COMP 322: Fundamentals of Parallel Programming

Lecture 28: Bitonic Sort

John Mellor-Crummey Department of Computer Science, Rice University johnmc@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322

Lecture 28

Introduction

• Why study sorting?

-one of the most common operations performed on computers

• Sorting algorithm attributes

- —internal vs. external
 - internal: data fits in memory
 - external: uses tape or disk
- -comparison-based or not
 - comparison sort

<u>Today's focus</u> Bitonic sort: internal, comparison-based, parallel sort

- basic operation: compare elements and exchange as necessary
- Θ(n log n) comparisons to sort n numbers
- non-comparison-based sort
 - e.g. radix sort based on the binary representation of data
 - $\Theta(n)$ operations to sort n numbers

-parallel vs. sequential

Sorting Network

- Network of comparators designed for sorting
- Comparator : two inputs x and y; two outputs x' and y'
 - -types
 - increasing (denoted \oplus): x' = min(x,y) and y' = max(x,y)

- decreasing (denoted Θ) : x' = max(x,y) and y' = min(x,y)

Sorting network speed is proportional to its depth

Sorting Networks

- Network structure: a series of columns
- Each column consists of a vector of comparators (in parallel)
- Sorting network organization:

Example: Bitonic Sorting Network

- Bitonic sequence
 - -two parts: increasing and decreasing
 - $\langle 1, 2, 4, 7, 6, 0 \rangle$: first increases and then decreases (or vice versa)
 - -cyclic rotation of a bitonic sequence is also considered bitonic
 - \langle 8,9,2,1,0,4 \rangle : cyclic rotation of \langle 0,4,8,9,2,1 \rangle
- Bitonic sorting network
 - —sorts n elements in $\Theta(\log^2 n)$ time
 - -network kernel: rearranges a bitonic sequence into a sorted one

Bitonic Split (Batcher, 1968)

• Let $s = \langle a_0, a_1, \dots, a_{n-1} \rangle$ be a bitonic sequence such that

• Consider the following subsequences of s

 $s_1 = \langle \min(a_0, a_{n/2}), \min(a_1, a_{n/2+1}), \dots, \min(a_{n/2-1}, a_{n-1}) \rangle$

 $s_2 = \langle \max(a_0, a_{n/2}), \max(a_1, a_{n/2+1}), \dots, \max(a_{n/2-1}, a_{n-1}) \rangle$

• Sequence properties

 $-s_1$ and s_2 are both bitonic

 $-a_0 \le a_1 \le \cdots \le a_{n/2-1}$, and

 $-a_{n/2} \ge a_{n/2+1} \ge \cdots \ge a_{n-1}$

 $- \forall_{\mathsf{x}} \forall_{\mathsf{y}} \mathsf{x} \in \mathsf{s_1}, \mathsf{y} \in \mathsf{s_2}, \mathsf{x < y}$

- Apply recursively on s_1 and s_2 to produce a sorted sequence
- Works for any bitonic sequence, even if $|s_1| \neq |s_2|$

Bitonic Merge

Sort a bitonic sequence through a series of bitonic splits

Example: use bitonic merge to sort 16-element bitonic sequence

How: perform a series of $\log_2 16 = 4$ bitonic splits

Original

Onginai																
sequence	3	5	8	9	10	12	14	20	95	90	60	40	35	23	18	0
1st Split	3	5	8	9	10	12	14	0	95	90	60	40	35	23	18	20
2nd Split	3	5	8	0	10	12	14	9	35	23	18	20	95	90	60	40
3rd Split	3	0	8	5	10	9	14	12	18	20	35	23	60	40	95	90
4th Split	0	3	5	8	9	10	12	14	18	20	23	35	40	60	90	95

Sorting via Bitonic Merging Network

- Sorting network can implement bitonic merge algorithm
 - —bitonic merging network
- Network structure
 - $-\log_2 n$ columns
 - -each column
 - n/2 comparators
 - performs one step of the bitonic merge
- Bitonic merging network with *n* inputs: \oplus BM[n]

-produces an increasing sequence

Replacing ⊕ comparators by ⊖ comparators: ⊖BM[n]
 —produces a decreasing sequence

• Input: bitonic sequence

— input wires are numbered 0,1,..., *n* - 1 (shown in binary)

- Output: sequence in sorted order
- Each column of comparators is drawn separately

Bitonic Sort

How do we sort an unsorted sequence using a bitonic merge?

Two steps

- Build a bitonic sequence
- Sort it using a bitonic merging network

Building a Bitonic Sequence

- Build a single bitonic sequence from the given sequence
 - —any sequence of length 2 is a bitonic sequence.
 - -build bitonic sequence of length 4
 - sort first two elements using ⊕BM[2]
 - sort next two using Θ BM[2]
- Repeatedly merge to generate larger bitonic sequences

-⊕BM[k] & ⊖BM[k]: bitonic merging networks of size k

Building a Bitonic Sequence

Input: sequence of 16 unordered numbers

Output: a bitonic sequence of 16 numbers

Bitonic Sort, n = 16

- First 3 stages create bitonic sequence input to stage 4
- Last stage (⊕BM[16]) yields sorted sequence

Complexity of Bitonic Sorting Networks

- **Depth of the network is** Θ(log² n)
 - —log₂ n merge stages

 $-j^{th}$ merge stage depth is $\log_2 2^j = j$

-depth =
$$\sum_{j=1}^{\log_2 n} \log_2 2^j = \sum_{i=1}^{\log_2 n} j = (\log_2 n + 1)(\log_2 n)/2 = \theta(\log^2 n)$$

- Each stage of the network contains *n*/2 comparators
- **Complexity of serial implementation =** $\Theta(n \log^2 n)$

From Sorting Network to Pseudocode

Batcher's Bitonic Sort

- bmerge(s): recursively sort a bitonic sequence as follows
 - 1. compute s₁ and s₂ as shown earlier for ascending sort of s both will be bitonic by Batcher's Lemma note: for a descending sort, just swap min & max
 - **2. recursively call bmerge on s_1 and s_2**
 - 3. return s = concat(bmerge(s₁), bmerge(s₂))
- bsort(s): create a bitonic sequence then sort it
 - **1.** convert an arbitrary sequence s into a bitonic sequence
 - sort s[1 ... n/2] in place in ascending order (recursive call to sort)
 - sort s[n/2+1 ... n] in place in descending order (recursive call to sort)
 - 2. after step 1, the sequence will be bitonic; sort it using bmerge(s)

Bitonic Sort in HJ

```
void bmerge(final int[] A, final int low, final int high, boolean asc) {
  if ( high-low > 1 ) {
    final int mid = (low + high)/2;
    final int size = high - low + 1;
    forall (point[i]:[low:mid]) orderElementPair(A, i, i+size/2, asc);
    finish {
      async bmerge(A, low, mid, asc); async bmerge(A, mid+1, high, asc);
    } // finish
  } // if
} // bmerge
void bsort (final int[] A, final int low, final int high, boolean asc) {
  if ( high-low > 1 ) {
   finish {
      final int mid = (low + high)/2;
      async bsort(A, low, mid, asc); async bsort(A, mid+1, high, !asc);
    } // finish
   bmerge(A, low, high, asc); // asc = true is for ascending order
  } // if
} // sort
```

Batcher's Bitonic Sort in NESL

```
function bitonic_merge(a) =
if (\#a == 1) then a
else
  let
    halves = bottop(a)
    mins = {min(x, y) : x in halves[0]; y in halves[1]};
    maxs = {max(x, y) : x in halves[0]; y in halves[1]};
  in flatten({bitonic_merge(x) : x in [mins,maxs]});
function bitonic_sort(a) =
if (\#a == 1) then a
else
  let b = {bitonic\_sort(x) : x in bottop(a)};
  in bitonic merge(b[0]++reverse(b[1]));
```

Run this code at http://www.cs.rice.edu/~johnmc/nesl.html 23

References

- Adapted from slides "Sorting" by Ananth Grama
- Based on Chapter 9 of "Introduction to Parallel Computing" by Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Addison Wesley, 2003
- "Programming Parallel Algorithms." Guy Blelloch. Communications of the ACM, volume 39, number 3, March 1996.
- http://www.cs.cmu.edu/~scandal/nesl/algorithms.html#sort
- "Highly Scalable Parallel Sorting." Edgar Solomonik and Laxmikant V. Kale. Proc. of the IEEE Intl. Parallel and Distributed Processing Symp., April, 2010, Atlanta, GA.