COMP 322: Fundamentals of
Parallel Programming

Lecture 25: Linearizability (contd),
Progress Guarantees in HJ programs

Vivek Sarkar
Department of Computer Science, Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 25 16 March 2012

Acknowledgments for Today’s Lecture

* Maurice Herlihy and Nir Shavit. The art of multiprocessor
programming. Morgan Kaufmann, 2008.

— Optional text for COMP 322

—Slides and code examples extracted fromhttp://
www . elsevierdirect.com/companion. jsp?ISBN=9780123705914

- Lecture on “Linearizability” by Mila Oren
—http://www.cs.tau.ac.il/~afek/Mila.Linearizability.ppt

e "Introduction to Synchronization”, Klara Nahrstedt, CS 241
Lecture 10, Spring 2007

—www.cs . uiuc.edu/class/sp07/cs241/Lectures/10.sync.ppt

* "Programming Paradigms for Concurrency”, Pavol éer'ny, Fall
2010, IST Austria

—http://pub.ist.ac.at/courses/ppc10/slides/Linearizability.pptx

2 COMP 322, Spring 2012 (V.Sarkar) &,

Safety vs. Liveness

- In a concurrent setting, we need to specify both the safety
and the liveness properties of an object

- Need a way to define

—Safety: when an implementation is correct
—Liveness: the conditions under which it guarantees progress

* Linearizability is a safety property for concurrent objects

COMP 322, Spring 2012 (V.Sarkar) D

Outline

« Review of formal definition of Linearizability

—Safety property

* Progress guarantees in HJ programs
—Liveness properties

4 COMP 322, Spring 2012 (V.Sarkar) &

Legality condition for a sequential
history (Recap)

- A sequential history H is legal if:

for each object x, H|x is in the
sequential specification for x.

- for example: objects like queue, stack

5 COMP 322, Spring 2012 (V.Sarkar)

Sequential Specifications

» If (precondition)

—the object is in such-and-such a state, before you call the
method,

- Then (postcondition)

—the method will return a particular value, or throw a
particular exception.

—the object will be in some other state, when the method
returns,

COMP 322, Spring 2012 (V.Sarkar)

Example: Pre and PostConditions
for a deq() operation on a FIFO Queue in a Sequential Program

Case 1.

- Precondition:
—Queue is non-empty
- Postconditions:

—Returns first item in queue
—Removes first item in queue

Case 2:
- Precondition:

—Queue is empty
- Postconditions:

— Throws Empty exception
—Queue state unchanged

COMP 322, Spring 2012 (V.Sarkar) &,

Sequential vs Concurrent Executions

- Sequential:
—Each method described in isolation
—Method call as a single event
- Start and end times do not impact its semantics

- Concurrent

—Method call is an interval from invocation to response

— Must characterize all possible interactions with concurrent calls
- What if two engs overlap?
- Two degs? enqg and deqg? ...

COMP 322, Spring 2012 (V.Sarkar))

Formal definition of Linearizability
(Recap)

History H is linearizable if

1) it can be transformed to history G such that G has no
pending invocations,

* For each pending invocation in G, either remove it
from H or append a response in H

2) there exits a legal sequential history S that is
equivalent to G, and

» (G and S are equivalent if for each thread A, G|A =
S|A

3) if method call mO precedes method call m1 in G, mO
must also precede ml in S

» Mathematically written as 2 C >

9 COMP 322, Spring 2012 (V.Sarkar) %

Example of history H
(from last lecture)

If q.deq() returns 4,
then q.enq(4) must take
effect before q.enq(3)

Pending invocations: can be
completed or discarded

10 COMP 322, Spring 2012 (V.Sarkar) D

Example (contd)

We (arbitrarily) decided to complete Two legal equivalent sequential histories
"A q.enq(3)", and discard "B q.enq(6)"
Sl S2

VEaena® W8 gena

Time line for i
sequential < I
history S1 'l 'I

11 COMP 322, Spring 2012 (V.Sarkar) 2

Two Important Properties that follow
from Linearizability

1) Composability

History H is linearizable if and only if
- For every object x
- H]|x is linearizable
- Why is composability important?
— Modularity

— Can prove linearizability of objects in isolation
— Can compose independently-implemented objects

2) Non-blocking
* one method call is never forced to wait on another

* If method invocation "A q.inv(...)" is pending in history H, then
there exists a response "A g:res(...)" such that "H + A gires(...)" is
linearizable

12 COMP 322, Spring 2012 (V.Sarkar) &,

Relating Linearizability to the
Computation Graph model (Lecture 23)

* Given a Computation 6raph (C6), its reduced CG is
obtained by collapsing also CG6 nodes belonging to teh
same method call (on the concurrent object) to a
single "macro-node”

« Given a reduced CG, a sufficient condition for
linearizability is that the reduced CG is acyclic

—This means that if the reduced CG is acyclic, then
the underlying execution must be linearizable.

- However, the converse is not necessarily true

13 COMP 322, Spring 2012 (V.Sarkar) &,

Computation Graph for monitor-based
implementation of FIFO queue (Table 1)

Task A
i-begin|— > q.enq(x)|—> i-end —> Continue edge
,,,,,, TN ---> Serialization edge
¢-"" _;

i-be;in A’fq.enq(y) — > i-end| ™ i-begin|™ q.deq(): x| i-end

14 COMP 322, Spring 2012 (V.Sarkar) &

Creating a Reduced Graph to model

Instantaneous Execution of Methods (Table 1)

Method g.enq(x) Computation Graph
L/
i-begin ——’fq.enQ(Y) i-begin > q.deq():x|>| i-end
\ \
Method q.enq(y) Method q.deq():x

Method-level Reduced Graph

Acyclic reduced CG ==> Linearizable execution!

15

COMP 322, Spring 2012 (V.Sarkar) &

Computation Graph for concurrent implementation of
FIFO queue (Table 2)

Computation Graph

Task A

\\i-begin| ™) q.enq(x), >} i-end| ™) q.enq(x), || i-begin || q.enqw-jg
\\ = L

_ - — ’AL - -~
e”/ T~ z://’
i-begin ——+q.enq(y) — > i-end i-begin|™> q.deq(): x| i-end
- \
Task B —> Continue edge ---> Serialization edge

Method Method Method

16 COMP 322, Spring 2012 (V.Sarkar) &

Making the cycle test more precise for
linearizability

« Approach to make cycle test more precise for linearizability

« Decompose concurrent object method into a sequence of pairs
of "try” and “"commit” steps

« Assume that each “"commit” step’s execution does not use any
input from any prior "try” step

> Reduced graph can just reduce the “"commit” steps to a single
node instead of reducing the entire method to a single node

17 COMP 322, Spring 2012 (V.Sarkar)

Implementing Atomicinteger.getAndAdd()
using compareAndSet()

/** Atomically adds delta to the current value.

1. *

2. * @param delta the value to add

3. * @return the previous value

4. */

5. public final int getAndAdd(int delta) {
6. for (;;) { // try

7. int current = get();

8. int next = current + delta;

9. if (compareAndSet(current, next))
10. // commit

11. return current;

12. }

13. }

« Source: http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/ java/util/concurrent/
atomic/AtomicInteger. java

18 COMP 322, Spring 2012 (V.Sarkar) D

Outline

« Review of formal definition of Linearizability
— Safety property

* Progress guarantees in HJ programs

—Liveness properties

19 COMP 322, Spring 2012 (V.Sarkar)

Desirable Properties of Parallel Program
Executions

« Data-race freedom
* Termination
« But some applications are designed to be non-terminating

 Liveness = a program’'s ability to make progress in a timely
manner

« Different levels of liveness guarantees (from weaker to
stronger)
—Deadlock freedom
—Livelock freedom
—Starvation freedom

Today's lecture discusses progress guarantees for HJ programs

— We will revisit progress guarantees for Java concurrency later

20 COMP 322, Spring 2012 (V.Sarkar) &

Terminating Parallel Program Executions

« A parallel program execution is terminating if all sequential tasks in the program
terminate

« Example of a nondeterministic data-race-free program with a nonterminating
execution

p.x = false;
finish {
async { // S1
boolean b = false; do { isolated b = p.x; } while (! b);
}
isolated p.x = true; // S2
} // finish

NoOo ks whE=

« Some executions of this program may be terminating, and some not

« Cannot assume in general that statement S2 will ever get a chance to execute if
async S1 is nonterminating e.g., consider case when program is run with one worker
(-places 1:1)

21 COMP 322, Spring 2012 (V.Sarkar) %§

Deadlock-Free Parallel Program Executions

* A parallel program execution is deadlock-free if no task’'s execution remains
incomplete due to it being blocked awaiting some condition

« Example of a program with a deadlocking execution
DataDrivenFuture left = new DataDrivenFuture();
DataDrivenFuture right = new DataDrivenFuture():
finish {

async await (left) right.put(rightBuilder()); // Taskl
async await (right) left.put(leftBuilder()); // Task2
}

« In this case, Taskl and Task2 are in a deadlock cycle.
- Only two constructs can lead to deadlock in HJ: async await or explicit
phaser wait (instead of next)

— There are many mechanisms that can lead to deadlock cycles in other
programming models (e.g., locks)

22 COMP 322, Spring 2012 (V.Sarkar) &,

Livelock-Free Parallel Program Executions

« A parallel program execution exhibits livelock if two or more tasks
repeat the same interactions without making any progress (special case
of nontermination)

 Livelock example:
// Task 1 // Task 2

incrToTwo(AtomicInteger ai) {
// increment ai till it reaches 2
while (ai.incrementAndGet() < 2);

}

* Many well-intended approaches to avoid deadlock result in livelock
instead

decrToNegativeTwo(AtomicInteger ai) {
// decrement ai till it reaches -2
while (a.decrementAndGet() > -2);

}

* Any data-race-free HJ program without isolated/atomic-variables/
actors is guaranteed to be livelock-free (may be nonterminating in a
single task, however)

23 COMP 322, Spring 2012 (V.Sarkar) &,

Starvation-Free Parallel Program
Executions

* A parallel program execution exhibits starvation if some task is
repeatedly denied the opportunity to make progress

— Starvation-freedom is sometimes referred to as “lock-out freedom”

— Starvation is possible in HJ programs, since all tasks in the same
program are assumed to be cooperating, rather than competing

- If starvation occurs in a deadlock-free HJ program, the
“equivalent” sequential program must have been non-terminating

« Classic source of starvation: “Priority Inversion” problem for OS
threads (usually from different processes)

—Thread A is at high priority, waiting for result or resource from
Thread C at low priority

—Thread B at intermediate priority is CPU-bound
— Thread C never runs, hence thread A never runs

—Fix: when a high priority thread waits for a low priority thread,
boost the priority of the low-priority thread

24 COMP 322, Spring 2012 (V.Sarkar) 7

