 
“A q.enq(3)”, and discard “B q.enq(6)” 

B q.enq(4)
B q:void
B q.deq()
B q:4
A q.enq(3)
A q:void

S1 S2

Time line for 
sequential 
history S1
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Two Important Properties that follow 
from Linearizability

1) Composability

• History H is linearizable if and only if
– For every object x
– H|x is linearizable

– Why is composability important?
— Modularity 
— Can prove linearizability of objects in isolation
— Can compose independently-implemented objects

2) Non-blocking

• one method call is never forced to wait on another
•  If method invocation “A q.inv(…)” is  pending in history H, then 
there exists a response “A q:res(…)” such that “H + A q:res(…)” is 
linearizable 
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Relating Linearizability to the 
Computation Graph model (Lecture 23)

• Given a Computation Graph (CG), its reduced CG is 
obtained by collapsing also CG nodes belonging to teh 
same method call (on the concurrent object) to a 
single “macro-node”

• Given a reduced CG, a sufficient condition for 
linearizability is that the reduced CG is acyclic

—This means that if the reduced CG is acyclic, then 
the underlying execution must be linearizable. 

• However, the converse is not necessarily true
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Computation Graph for monitor-based 
implementation of FIFO queue (Table 1)

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge
Serialization edge

Task B

Task A
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Creating a Reduced Graph to model 
Instantaneous Execution of Methods (Table 1)

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Method q.enq(x)

Method q.enq(y) Method q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Computation Graph

Method-level Reduced Graph
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Acyclic reduced CG ==> Linearizable execution!
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Computation Graph for concurrent implementation of 
FIFO queue (Table 2)

i-begin q.enq(x)1 i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge Serialization edgeTask B

Task A

q.enq(x)2 i-begin q.enq(x)3 i-end

Computation Graph

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method-level Reduced Graph
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Cyclic reduced CG ==> Can’t tell if execution is linearizable
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Making the cycle test more precise for 
linearizability

• Approach to make cycle test more precise for linearizability

• Decompose concurrent object method into a sequence of pairs 
of “try” and “commit” steps

• Assume that each “commit” step’s execution does not use any 
input from any prior “try” step

è Reduced graph can just reduce the “commit” steps to a single 
node instead of reducing the entire method to a single node 
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Implementing AtomicInteger.getAndAdd() 
using compareAndSet()

  /** Atomically adds delta to the current value.
1.     *
2.     * @param delta the value to add
3.     * @return the previous value
4.     */
5.    public final int getAndAdd(int delta) {
6.        for (;;) { // try
7.            int current = get();
8.            int next = current + delta;
9.            if (compareAndSet(current, next))
10.                // commit
11.                return current;
12.        }
13.    }

• Source: http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/
atomic/AtomicInteger.java
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Outline
• Review of formal definition of Linearizability

—Safety property

• Progress guarantees in HJ programs
—Liveness properties
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Desirable Properties of Parallel Program 
Executions

• Data-race freedom

• Termination

• But some applications are designed to be non-terminating

• Liveness = a program’s ability to make progress in a timely 
manner

• Different levels of liveness guarantees (from weaker to 
stronger)
—Deadlock freedom
—Livelock freedom
—Starvation freedom

• Today’s lecture discusses progress guarantees for HJ programs
— We will revisit progress guarantees for Java concurrency later
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Terminating Parallel Program Executions
• A parallel program execution is terminating if all sequential tasks in the program 

terminate

• Example of a nondeterministic data-race-free program with a nonterminating 
execution

1.  p.x = false;

2.  finish {

3.    async { // S1

4.       boolean b = false; do { isolated b = p.x; } while (! b);

5.      }

6.    isolated p.x = true; // S2

7.  } // finish

• Some executions of this program may be terminating, and some not

• Cannot assume in general that statement S2 will ever get a chance to execute if 
async S1 is nonterminating e.g., consider case when program is run with one worker 
(-places 1:1)
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Deadlock-Free Parallel Program Executions
• A parallel program execution is deadlock-free if no task’s execution remains 

incomplete due to it being blocked awaiting some condition

• Example of a program with a deadlocking execution

 DataDrivenFuture left = new DataDrivenFuture();

 DataDrivenFuture right = new DataDrivenFuture();

 finish {

   async await ( left ) right.put(rightBuilder()); // Task1

      async await ( right ) left.put(leftBuilder()); // Task2

 }

• In this case, Task1 and Task2 are in a deadlock cycle.  
– Only two constructs can lead to deadlock in HJ: async await or explicit 

phaser wait (instead of next)

—There are many mechanisms that can lead to deadlock cycles in other 
programming models (e.g., locks) 
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Livelock-Free Parallel Program Executions
• A parallel program execution exhibits livelock if two or more tasks 

repeat the same interactions without making any progress (special case 
of nontermination)

• Livelock example: 
// Task 1
incrToTwo(AtomicInteger ai) {
  // increment ai till it reaches 2  
  while (ai.incrementAndGet() < 2);
}

• Many well-intended approaches to avoid deadlock result in livelock 
instead

• Any data-race-free HJ program without isolated/atomic-variables/
actors is guaranteed to be livelock-free (may be nonterminating in a 
single task, however)

// Task 2
decrToNegativeTwo(AtomicInteger ai) {
  // decrement ai till it reaches -2 
  while (a.decrementAndGet() > -2);
}
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Starvation-Free Parallel Program 
Executions

• A parallel program execution exhibits starvation if some task is 
repeatedly denied the opportunity to make progress
—Starvation-freedom is sometimes referred to as “lock-out freedom”
—Starvation is possible in HJ programs, since all tasks in the same 

program are assumed to be cooperating, rather than competing
– If starvation occurs in a deadlock-free HJ program, the 

“equivalent” sequential program must have been non-terminating 

• Classic source of starvation: “Priority Inversion” problem for OS 
threads (usually from different processes)
—Thread A is at high priority, waiting for result or resource from 

Thread C at low priority
—Thread B at intermediate priority is CPU-bound
—Thread C never runs, hence thread A never runs
—Fix: when a high priority thread waits for a low priority thread, 

boost the priority of the low-priority thread
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