
COMP 322: Fundamentals of
Parallel Programming

Lecture 28: Bitonic Sort

John Mellor-Crummey
Department of Computer Science, Rice University

johnmc@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 28 26 March 2012

2

Introduction

• Why study sorting?
—one of the most common operations performed on computers

• Sorting algorithm attributes
—internal vs. external

– internal: data fits in memory
– external: uses tape or disk

—comparison-based or not
– comparison sort

 basic operation: compare elements and exchange as necessary
 Θ(n log n) comparisons to sort n numbers

– non-comparison-based sort
 e.g. radix sort based on the binary representation of data
 Θ(n) operations to sort n numbers

—parallel vs. sequential

Today’s focus
Bitonic sort: internal,
comparison-based,

parallel sort

3

Sorting Network

• Network of comparators designed for sorting

• Comparator : two inputs x and y; two outputs x' and y’
—types

– increasing (denoted ⊕): x' = min(x,y) and y' = max(x,y)

– decreasing (denoted Ө) : x' = max(x,y) and y' = min(x,y)

• Sorting network speed is proportional to its depth

x min(x,y)

y max(x,y)

⊕

⊕

x max(x,y)

y min(x,y)

Ө

Ө

4

Sorting Networks

• Network structure: a series of columns

• Each column consists of a vector of comparators (in parallel)

• Sorting network organization:

5

Example: Bitonic Sorting Network

• Bitonic sequence
—two parts: increasing and decreasing

– 〈1,2,4,7,6,0〉: first increases and then decreases (or vice versa)
—cyclic rotation of a bitonic sequence is also considered bitonic

– 〈8,9,2,1,0,4〉: cyclic rotation of 〈0,4,8,9,2,1〉

• Bitonic sorting network
—sorts n elements in Θ(log2 n) time
—network kernel: rearranges a bitonic sequence into a sorted one

6

Bitonic Split (Batcher, 1968)

• Let s = 〈a0,a1,…,an-1〉 be a bitonic sequence such that
—a0 ≤ a1 ≤ ··· ≤ an/2-1 , and

—an/2 ≥ an/2+1 ≥ ··· ≥ an-1

• Consider the following subsequences of s

 s1 = 〈min(a0,an/2),min(a1,an/2+1),…,min(an/2-1,an-1)〉

 s2 = 〈max(a0,an/2),max(a1,an/2+1),…,max(an/2-1,an-1)〉

• Sequence properties
—s1 and s2 are both bitonic
—∀x ∀y x ∈ s1, y ∈ s2 , x < y

• Apply recursively on s1 and s2 to produce a sorted sequence

• Works for any bitonic sequence, even if |s1| ≠ |s2|

Splitting Bitonic Sequences - I

7min max

Sequence properties
s1 and s2 are both bitonic
∀x ∀y x ∈ s1, y ∈ s2 , x < y

Splitting Bitonic Sequences - I

8min max

Sequence properties
s1 and s2 are both bitonic
∀x ∀y x ∈ s1, y ∈ s2 , x < y

Splitting Bitonic Sequences - I

9min max

Sequence properties
s1 and s2 are both bitonic
∀x ∀y x ∈ s1, y ∈ s2 , x < y

Splitting Bitonic Sequences - I

10min max

Sequence properties
s1 and s2 are both bitonic
∀x ∀y x ∈ s1, y ∈ s2 , x < y

Splitting Bitonic Sequences - I

11min max

Sequence properties
s1 and s2 are both bitonic
∀x ∀y x ∈ s1, y ∈ s2 , x < y

Splitting Bitonic Sequences - II

12min max

Sequence properties
s1 and s2 are both bitonic
∀x ∀y x ∈ s1, y ∈ s2 , x < y

13

Bitonic Merge

Sort a bitonic sequence through a series of bitonic splits

Example: use bitonic merge to sort 16-element bitonic sequence

How: perform a series of log2 16 = 4 bitonic splits

14

Sorting via Bitonic Merging Network

• Sorting network can implement bitonic merge algorithm
—bitonic merging network

• Network structure
—log2 n columns
—each column

– n/2 comparators
– performs one step of the bitonic merge

• Bitonic merging network with n inputs: ⊕BM[n]
—produces an increasing sequence

• Replacing ⊕ comparators by Ө comparators: ӨBM[n]
—produces a decreasing sequence

15

Bitonic Merging Network, ⊕ BM[16]

• Input: bitonic sequence
— input wires are numbered 0,1,…, n - 1 (shown in binary)

• Output: sequence in sorted order

• Each column of comparators is drawn separately

16

Bitonic Sort

How do we sort an unsorted sequence using a bitonic merge?

Two steps

• Build a bitonic sequence

• Sort it using a bitonic merging network

17

Building a Bitonic Sequence

• Build a single bitonic sequence from the given sequence
—any sequence of length 2 is a bitonic sequence.
—build bitonic sequence of length 4

– sort first two elements using ⊕BM[2]
– sort next two using ӨBM[2]

• Repeatedly merge to generate larger bitonic sequences
—⊕BM[k] & ӨBM[k]: bitonic merging networks of size k

18

Building a Bitonic Sequence

Input: sequence of 16 unordered numbers

Output: a bitonic sequence of 16 numbers

19

Bitonic Sort, n = 16

• First 3 stages create bitonic sequence input to stage 4

• Last stage (⊕BM[16]) yields sorted sequence

20

Complexity of Bitonic Sorting Networks

• Depth of the network is Θ(log2 n)
—log2 n merge stages
—jth merge stage depth is log2 2j = j

—depth =

• Each stage of the network contains n/2 comparators

• Complexity of serial implementation = Θ(n log2 n)€

log2 2
j

j=1

log2 n

∑ = j
i=1

log2 n

∑ = (log2 n +1)(log2 n) /2 = θ(log2 n)

21

From Sorting Network to Pseudocode

Batcher’s Bitonic Sort

• bmerge(s): recursively sort a bitonic sequence as follows
1. compute s1 and s2 as shown earlier for ascending sort of s

both will be bitonic by Batcher’s Lemma
note: for a descending sort, just swap min & max

2. recursively call bmerge on s1 and s2

3. return s = concat(bmerge(s1), bmerge(s2))

• bsort(s): create a bitonic sequence then sort it
1. convert an arbitrary sequence s into a bitonic sequence
• sort s[1 … n/2] in place in ascending order (recursive call to sort)
• sort s[n/2+1 … n] in place in descending order (recursive call to sort)

2. after step 1, the sequence will be bitonic; sort it using bmerge(s)

22

Bitonic Sort in HJ

void bmerge(final int[] A, final int low, final int high, boolean asc) {
 if (high-low > 1) {
 final int mid = (low + high)/2 ;
 final int size = high – low + 1;
 forall (point[i]:[low:mid]) orderElementPair(A, i, i+size/2, asc);
 finish {
 async bmerge(A, low, mid, asc); async bmerge(A, mid+1, high, asc);
 } // finish
 } // if
} // bmerge

void bsort (final int[] A, final int low, final int high, boolean asc) {
 if (high-low > 1) {
 finish {
 final int mid = (low + high)/2 ;
 async bsort(A, low, mid, asc); async bsort(A, mid+1, high, !asc);
 } // finish
 bmerge(A, low, high, asc); // asc = true is for ascending order
 } // if
} // sort

Batcher’s Bitonic Sort in NESL

function bitonic_merge(a) =
if (#a == 1) then a
else
 let

 halves = bottop(a)

 mins = {min(x, y) : x in halves[0]; y in halves[1]};

 maxs = {max(x, y) : x in halves[0]; y in halves[1]};
 in flatten({bitonic_merge(x) : x in [mins,maxs]});

function bitonic_sort(a) =
if (#a == 1) then a
else
 let b = {bitonic_sort(x) : x in bottop(a)};
 in bitonic_merge(b[0]++reverse(b[1]));

23Run this code at http://www.cs.rice.edu/~johnmc/nesl.html

24

References

• Adapted from slides “Sorting” by Ananth Grama

• Based on Chapter 9 of “Introduction to Parallel Computing”
by Ananth Grama, Anshul Gupta, George Karypis, and Vipin
Kumar. Addison Wesley, 2003

• “Programming Parallel Algorithms.” Guy Blelloch.
Communications of the ACM, volume 39, number 3, March
1996.

• http://www.cs.cmu.edu/~scandal/nesl/algorithms.html#sort

• “Highly Scalable Parallel Sorting.” Edgar Solomonik and
Laxmikant V. Kale. Proc. of the IEEE Intl. Parallel and
Distributed Processing Symp., April, 2010, Atlanta, GA.

