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Acknowledgments for Today’s Lecture
• CMU 15-440 course: Distributed Systems, Fall 2011, David Andersen, 

Randy Bryant

—Lecture on “Time and Synchronization”
– http://www.cs.cmu.edu/~dga/15-440/F11/lectures/09-time+synch.ppt 

• “The Java Memory Model”, Jeremy Manson

—http://dl.dropbox.com/u/1011627/google_jmm.pdf 

• “Introduction to Concurrent Programming in Java”, Joe Bowbeer, David 
Holmes, OOPSLA 2007 tutorial slides
—Contributing authors: Doug Lea, Brian Goetz

• “Engineering Fine-Grained Parallelism Support for Java 7”, Doug Lea, 
July 2010

• “Java Concurrency in Practice”, Brian Goetz with Tim Peierls, Joshua 
Bloch, Joseph Bowbeer, David Holmes and Doug Lea.  Addison-Wesley, 
2006.
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Outline
• Volatile variables

• Java Memory Model
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Memory Visibility
• Basic question: if a memory location L is written by statement 

S1 in thread T1, when is that write guaranteed to be visible to 
a read of L in statement S2 of thread T2?

• HJ answer: whenever there is a directed path of edges from S1 
in S2 in the computation graph
—Computation graph edges are defined by semantics of parallel 

constructs: async, finish, async-await, futures, phasers, isolated, 
object-based isolation

• Java answer: whenever there is a “happens-before” relation 
between S1 and S2

==> Should we define “happens-before” using time or ordering?
—Is there such a thing as universal global time?
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Physical Clocks

Different clocks can be closely synchronized, but never perfect e.g.,

• UT1
—Based on astronomical observations
—“Greenwich Mean Time”

• TAI
—Started Jan 1, 1958
—Each second is 9,192,631,770 cycles of radiation emitted 

by Cesium atom
—Has diverged from UT1 due to slowing of earth’s rotation

• UTC
—TAI + leap seconds to be within 800ms of UT1
—Currently 34
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Comparing Time Standards

UT1 −	
  UTC
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Distributed time

• Premise
– The notion of time is well-defined (and measurable) at each 

single location
– But the relationship between time at different locations is 

unclear
• Can minimize discrepancies, but never eliminate them
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A baseball example
• Four locations:  pitcher’s mound, first base, home plate, and 

third base

• Ten events:
e1:  pitcher throws ball to home

e2:  ball arrives at home

e3:  batter hits ball to pitcher

e4:  batter runs to first base

e5:  runner runs to home

e6:  ball arrives at pitcher

e7:  pitcher throws ball to first base

e8:  runner arrives at home

e9:  ball arrives at first base

e10:  batter arrives at first base
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A baseball example (contd)

• Pitcher knows e
1
 happens before e

6
, which happens before e

7

• Home plate umpire knows e
2
 is before e

3
, which is before e

4
, 

which is before e
8
, …

• Relationship between e
8
 and e

9
 is unclear
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Logical time
• Capture just the “happens before” relationship between events

– Discard the infinitesimal granularity of time
– Akin to dependence edges in computation graph

• Time at each process is well-defined
– Definition (→

i
):  We say e →

i
 e’ if e happens before e’ at process i

– Akin to “continue” edges
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Global logical time
• Definition (→):  We define e → e’ using the following rules:

– Local ordering:  e → e’ if e →
i
 e’ for any process i

– Messages:  send(m) → receive(m) for any message m

– Messages can encode ordering due to spawn, join, phaser, and 
isolated-serialization events

– Transitivity:  e → e’’ if e → e’ and e’ → e’’

• We say e “happens before” e’ if e → e’

• Definition (concurrency):  We say e is concurrent with 
e’ (written e║e’) if neither e → e’ nor e’ → e

— i.e., e and e’ “may happen in parallel”

11



COMP 322, Spring 2012 (V.Sarkar)

The baseball example revisited
• e1 → e2

– by the message rule

• e1 → e10, because
– e1 → e2, by the message rule

– e2 → e4, by local ordering at home plate

– e4 → e10, by the message rule
– Repeated transitivity of the above relations

• e8║e9, because
– No application of the → rules yields either e8 → e9 or 

e9 → e8
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Troublesome example
1. public class NoVisibility {
2.  private static boolean ready;
3.  private static int number;
4. 
5.  private static class ReaderThread extends Thread {
6.    public void run() {
7.      while (!ready) Thread.yield()
8.      System.out.println(number)
9.    }
10.  }
11. 
12.  public static void main(String[] args) {
13.    new ReaderThread().start();
14.    number = 42;
15.    ready = true;
16.  }
17. }

13

No happens-before ordering between main 
thread and ReaderThread
==> ReaderThread may loop forever OR may 
print 42 OR may print 0  !!
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Volatile Variables available in Java
(but not in HJ)

• Java provides a “light” form of synchronization/fence operations in the form 
of volatile variables (fields)

• Volatile variables guarantee visibility
— Reads and writes of volatile variables are assumed to occur in isolated blocks
— Adds serialization edges to computation graph due to isolated read/write operations on 

same volatile variable

• Incrementing a volatile variable (++v) is not thread-safe
— Increment operation looks atomic, but isn’t (read and write are two separate 

operations)

• Volatile variables are best suited for flags that have no dependencies e.g.,
        volatile boolean asleep;
        foo() { ... while (! asleep) ++sheep; ... }

— WARNING: In the absence of volatile declaration, the above code can legally be 
transformed to the following

boolean asleep;

foo() { boolean temp = asleep; ... while (! temp) ++sheep; ... }

14
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Troublesome example fixed with volatile 
declaration

1. public class NoVisibility {
2.  private static volatile boolean ready;
3.  private static volatile int number;
4. 
5.  private static class ReaderThread extends Thread {
6.    public void run() {
7.      while (!ready) Thread.yield()
8.      System.out.println(number)
9.    }
10.  }
11. 
12.  public static void main(String[] args) {
13.    new ReaderThread().start();
14.    number = 42;
15.    ready = true;
16.  }
17. }
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Declaring number and ready as volatile ensures 
happens-before-edges: 14-->15-->7-->8, 
thereby ensuring that only 42 will be printed
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Outline
• Volatile variables

• Java Memory Model
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Memory Consistency Models
(Recap from Lecture 6)

• A memory consistency model, or memory model, is the part of a 
programming language specification that defines what write values 
a read may see in the presence of data races.  

• We will briefly introduce three memory models
—Sequential Consistency (SC)

– Suitable for specifying semantics at the hardware and OS levels *
—Java Memory Model (JMM)

– Suitable for specifying semantics at application thread level *
—Habanero Java Memory Model (HJMM)

– Suitable for specifying semantics at application task level *

* This is your instructor’s opinion.  Memory models are a very 
controversial topic in parallel programming!

SC

JMM

HJMM
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When are actions visible and ordered 
with other Threads in the JMM?

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

lock M

y = 1

unlock M

j = y

Everything 
before

the unlock is 
visible to 
everything
after the 

matching lock in 
the JMM

lock/unlock operations can come from synchronized 
statement or from explicit calls to locking libraries
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Troublesome example fixed with empty 
synchronized statements instead of volatile (JMM)

1. public class NoVisibility {
2.  private static boolean ready;
3.  private static int number;
4.  private static final Object a = new Object();
5. 
6.  private static class ReaderThread extends Thread {
7.    public void run() {
8.      synchronized(a){}
9.      while (!ready) { Thread.yield(); synchronized(a){} }
10.     System.out.println(number);
11.    }
12.  }
13. 
14.  public static void main(String[] args) {
15.    new ReaderThread().start();
16.    number = 42;
17.    ready = true; synchronized(a){}
18.  }
19. }

19

Empty synchronized statement is NOT a no-op 
in Java.  It acts as a memory “fence”.
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When are actions visible and ordered 
with other Threads in the HJMM?

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

lock M

y = 1

unlock M

j = y

Everything within 
the first lock 

region is visible 
to everything
in the second 
lock region, in 
the HJMM
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Empty isolated statements are no-ops in HJ
1. public class NoVisibility {
2.  private static boolean ready;
3.  private static int number;
4. 
5.  private static class ReaderThread extends Thread {
6.    public void run() {
7.      isolated{}
8.      while (!ready) { Thread.yield(); isolated{} }
9.      System.out.println(number);
10.    }
11.  }
12. 
13.  public static void main(String[] args) {
14.    new ReaderThread().start();
15.    number = 42;
16.    ready = true; isolated {}
17.  }
18. }

21

Empty isolated statement is a no-op in HJ.  ReaderThread 
may loop forever OR may print 42 OR may print 0.
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Use explicit synchronization in HJ instead
1. public class NoVisibility {
2.  private static boolean ready;
3.  private static int number;
4.  private static DataDrivenFuture<Boolean>
5.      readyDDF = new DataDrivenFuture<Boolean>();
6. 
7.  public static void main(String[] args) {
8.    async await(readyDDF){ System.out.println(number); }
9.    number = 42;
10.   readyDDF.put(true);
11.  }
12. }

22

REMINDER: HJ does not support volatile variables
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Sequential Consistency Memory Model
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The Habanero-Java Memory Model (HJMM)
and the Java Memory Model (JMM)

• Conceptually simple:
— Every time a variable is written, the value is added to the set of “most recent 

writes” to the variable
— A read of a variable is allowed to return ANY value from this set 

• HJMM has weaker ordering rules for HJ’s “isolated” statements, compared to 
Java’s “synchronized” blocks
— By using ordering relationships (“happens-before”) in the Computation Graph to 

determine when a value must be overwritten
– Also permit reordering of accesses to different locations within a sequential step

• The JMM defines the rules by which values in the set are removed
— By using ordering relationships (“happens-before”) similar to the Computation Graph to 

determine when a value must be overwritten
– More restrictions on reordering of accesses to different locations relative to 

HJMM

• Programmer’s goal: through proper use of synchronization
— Ensure the absence of data races, in which case this set will never contain more than 

one value and SC, JMM, HJMM will all have the same semantics

24
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Weird Behavior of Improperly 
Synchronized Code

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

Can this result in i = 0 and j = 0?

start threads
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No?

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

 i = 0 and j = 0 implies temporal loop!

start threads
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Answer: Yes in JMM and HJMM
(but not in SC)

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2start threads

compiler or 
programmer 

could 
reorder
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Sequential Consistency (SC) Memory Model
• SC constrains all memory operations across all 

tasks

– Write → Read

– Write → Write 

– Read → Read

– Read → Write

- Simple model for reasoning about data races 
at the hardware level, but may lead to 
counter-intuitive behavior at the application 
level e.g.,

- A programmer may perform modular code 
transformations for software engineering 
reasons without realizing that they are 
changing the program’s semantics

Task T1 Task T2

Task T3

Task T4

p.x=1; 
(4)

p.x=2;
(6)

...=p.x; (5)

...=q.x; (7)

...=p.x; (8)

...=p.x;  (1)

...=p.x;  (2)

...=p.x;  (3)

0
0
0

1
2
2

O
u
t
p
u
t
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Consider a “reasonable” code 
transformation performed by a programmer

Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5.   System.out.println("First read = " + p.x);

6.   System.out.println("Second read = " + p.x);

7.   System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10.   // Assume programmer doesn’t know that p=q

11.   int p_x = p.x;  

12.   System.out.println("First read = " + p_x);

13.   System.out.println("Second read = " + q.x);

14.   System.out.println("Third read = " + p_x);

15. }

Task T1 Task T2

Task T3

Task T4

p.x=1; 
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x;  (1)

...=p.x;  (2)

...=p.x;  (3)

0
0
0

1
2
1

O
u
t
p
u
t
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Consider a “reasonable” code 
transformation performed by a programmer

Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5.   System.out.println("First read = " + p.x);

6.   System.out.println("Second read = " + p.x);

7.   System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10.   // Assume programmer doesn’t know that p=q

11.   int p_x = p.x;  

12.   System.out.println("First read = " + p_x);

13.   System.out.println("Second read = " + q.x);

14.   System.out.println("Third read = " + p_x);

15. }

Task T1 Task T2

Task T3

Task T4

p.x=1; 
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x;  (1)

...=p.x;  (2)

...=p.x;  (3)

0
0
0

1
2
1

O
u
t
p
u
t

This reasonable code 
transformation resulted in 
an illegal output, under the 

SC model!
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Code Transformation Example
Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5.   System.out.println("First read = " + p.x);

6.   System.out.println("Second read = " + p.x);

7.   System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10.   // Assume programmer doesn’t know that p=q

11.   int p_x = p.x;  

12.   System.out.println("First read = " + p_x);

13.   System.out.println("Second read = " + q.x);

14.   System.out.println("Third read = " + p_x);

15. }

Task T1 Task T2

Task T3

Task T4

p.x=1; 
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x;  (1)

...=p.x;  (2)

...=p.x;  (3)

0
0
0

1
2
1

O
u
t
p
u
t

This output is legal under 
the JMM and HJMM!
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Reminders
• Graded midterms can be picked up from Amanda Nokleby in 

Duncan Hall 3137

• Homework 5 due by 5pm on Friday, April 6th
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