
COMP 322: Fundamentals of
Parallel Programming

Lecture 29: Java’s synchronized
statement

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 29 28 March 2012

COMP 322, Spring 2012 (V.Sarkar)

Acknowledgments for Today’s Lecture
• “Introduction to Concurrent Programming in Java”, Joe Bowbeer, David

Holmes, OOPSLA 2007 tutorial slides
—Contributing authors: Doug Lea, Brian Goetz
— http://www.oopsla.org/oopsla2007/index.php?page=sub/&id=69

2

COMP 322, Spring 2012 (V.Sarkar)

Two-way Parallel ArraySum using Java
threads (Recap from Lecture 27)

3

Thread.start() and Thread.join() provide rudimentary support for
async and finish. What about monitors, critical sections, isolated?

COMP 322, Spring 2012 (V.Sarkar)

Monitors --- an object-oriented approach to isolation
(Recap from Lecture 21)

• A monitor is an object containing

• some local variables (private data)

• some methods that operate on local data (monitor regions)

• Only one task can be active in a monitor at a time, executing some
monitor region

• Analogous to a critical section for a single object

• Monitors can also be used for

• Mutual exclusion

• Cooperation among parallel method invocations

4

COMP 322, Spring 2012 (V.Sarkar)

How to convert a sequential library to a
monitor in HJ vs. Java?

HJ approach:

• Use object-based isolation to ensure that each call to a public method is
isolated on “this” e.g.,

public void add(...) { isolated(this) { } }

• Can also use general isolated statement, but that is overkill e.g.,

public void add(...) { isolated { } }

Java approach:

• Use Java’s synchronized statement instead of object-based isolation e.g.,

public void add(...) { synchronized(this) { } }, or equivalently

public synchronized void add(...) { } // Like synchronized(this)

• Both HJ and Java programs can use specialized implementations of
monitors available in java.util.concurrent

— ConcurrentHashMap, ConcurrentLinkedQueue, CopyOnWriteArraySet

5

COMP 322, Spring 2012 (V.Sarkar)

Objects and Locks in Java ---
synchronized statements and methods

• Every Java object has an associated lock acquired via:
— synchronized statements

– synchronized(foo) { // acquire foo’s lock
 // execute code while holding foo’s lock
} // release foo’s lock

— synchronized methods
– public synchronized void op1() { // acquire ‘this‘ lock

 // execute method while holding ‘this’ lock
} // release ‘this’ lock

• Java language does not enforce any relationship between object used for locking and
objects accessed in isolated code
— If same object is used for locking and data access, then the object behaves like a

monitor

• Locking and unlocking are automatic
— Locks are released when a synchronized block exits

By normal means: end of block reached, return, break
When an exception is thrown and not caught

• Java’s synchronized is related to “mutex” locks in POSIX thread library

6

COMP 322, Spring 2012 (V.Sarkar)

Locking guarantees in Java
• It is desirable to use java.util.concurrent.atomic and other

standard monitor classes when possible

• Locks are needed for more general cases. Basic idea is to that
synchronized(a) <stmt> is implemented as follows:
1. Acquire lock for object a
2. Execute <stmt>
3. Release lock for object a

• The responsibility for ensuring that the choice of locks
correctly implements the semantics of monitors/isolated lies
with the programmer.

• The main guarantee provided by locks is that only one thread
can hold a lock at a time, and the thread is blocked when
acquiring a lock if the lock is unavailable.

7

Figure source: http://www.artima.com/insidejvm/ed2/images/fig20-1.gif

COMP 322, Spring 2012 (V.Sarkar)

Monitors – a Diagrammatic summary

8

COMP 322, Spring 2012 (V.Sarkar)

Deadlock example with Java synchronized statement

• The code below can deadlock if leftHand() and rightHand() are called
concurrently from different threads
— Because the locks are not acquired in the same order

 public class ObviousDeadlock {
 . . .

 public void leftHand() {

 synchronized(lock1) {

 synchronized(lock2) {

 for (int i=0; i<10000; i++)

 sum += random.nextInt(100);

 }

 }

 }

 public void rightHand() {

 synchronized(lock2) {

 synchronized(lock1) {

 for (int i=0; i<10000; i++)

 sum += random.nextInt(100);

 }

 }

 }

 }
9

COMP 322, Spring 2012 (V.Sarkar)

Deadlock avoidance in HJ with object-based isolation

• HJ implementation ensures that all locks are acquired in the same order

• ==> no deadlock
 public class NoDeadlock1 {
 . . .

 public void leftHand() {

 isolated(lock1, lock2) {

 for (int i=0; i<10000; i++)

 sum += random.nextInt(100);

 }

 }

 public void rightHand() {

 isolated(lock2,lock1) {

 for (int i=0; i<10000; i++)

 sum += random.nextInt(100);

 }

 }

 }

 }

10

COMP 322, Spring 2012 (V.Sarkar)

Dynamic Order Deadlocks
• There are even more subtle ways for threads to deadlock due to inconsistent

lock ordering
— Consider a method to transfer a balance from one account to another:
public class SubtleDeadlock {
 public void transferFunds(Account from,
 Account to,
 int amount) {
 synchronized (from) {
 synchronized (to) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }

 }

— What if one thread tries to transfer from A to B while another tries to
transfer from B to A ?

Inconsistent lock order again – Deadlock!

11

COMP 322, Spring 2012 (V.Sarkar)

Avoiding Dynamic Order Deadlocks
• The solution is to induce a lock ordering
— Here, uses an existing unique numeric key, acctId, to establish an order

public class SafeTransfer {

 public void transferFunds(Account from, Account to, int amount) {

 Account firstLock, secondLock;
 if (fromAccount.acctId == toAccount.acctId)
 throw new Exception(“Cannot self-transfer”);
 else if (fromAccount.acctId < toAccount.acctId) {
 firstLock = fromAccount;
 secondLock = toAccount;
 }
 else {
 firstLock = toAccount;
 secondLock = fromAccount;
 }
 synchronized (firstLock) {

 synchronized (secondLock) {

 from.subtractFromBalance(amount);

 to.addToBalance(amount);

 }

 }

 }
 }

12

COMP 322, Spring 2012 (V.Sarkar)

Java’s Object Locks are Reentrant
• Locks are granted on a per-thread basis

— Called reentrant or recursive locks
— Promotes object-oriented concurrent code

• A synchronized block means execution of this code requires the current thread to
hold this lock
— If it does — fine
— If it doesn’t — then acquire the lock

• Reentrancy means that recursive methods, invocation of super methods, or local
callbacks, don’t deadlock

 public class Widget {

 public synchronized void doSomething() { ... }

 }

 public class LoggingWidget extends Widget {

 public synchronized void doSomething() {

 Logger.log(this + ": calling doSomething()");

 super.doSomething(); // Doesn't deadlock!
 }
 }

13

COMP 322, Spring 2012 (V.Sarkar)

Object-based isolation in HJ does not deadlock
public class NoDeadlock2 {
 public void transferFunds(Account from,
 Account to,
 int amount) {
 isolated (from, to) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 } } } }

• HJ’s implementation guarantees that object-based isolation is deadlock-free
• However, HJ does not permit an inner isolated statement to add a new object

e.g., the following code is not permitted in HJ, but the equivalent synchronized
version is permitted in Java
Not permitted in HJ (if from != to) Permitted in Java
isolated (from) { synchronized (from) {

 isolated (to) { . . .} synchronized(to) { . . .}
} }

14

COMP 322, Spring 2012 (V.Sarkar)

Implementation of Java synchronized
statements/methods

• Every object has an associated lock

• “synchronized” is translated to matching monitorenter and
monitorexit bytecode instructions for the Java virtual machine
—monitorenter requests “ownership” of the object’s lock
—monitorexit releases “ownership” of the object’s lock

• If a thread performing monitorenter does not own the lock
(because another thread already owns it), it is placed in an
unordered “entry set” for the object’s lock

15

COMP 322, Spring 2012 (V.Sarkar)

What if you want to wait for shared state
to satisfy a desired property?

public synchronized void insert(Object item) { // producer
 // TODO: wait till count < BUFFER SIZE
 ++count;
 buffer[in] = item;
 in = (in + 1) % BUFFER SIZE;
 // TODO: notify consumers that an insert has been performed
}

public synchronized Object remove() { // consumer
 Object item;
 // TODO: wait till count > 0
 --count;
 item = buffer[out];
 out = (out + 1) % BUFFER SIZE;
 // TODO: notify producers that a remove() has been performed
 return item;
}
16

COMP 322, Spring 2012 (V.Sarkar)

The Java wait() Method
• A thread can perform a wait() method on an object that it owns:

1. the thread releases the object lock
2. thread state is set to blocked
3. thread is placed in the wait set

• Causes thread to wait until another thread invokes the notify() method
or the notifyAll() method for this object.

• Since interrupts and spurious wake-ups are possible, this method should
always be used in a loop e.g.,

 synchronized (obj) {

 while (<condition does not hold>)

 obj.wait();

 ... // Perform action appropriate to condition

 }

• Java’s wait-notify is related to “condition variables” in POSIX threads

17

COMP 322, Spring 2012 (V.Sarkar)18

Entry and Wait Sets

COMP 322, Spring 2012 (V.Sarkar)

The notify() Method
When a thread calls notify(), the following occurs:

1. selects an arbitrary thread T from the wait set
2. moves T to the entry set
3. sets T to Runnable

T can now compete for the object’s lock again

19

COMP 322, Spring 2012 (V.Sarkar)

Multiple Notifications
• notify() selects an arbitrary thread from the wait set.

—This may not be the thread that you want to be selected.

—Java does not allow you to specify the thread to be selected

• notifyAll() removes ALL threads from the wait set and places
them in the entry set. This allows the threads to decide among
themselves who should proceed next.

• notifyAll() is a conservative strategy that works best when
multiple threads may be in the wait set

20

COMP 322, Spring 2012 (V.Sarkar)

insert() with wait/notify Methods
public synchronized void insert(Object item) {
 while (count == BUFFER SIZE) {
 try {
 wait();
 }
 catch (InterruptedException e) { }
 }
 ++count;
 buffer[in] = item;
 in = (in + 1) % BUFFER SIZE;
 notify();
}

21

COMP 322, Spring 2012 (V.Sarkar)

remove() with wait/notify Methods
public synchronized Object remove() {
 Object item;
 while (count == 0) {
 try {
 wait();
 }
 catch (InterruptedException e) { }
 }
 --count;
 item = buffer[out];
 out = (out + 1) % BUFFER SIZE;
 notify();
 return item;
}

22

COMP 322, Spring 2012 (V.Sarkar)

Complete Bounded Buffer using Java
Synchronization

public class BoundedBuffer implements Buffer
{
 private static final int BUFFER SIZE = 5;
 private int count, in, out;
 private Object[] buffer;
 public BoundedBuffer() { // buffer is initially empty
 count = 0;
 in = 0;
 out = 0;
 buffer = new Object[BUFFER SIZE];
 }
 public synchronized void insert(Object item) { // See previous slides
 }
 public synchronized Object remove() { // See previous slides
 }
}

23

