
COMP 322: Fundamentals of
Parallel Programming

Lecture 32: Volatile variables,
Java memory model

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 32 4 April 2012

COMP 322, Spring 2012 (V.Sarkar)

Acknowledgments for Today’s Lecture
• CMU 15-440 course: Distributed Systems, Fall 2011, David Andersen,

Randy Bryant

—Lecture on “Time and Synchronization”
– http://www.cs.cmu.edu/~dga/15-440/F11/lectures/09-time+synch.ppt

• “The Java Memory Model”, Jeremy Manson

—http://dl.dropbox.com/u/1011627/google_jmm.pdf

• “Introduction to Concurrent Programming in Java”, Joe Bowbeer, David
Holmes, OOPSLA 2007 tutorial slides
—Contributing authors: Doug Lea, Brian Goetz

• “Engineering Fine-Grained Parallelism Support for Java 7”, Doug Lea,
July 2010

• “Java Concurrency in Practice”, Brian Goetz with Tim Peierls, Joshua
Bloch, Joseph Bowbeer, David Holmes and Doug Lea. Addison-Wesley,
2006.

2

COMP 322, Spring 2012 (V.Sarkar)

Outline
• Volatile variables

• Java Memory Model

3

COMP 322, Spring 2012 (V.Sarkar)

Memory Visibility
• Basic question: if a memory location L is written by statement

S1 in thread T1, when is that write guaranteed to be visible to
a read of L in statement S2 of thread T2?

• HJ answer: whenever there is a directed path of edges from S1
in S2 in the computation graph
—Computation graph edges are defined by semantics of parallel

constructs: async, finish, async-await, futures, phasers, isolated,
object-based isolation

• Java answer: whenever there is a “happens-before” relation
between S1 and S2

==> Should we define “happens-before” using time or ordering?
—Is there such a thing as universal global time?

4

COMP 322, Spring 2012 (V.Sarkar)

Physical Clocks

Different clocks can be closely synchronized, but never perfect e.g.,

• UT1
—Based on astronomical observations
—“Greenwich Mean Time”

• TAI
—Started Jan 1, 1958
—Each second is 9,192,631,770 cycles of radiation emitted

by Cesium atom
—Has diverged from UT1 due to slowing of earth’s rotation

• UTC
—TAI + leap seconds to be within 800ms of UT1
—Currently 34

5

COMP 322, Spring 2012 (V.Sarkar)

Comparing Time Standards

UT1 −	
 UTC

6

COMP 322, Spring 2012 (V.Sarkar)

Distributed time

• Premise
– The notion of time is well-defined (and measurable) at each

single location
– But the relationship between time at different locations is

unclear
• Can minimize discrepancies, but never eliminate them

7

COMP 322, Spring 2012 (V.Sarkar)

A baseball example
• Four locations: pitcher’s mound, first base, home plate, and

third base

• Ten events:
e1: pitcher throws ball to home

e2: ball arrives at home

e3: batter hits ball to pitcher

e4: batter runs to first base

e5: runner runs to home

e6: ball arrives at pitcher

e7: pitcher throws ball to first base

e8: runner arrives at home

e9: ball arrives at first base

e10: batter arrives at first base

8

COMP 322, Spring 2012 (V.Sarkar)

A baseball example (contd)

• Pitcher knows e
1
 happens before e

6
, which happens before e

7

• Home plate umpire knows e
2
 is before e

3
, which is before e

4
,

which is before e
8
, …

• Relationship between e
8
 and e

9
 is unclear

9

COMP 322, Spring 2012 (V.Sarkar)

Logical time
• Capture just the “happens before” relationship between events

– Discard the infinitesimal granularity of time
– Akin to dependence edges in computation graph

• Time at each process is well-defined
– Definition (→

i
): We say e →

i
 e’ if e happens before e’ at process i

– Akin to “continue” edges

10

COMP 322, Spring 2012 (V.Sarkar)

Global logical time
• Definition (→): We define e → e’ using the following rules:

– Local ordering: e → e’ if e →
i
 e’ for any process i

– Messages: send(m) → receive(m) for any message m

– Messages can encode ordering due to spawn, join, phaser, and
isolated-serialization events

– Transitivity: e → e’’ if e → e’ and e’ → e’’

• We say e “happens before” e’ if e → e’

• Definition (concurrency): We say e is concurrent with
e’ (written e║e’) if neither e → e’ nor e’ → e

— i.e., e and e’ “may happen in parallel”

11

COMP 322, Spring 2012 (V.Sarkar)

The baseball example revisited
• e1 → e2

– by the message rule

• e1 → e10, because
– e1 → e2, by the message rule

– e2 → e4, by local ordering at home plate

– e4 → e10, by the message rule
– Repeated transitivity of the above relations

• e8║e9, because
– No application of the → rules yields either e8 → e9 or

e9 → e8

12

COMP 322, Spring 2012 (V.Sarkar)

Troublesome example
1. public class NoVisibility {
2. private static boolean ready;
3. private static int number;
4.
5. private static class ReaderThread extends Thread {
6. public void run() {
7. while (!ready) Thread.yield()
8. System.out.println(number)
9. }
10. }
11.
12. public static void main(String[] args) {
13. new ReaderThread().start();
14. number = 42;
15. ready = true;
16. }
17. }

13

No happens-before ordering between main
thread and ReaderThread
==> ReaderThread may loop forever OR may
print 42 OR may print 0 !!

COMP 322, Spring 2012 (V.Sarkar)

Volatile Variables available in Java
(but not in HJ)

• Java provides a “light” form of synchronization/fence operations in the form
of volatile variables (fields)

• Volatile variables guarantee visibility
— Reads and writes of volatile variables are assumed to occur in isolated blocks
— Adds serialization edges to computation graph due to isolated read/write operations on

same volatile variable

• Incrementing a volatile variable (++v) is not thread-safe
— Increment operation looks atomic, but isn’t (read and write are two separate

operations)

• Volatile variables are best suited for flags that have no dependencies e.g.,
 volatile boolean asleep;
 foo() { ... while (! asleep) ++sheep; ... }

— WARNING: In the absence of volatile declaration, the above code can legally be
transformed to the following

boolean asleep;

foo() { boolean temp = asleep; ... while (! temp) ++sheep; ... }

14

COMP 322, Spring 2012 (V.Sarkar)

Troublesome example fixed with volatile
declaration

1. public class NoVisibility {
2. private static volatile boolean ready;
3. private static volatile int number;
4.
5. private static class ReaderThread extends Thread {
6. public void run() {
7. while (!ready) Thread.yield()
8. System.out.println(number)
9. }
10. }
11.
12. public static void main(String[] args) {
13. new ReaderThread().start();
14. number = 42;
15. ready = true;
16. }
17. }

15

Declaring number and ready as volatile ensures
happens-before-edges: 14-->15-->7-->8,
thereby ensuring that only 42 will be printed

COMP 322, Spring 2012 (V.Sarkar)

Outline
• Volatile variables

• Java Memory Model

16

COMP 322, Spring 2012 (V.Sarkar)

Memory Consistency Models
(Recap from Lecture 6)

• A memory consistency model, or memory model, is the part of a
programming language specification that defines what write values
a read may see in the presence of data races.

• We will briefly introduce three memory models
—Sequential Consistency (SC)

– Suitable for specifying semantics at the hardware and OS levels *
—Java Memory Model (JMM)

– Suitable for specifying semantics at application thread level *
—Habanero Java Memory Model (HJMM)

– Suitable for specifying semantics at application task level *

* This is your instructor’s opinion. Memory models are a very
controversial topic in parallel programming!

SC

JMM

HJMM

17

COMP 322, Spring 2012 (V.Sarkar)18

When are actions visible and ordered
with other Threads in the JMM?

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

lock M

y = 1

unlock M

j = y

Everything
before

the unlock is
visible to
everything
after the

matching lock in
the JMM

lock/unlock operations can come from synchronized
statement or from explicit calls to locking libraries

COMP 322, Spring 2012 (V.Sarkar)

Troublesome example fixed with empty
synchronized statements instead of volatile (JMM)

1. public class NoVisibility {
2. private static boolean ready;
3. private static int number;
4. private static final Object a = new Object();
5.
6. private static class ReaderThread extends Thread {
7. public void run() {
8. synchronized(a){}
9. while (!ready) { Thread.yield(); synchronized(a){} }
10. System.out.println(number);
11. }
12. }
13.
14. public static void main(String[] args) {
15. new ReaderThread().start();
16. number = 42;
17. ready = true; synchronized(a){}
18. }
19. }

19

Empty synchronized statement is NOT a no-op
in Java. It acts as a memory “fence”.

COMP 322, Spring 2012 (V.Sarkar)20

When are actions visible and ordered
with other Threads in the HJMM?

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

lock M

y = 1

unlock M

j = y

Everything within
the first lock

region is visible
to everything
in the second
lock region, in
the HJMM

COMP 322, Spring 2012 (V.Sarkar)

Empty isolated statements are no-ops in HJ
1. public class NoVisibility {
2. private static boolean ready;
3. private static int number;
4.
5. private static class ReaderThread extends Thread {
6. public void run() {
7. isolated{}
8. while (!ready) { Thread.yield(); isolated{} }
9. System.out.println(number);
10. }
11. }
12.
13. public static void main(String[] args) {
14. new ReaderThread().start();
15. number = 42;
16. ready = true; isolated {}
17. }
18. }

21

Empty isolated statement is a no-op in HJ. ReaderThread
may loop forever OR may print 42 OR may print 0.

COMP 322, Spring 2012 (V.Sarkar)

Use explicit synchronization in HJ instead
1. public class NoVisibility {
2. private static boolean ready;
3. private static int number;
4. private static DataDrivenFuture<Boolean>
5. readyDDF = new DataDrivenFuture<Boolean>();
6.
7. public static void main(String[] args) {
8. async await(readyDDF){ System.out.println(number); }
9. number = 42;
10. readyDDF.put(true);
11. }
12. }

22

REMINDER: HJ does not support volatile variables

COMP 322, Spring 2012 (V.Sarkar)23

Sequential Consistency Memory Model

COMP 322, Spring 2012 (V.Sarkar)

The Habanero-Java Memory Model (HJMM)
and the Java Memory Model (JMM)

• Conceptually simple:
— Every time a variable is written, the value is added to the set of “most recent

writes” to the variable
— A read of a variable is allowed to return ANY value from this set

• HJMM has weaker ordering rules for HJ’s “isolated” statements, compared to
Java’s “synchronized” blocks
— By using ordering relationships (“happens-before”) in the Computation Graph to

determine when a value must be overwritten
– Also permit reordering of accesses to different locations within a sequential step

• The JMM defines the rules by which values in the set are removed
— By using ordering relationships (“happens-before”) similar to the Computation Graph to

determine when a value must be overwritten
– More restrictions on reordering of accesses to different locations relative to

HJMM

• Programmer’s goal: through proper use of synchronization
— Ensure the absence of data races, in which case this set will never contain more than

one value and SC, JMM, HJMM will all have the same semantics

24

COMP 322, Spring 2012 (V.Sarkar)25

Weird Behavior of Improperly
Synchronized Code

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

Can this result in i = 0 and j = 0?

start threads

COMP 322, Spring 2012 (V.Sarkar)26

No?

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

 i = 0 and j = 0 implies temporal loop!

start threads

COMP 322, Spring 2012 (V.Sarkar)27

Answer: Yes in JMM and HJMM
(but not in SC)

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2start threads

compiler or
programmer

could
reorder

COMP 322, Spring 2012 (V.Sarkar)

Sequential Consistency (SC) Memory Model
• SC constrains all memory operations across all

tasks

– Write → Read

– Write → Write

– Read → Read

– Read → Write

- Simple model for reasoning about data races
at the hardware level, but may lead to
counter-intuitive behavior at the application
level e.g.,

- A programmer may perform modular code
transformations for software engineering
reasons without realizing that they are
changing the program’s semantics

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p.x; (5)

...=q.x; (7)

...=p.x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
2

O
u
t
p
u
t

28

COMP 322, Spring 2012 (V.Sarkar)29

Consider a “reasonable” code
transformation performed by a programmer

Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. // Assume programmer doesn’t know that p=q

11. int p_x = p.x;

12. System.out.println("First read = " + p_x);

13. System.out.println("Second read = " + q.x);

14. System.out.println("Third read = " + p_x);

15. }

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
1

O
u
t
p
u
t

COMP 322, Spring 2012 (V.Sarkar)30

Consider a “reasonable” code
transformation performed by a programmer

Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. // Assume programmer doesn’t know that p=q

11. int p_x = p.x;

12. System.out.println("First read = " + p_x);

13. System.out.println("Second read = " + q.x);

14. System.out.println("Third read = " + p_x);

15. }

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
1

O
u
t
p
u
t

This reasonable code
transformation resulted in
an illegal output, under the

SC model!

COMP 322, Spring 2012 (V.Sarkar)31

Code Transformation Example
Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. // Assume programmer doesn’t know that p=q

11. int p_x = p.x;

12. System.out.println("First read = " + p_x);

13. System.out.println("Second read = " + q.x);

14. System.out.println("Third read = " + p_x);

15. }

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
1

O
u
t
p
u
t

This output is legal under
the JMM and HJMM!

COMP 322, Spring 2012 (V.Sarkar)

Reminders
• Graded midterms can be picked up from Amanda Nokleby in

Duncan Hall 3137

• Homework 5 due by 5pm on Friday, April 6th

32

