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Introduction

Why study sorting?
—one of the most common operations performed on computers

Sorting algorithm attributes

—internal vs. external Today’s focus
— internal: data fits in memory Bitonic sort: internal,
— external: uses tape or disk comparison-based,
—comparison-based or not parallel sort

— comparison sort
basic operation: compare elements and exchange as necessary
O(n log n) comparisons to sort n numbers
— non-comparison-based sort
e.g. radix sort based on the binary representation of data
©(n) operations to sort n numbers

—parallel vs. sequential




Sorting Network

e Network of comparators designed for sorting

e Comparator : two inputs x and y; two outputs x' and y’

—types
— increasing (denoted @®): x' = min(x,y) and y' = max(x,y)

X F min(x,y)

y & max(x,y)

— decreasing (denoted ©) : x' = max(x,y) and y' = min(x,y)

X i max(x,y)

y e min(x,y)

e Sorting network speed is proportional to its depth




Sorting Networks

e Network structure: a series of columns
e Each column consists of a vector of comparators (in parallel)

¢ Sorting network organization:

Input wires

S

Interconnection network
Output wires

~.




Example: Bitonic Sorting Network

e Bitonic sequence

—two parts: increasing and decreasing
- (1,2,4,7,6,0): first increases and then decreases (or vice versa)

—-cyclic rotation of a bitonic sequence is also considered bitonic
- (8,9,2,1,0,4): cyclic rotation of (0,4,8,9,2,1)
e Bitonic sorting network

—sorts n elements in ©(log2n) time
—network kernel: rearranges a bitonic sequence into a sorted one




Bitonic Split (Batcher, 1968)

o Lets = (a,a,,...,a,., be a bitonic sequence such that

—ay,sa,s--<a,,,,and el
—8pp2 Apjpeq 2 T 2 8p g ‘
e Consider the following subsequences of s
s; = (Min(aga,,),min(a,;a,  .q),....min(a, ,.a, ) -
s, = (max(a,a,,),max(a;a, .q),---.max(a,,.,,a,.,)) -

e Sequence properties
—s, and s, are both bitonic
—V,V,XE s, yES,,x<y

e Apply recursively on s, and s, to produce a sorted sequence

e Works for any bitonic sequence, even if |s,| = |s,]|




Splitting Bitonic Sequences - |

Sequence properties
s, and s, are both bitonic
YV, XEs,yES,, X<y

A=
~—-

min max 7




Splitting Bitonic Sequences - |

min max 8

Sequence properties
s, and s, are both bitonic

YV, XEs,yES,, X<y

A=
~—-




Splitting Bitonic Sequences - |

~

Sequence properties
s, and s, are both bitonic

YV, XEs,yES,, X<y

A=
~—-

max 9




Splitting Bitonic Sequences - |

Sequence properties
s, and s, are both bitonic
YV, XEs,yES,, X<y

min max 10




Splitting Bitonic Sequences - |

Sequence properties
s, and s, are both bitonic
YV, XEs,yES,, X<y

max 11

min




Splitting Bitonic Sequences - |l

Sequence properties
s, and s, are both bitonic
YV, XEs,yES,, X<y

min max 12




Bitonic Merge

Sort a bitonic sequence through a series of bitonic splits
Example: use bitonic merge to sort 16-element bitonic sequence

How: perform a series of log, 16 = 4 bitonic splits

Original

sequence 3 b6 8 9 10 12 14 20 95 Q0 60 40 35 23 18 0
1st Split 3 65 8 9 10 12 14 0 [ 9 9O 60 40 35 23 18 20
2nd Split 3 &6 8 0110 12 14 @ (3 23 18 20|19 90 60 40
3rd Split 3 018 5110 9 14 12 | 18 20 | 35 23 | 60 40 | 95 Q0
4th Split 0|3]5]8]| 9 | 10 | 12 | 14 | 18 | 20 | 23 | 35 | 40 | 60 | 90 | @5
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Sorting via Bitonic Merging Network

¢ Sorting network can implement bitonic merge algorithm
—bitonic merging network

e Network structure
—log, n columns

—each column
— n/2 comparators
— performs one step of the bitonic merge

e Bitonic merging network with n inputs: ®BM[n]

—produces an increasing sequence

e Replacing ® comparators by © comparators: ©BM[n]
—produces a decreasing sequence
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Bitonic Merging Network, ® BM[16]

Wires
0000 2 e SR S 3 [l ©
0001 >l 2 s > e 0 1t
8 8 8 8 5
0010 b &P 25 &P
) 0 0 5 8
oo11 B D B &
10 10 10 10 9
0100 & D D D
9. 2 9
0101 12 o 12 b 12 a5 R .
D
0110 14 @ 14 & 4 | 14 ol 1
20 0 0 12 14
0111 P S¥ 37 S¥
05 05 35 18 18
1000 & D D B
00 00 23 20 20
1001 3% 35, D &
5 g
1010 60 & 60 o 18 |4 35 o2
40 40 20 23 35
1011 4 &4 B &
35 35 05 60 40
1100 & B & &P
23 A 23 A 00 ~ 40 1| 60
1101 LNp) Lup) ju 7
18 A 18 A 60 S 05 ~ 90
1110 AP AV AN I/
0 | 20 Al 40 | Al o0 | L] o5
1111 Ly U U L

Input: bitonic sequence
— input wires are numbered 0,1,..., n -1 (shown in binary)

Output: sequence in sorted order

Each column of comparators is drawn separately
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Bitonic Sort

How do we sort an unsorted sequence using a bitonic merge?
Two steps

e Build a bitonic sequence

e Sort it using a bitonic merging network
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Building a Bitonic Sequence

¢ Build a single bitonic sequence from the given sequence

—any sequence of length 2 is a bitonic sequence.
—build bitonic sequence of length 4
— sort first two elements using ®BM[2]

— sort next two using ©BM[2]

e Repeatedly merge to generate larger bitonic sequences
—®BM[k] & ©BM[k]: bitonic merging networks of size k

Wires

0000 — — - -
o001 —] D BM[2] | & M4 [ L
oy | & B[] N N
0100 — | | GB BM[S] —
n% 1@ BMpR] [ 5 — B
BM[4

o Tl oBMm2] [ M B
0111 — | | I
1000 @ BM[2] [ H B
1001 — ] ] —

_ | & BM[4] [ B
oy _loBmp2 [ H B
1100 — - | ©BM[8]
o1 — D BM[2] ] - B B

] | & BM[4] [ B
] ©BMR] [ B N
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Building a Bitonic Sequence
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sequence of 16 unordered numbers

Input

a bitonic sequence of 16 numbers

Output
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Bitonic Sort, n =16

Wires
0000 — I
o001 — & BMI2] B BM[4
o & BMIS] B
00 | b BM[2] B
O — | © BM[4] B
o1 —| & BMI2] B BM[16] —
1 b BM[2] B
1001 — —
| $ BM[4] B
o | © BM[2] -
N\
oy S BM[S] B
o1 —| & BM[2] i -
BM[4]
1110
1 —| © BM[2] B

* First 3 stages create bitonic sequence input to stage 4

o Last stage (PBM[16]) yields sorted sequence
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Complexity of Bitonic Sorting Networks

e Depth of the network is ©(log? n)
—log, n merge stages
—jth merge stage depth is log, 2/ = j

log, n log, n

_depth= 2108.2"= X j=(log,n+D)(log,n)/2 = (log’ n)
e Each stage of the network contains n/2 comparators

e Complexity of serial implementation = O(n log? n)
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From Sorting Network to Pseudocode

Batcher’s Bitonic Sort

e bmerge(s): recursively sort a bitonic sequence as follows

1. compute s1 and s2 as shown earlier for ascending sort of s
both will be bitonic by Batcher’s Lemma

note: for a descending sort, just swap min & max

2. recursively call bmerge on s1 and sz
3. return s = concat(bmerge(s1), bmerge(sz))

e bsort(s): create a bitonic sequence then sort it

1. convert an arbitrary sequence s into a bitonic sequence
e sort s[1...n/2] in place in ascending order (recursive call to sort)
e sort s[n/2+1 ... n] in place in descending order (recursive call to sort)

2. after step 1, the sequence will be bitonic; sort it using bmerge(s)
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Bitonic Sort in HJ

void bmerge(final int[] A, final int low, final int high, boolean asc) {
if ( high-low > 1 ) {
final int mid = (low + high)/2 ;
final int size = high — low + 1;
forall (point[i]:[low:mid]) orderElementPair(A, i, i+size/2, asc);
finish {
async bmerge(A, low, mid, asc); async bmerge(A, mid+1l, high, asc);
} // finish
Yy // if
} // bmerge

void bsort (final int[] A, final int low, final int high, boolean asc) {
if ( high-low > 1 ) {
finish {
final int mid = (low + high)/2 ;
async bsort(A, low, mid, asc); async bsort(A, mid+1l, high, !asc);
} // finish
bmerge (A, low, high, asc); // asc = true is for ascending order
Yy // if
} // sort
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Batcher’s Bitonic Sort in NESL

function bitonic_merge(a) =
if (#a == 1) then a
else
let
halves = bottop(a)
mins = {min(x, y) : x in halves[0]; y in halves[1]};
maxs = {max(x, y) : x in halves[0O]; y in halves[1]};
in flatten({bitonic_merge(x) : x in [mins,maxs]});

function bitonic_sort(a) =

if (#a == 1) then a

else
let b = {bitonic_sort(x) : x in bottop(a)};
in bitonic_merge(b[0]++reverse(b[1]));

Run this code at http://www.cs.rice.edu/~johnmc/nesl.html 55
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