COMP 322: Fundamentals of
Parallel Programming

Lecture 28: Bitonic Sort

John Mellor-Crummey
Department of Computer Science, Rice University
johnmc®@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 28 26 March 2012




Introduction

Why study sorting?
—one of the most common operations performed on computers

Sorting algorithm attributes

—internal vs. external Today’s focus
— internal: data fits in memory Bitonic sort: internal,
— external: uses tape or disk comparison-based,
—comparison-based or not parallel sort

— comparison sort
basic operation: compare elements and exchange as necessary
O(n log n) comparisons to sort n numbers
— non-comparison-based sort
e.g. radix sort based on the binary representation of data
©(n) operations to sort n numbers

—parallel vs. sequential




Sorting Network

e Network of comparators designed for sorting

e Comparator : two inputs x and y; two outputs x' and y’

—types
— increasing (denoted @®): x' = min(x,y) and y' = max(x,y)

X F min(x,y)

y & max(x,y)

— decreasing (denoted ©) : x' = max(x,y) and y' = min(x,y)

X i max(x,y)

y e min(x,y)

e Sorting network speed is proportional to its depth




Sorting Networks

e Network structure: a series of columns
e Each column consists of a vector of comparators (in parallel)

¢ Sorting network organization:

Input wires

S

Interconnection network
Output wires

~.




Example: Bitonic Sorting Network

e Bitonic sequence

—two parts: increasing and decreasing
- (1,2,4,7,6,0): first increases and then decreases (or vice versa)

—-cyclic rotation of a bitonic sequence is also considered bitonic
- (8,9,2,1,0,4): cyclic rotation of (0,4,8,9,2,1)
e Bitonic sorting network

—sorts n elements in ©(log2n) time
—network kernel: rearranges a bitonic sequence into a sorted one




Bitonic Split (Batcher, 1968)

o Lets = (a,a,,...,a,., be a bitonic sequence such that

—ay,sa,s--<a,,,,and el
—8pp2 Apjpeq 2 T 2 8p g ‘
e Consider the following subsequences of s
s; = (Min(aga,,),min(a,;a,  .q),....min(a, ,.a, ) -
s, = (max(a,a,,),max(a;a, .q),---.max(a,,.,,a,.,)) -

e Sequence properties
—s, and s, are both bitonic
—V,V,XE s, yES,,x<y

e Apply recursively on s, and s, to produce a sorted sequence

e Works for any bitonic sequence, even if |s,| = |s,]|




Splitting Bitonic Sequences - |

Sequence properties
s, and s, are both bitonic
YV, XEs,yES,, X<y

A=
~—-

min max 7




Splitting Bitonic Sequences - |

min max 8

Sequence properties
s, and s, are both bitonic

YV, XEs,yES,, X<y

A=
~—-




Splitting Bitonic Sequences - |

~

Sequence properties
s, and s, are both bitonic

YV, XEs,yES,, X<y

A=
~—-

max 9




Splitting Bitonic Sequences - |

Sequence properties
s, and s, are both bitonic
YV, XEs,yES,, X<y

min max 10




Splitting Bitonic Sequences - |

Sequence properties
s, and s, are both bitonic
YV, XEs,yES,, X<y

max 11

min




Splitting Bitonic Sequences - |l

Sequence properties
s, and s, are both bitonic
YV, XEs,yES,, X<y

min max 12




Bitonic Merge

Sort a bitonic sequence through a series of bitonic splits
Example: use bitonic merge to sort 16-element bitonic sequence

How: perform a series of log, 16 = 4 bitonic splits

Original

sequence 3 b6 8 9 10 12 14 20 95 Q0 60 40 35 23 18 0
1st Split 3 65 8 9 10 12 14 0 [ 9 9O 60 40 35 23 18 20
2nd Split 3 &6 8 0110 12 14 @ (3 23 18 20|19 90 60 40
3rd Split 3 018 5110 9 14 12 | 18 20 | 35 23 | 60 40 | 95 Q0
4th Split 0|3]5]8]| 9 | 10 | 12 | 14 | 18 | 20 | 23 | 35 | 40 | 60 | 90 | @5

13




Sorting via Bitonic Merging Network

¢ Sorting network can implement bitonic merge algorithm
—bitonic merging network

e Network structure
—log, n columns

—each column
— n/2 comparators
— performs one step of the bitonic merge

e Bitonic merging network with n inputs: ®BM[n]

—produces an increasing sequence

e Replacing ® comparators by © comparators: ©BM[n]
—produces a decreasing sequence

14




Bitonic Merging Network, ® BM[16]

Wires
0000 2 e SR S 3 [l ©
0001 >l 2 s > e 0 1t
8 8 8 8 5
0010 b &P 25 &P
) 0 0 5 8
oo11 B D B &
10 10 10 10 9
0100 & D D D
9. 2 9
0101 12 o 12 b 12 a5 R .
D
0110 14 @ 14 & 4 | 14 ol 1
20 0 0 12 14
0111 P S¥ 37 S¥
05 05 35 18 18
1000 & D D B
00 00 23 20 20
1001 3% 35, D &
5 g
1010 60 & 60 o 18 |4 35 o2
40 40 20 23 35
1011 4 &4 B &
35 35 05 60 40
1100 & B & &P
23 A 23 A 00 ~ 40 1| 60
1101 LNp) Lup) ju 7
18 A 18 A 60 S 05 ~ 90
1110 AP AV AN I/
0 | 20 Al 40 | Al o0 | L] o5
1111 Ly U U L

Input: bitonic sequence
— input wires are numbered 0,1,..., n -1 (shown in binary)

Output: sequence in sorted order

Each column of comparators is drawn separately

15




Bitonic Sort

How do we sort an unsorted sequence using a bitonic merge?
Two steps

e Build a bitonic sequence

e Sort it using a bitonic merging network

16




Building a Bitonic Sequence

¢ Build a single bitonic sequence from the given sequence

—any sequence of length 2 is a bitonic sequence.
—build bitonic sequence of length 4
— sort first two elements using ®BM[2]

— sort next two using ©BM[2]

e Repeatedly merge to generate larger bitonic sequences
—®BM[k] & ©BM[k]: bitonic merging networks of size k

Wires

0000 — — - -
o001 —] D BM[2] | & M4 [ L
oy | & B[] N N
0100 — | | GB BM[S] —
n% 1@ BMpR] [ 5 — B
BM[4

o Tl oBMm2] [ M B
0111 — | | I
1000 @ BM[2] [ H B
1001 — ] ] —

_ | & BM[4] [ B
oy _loBmp2 [ H B
1100 — - | ©BM[8]
o1 — D BM[2] ] - B B

] | & BM[4] [ B
] ©BMR] [ B N

17




Building a Bitonic Sequence

FAAY
wL/
F
L/
i
p—
N
N/

[l
L
£
L/

Pain}
/
N
NS

BD &0 OO PP &0 D OO PO
Fa Y Fah) Fdh) [
\/ \L/ A A

> T d T oPdPeld ] oPb?

o| o o v «mf | o+ | o o o @ | vl vl «»
- = G| o F| i

fdh
L/

w w

FdnY
LA
53
7
T
\/
Pl
AL/
EE
o
Fany
L/
Fan
\L/
Sz
N
fdh
N/
fah)
LA
£y
s | L
A

2
14
20

0
60
40

3

L] [ w (=) o 0
v \

\
12

% o — (] — o — (] — (=] — (] — =] — o —

(=] o — — o o - - o o — — o o — —
.ﬂ o (=] (=] o — — — - o (=] o (] - — . —
= o (=] o (=] o (=] o (=] — — — — — — — —

sequence of 16 unordered numbers

Input

a bitonic sequence of 16 numbers

Output

18




Bitonic Sort, n =16

Wires
0000 — I
o001 — & BMI2] B BM[4
o & BMIS] B
00 | b BM[2] B
O — | © BM[4] B
o1 —| & BMI2] B BM[16] —
1 b BM[2] B
1001 — —
| $ BM[4] B
o | © BM[2] -
N\
oy S BM[S] B
o1 —| & BM[2] i -
BM[4]
1110
1 —| © BM[2] B

* First 3 stages create bitonic sequence input to stage 4

o Last stage (PBM[16]) yields sorted sequence

19




Complexity of Bitonic Sorting Networks

e Depth of the network is ©(log? n)
—log, n merge stages
—jth merge stage depth is log, 2/ = j

log, n log, n

_depth= 2108.2"= X j=(log,n+D)(log,n)/2 = (log’ n)
e Each stage of the network contains n/2 comparators

e Complexity of serial implementation = O(n log? n)

20




From Sorting Network to Pseudocode

Batcher’s Bitonic Sort

e bmerge(s): recursively sort a bitonic sequence as follows

1. compute s1 and s2 as shown earlier for ascending sort of s
both will be bitonic by Batcher’s Lemma

note: for a descending sort, just swap min & max

2. recursively call bmerge on s1 and sz
3. return s = concat(bmerge(s1), bmerge(sz))

e bsort(s): create a bitonic sequence then sort it

1. convert an arbitrary sequence s into a bitonic sequence
e sort s[1...n/2] in place in ascending order (recursive call to sort)
e sort s[n/2+1 ... n] in place in descending order (recursive call to sort)

2. after step 1, the sequence will be bitonic; sort it using bmerge(s)

21




Bitonic Sort in HJ

void bmerge(final int[] A, final int low, final int high, boolean asc) {
if ( high-low > 1 ) {
final int mid = (low + high)/2 ;
final int size = high — low + 1;
forall (point[i]:[low:mid]) orderElementPair(A, i, i+size/2, asc);
finish {
async bmerge(A, low, mid, asc); async bmerge(A, mid+1l, high, asc);
} // finish
Yy // if
} // bmerge

void bsort (final int[] A, final int low, final int high, boolean asc) {
if ( high-low > 1 ) {
finish {
final int mid = (low + high)/2 ;
async bsort(A, low, mid, asc); async bsort(A, mid+1l, high, !asc);
} // finish
bmerge (A, low, high, asc); // asc = true is for ascending order
Yy // if
} // sort

22




Batcher’s Bitonic Sort in NESL

function bitonic_merge(a) =
if (#a == 1) then a
else
let
halves = bottop(a)
mins = {min(x, y) : x in halves[0]; y in halves[1]};
maxs = {max(x, y) : x in halves[0O]; y in halves[1]};
in flatten({bitonic_merge(x) : x in [mins,maxs]});

function bitonic_sort(a) =

if (#a == 1) then a

else
let b = {bitonic_sort(x) : x in bottop(a)};
in bitonic_merge(b[0]++reverse(b[1]));

Run this code at http://www.cs.rice.edu/~johnmc/nesl.html 55




References

Adapted from slides “Sorting” by Ananth Grama

Based on Chapter 9 of “Introduction to Parallel Computing”
by Ananth Grama, Anshul Gupta, George Karypis, and Vipin
Kumar. Addison Wesley, 2003

“Programming Parallel Algorithms.” Guy Blelloch.
Communications of the ACM, volume 39, number 3, March
1996.

http://www.cs.cmu.edu/~scandal/nesl/algorithms.html#sort

“Highly Scalable Parallel Sorting.” Edgar Solomonik and
Laxmikant V. Kale. Proc. of the IEEE Intl. Parallel and
Distributed Processing Symp., April, 2010, Atlanta, GA.

24




