
COMP 322: Fundamentals of
Parallel Programming

Lecture 33: Introduction to MPI
(Message Passing Interface)

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 33 6 April 2012

COMP 322, Spring 2012 (V.Sarkar)

Acknowledgments for Today’s Lecture
• “Principles of Parallel Programming”, Calvin Lin & Lawrence Snyder

— Includes resources available at http://www.pearsonhighered.com/educator/
academic/product/0,3110,0321487907,00.html

• “Parallel Architectures”, Calvin Lin
— Lectures 5 & 6, CS380P, Spring 2009, UT Austin
— http://www.cs.utexas.edu/users/lin/cs380p/schedule.html

• Slides accompanying Chapter 6 of “Introduction to Parallel Computing”,
2nd Edition, Ananth Grama, Anshul Gupta, George Karypis, and Vipin
Kumar, Addison-Wesley, 2003
— http://www-users.cs.umn.edu/~karypis/parbook/Lectures/AG/chap6_slides.pdf

• MPI slides from “High Performance Computing: Models, Methods and
Means”, Thomas Sterling, CSC 7600, Spring 2009, LSU
— http://www.cct.lsu.edu/csc7600/coursemat/index.html

• mpiJava home page: http://www.hpjava.org/mpiJava.html

• MPI lectures given at Rice HPC Summer Institute 2009, Tim
Warburton, May 2009

2

COMP 322, Spring 2012 (V.Sarkar)

Organization of a Shared-Memory
Multicore SMP (Lecture 17)

• Memory hierarchy for a single Intel Xeon Quad-core E5440 HarperTown
processor chip
— A SUG@R node contains TWO such chips, for a total of 8 cores

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

Core-pair

3

COMP 322, Spring 2012 (V.Sarkar)

Organization of a Distributed-Memory
Multiprocessor

Figure (a)

• Host node (Pc) connected to a cluster of processor nodes (P0 … Pm)

• Processors P0 … Pm communicate via a dedicated high-performance
interconnection network (e.g., Infiniband)
—Supports much lower latencies and higher bandwidth than standard TCP/

IP networks

Figure (b)

• Each processor node consists of a processor, memory, and a Network
Interface Card (NIC) connected to a router node (R) in the interconnect

4

COMP 322, Spring 2012 (V.Sarkar)

Principles of
Message-Passing Programming

• The logical view of a machine supporting the message-passing
paradigm consists of p processes, each with its own exclusive
address space.
1. Each data element must belong to one of the partitions of the

space; hence, data must be explicitly partitioned and placed.
2. All interactions (read-only or read/write) require cooperation of

two processes - the process that has the data and the process
that wants to access the data.

• These two constraints, while onerous, make underlying costs
very explicit to the programmer.

• In this loosely synchronous model, processes synchronize
infrequently to perform interactions. Between these
interactions, they execute completely asynchronously.

• Most message-passing programs are written using the single
program multiple data (SPMD) model.

5

COMP 322, Spring 2012 (V.Sarkar)

SPMD Pattern (Lecture 26)
• SPMD: Single Program Multiple Data

• Run the same program on P processing elements (PEs)

• Use the “rank” … an ID ranging from 0 to (P-1) … to determine
what computation is performed on what data by a given PE

• Different PEs can follow different paths through the same code

• Convenient pattern for hardware platforms that are not
amenable to efficient forms of dynamic task parallelism
—General-Purpose Graphics Processing Units (GPGPUs)
—Distributed-memory parallel machines

• Key design decisions --- how should data and computation be
distributed across PEs?

6

COMP 322, Spring 2012 (V.Sarkar)

Using the SPMD model with a Global View of Data:
Iterative Averaging (Slide 9, Lecture 13)

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2];

2. gVal[n+1] = 1; // Boundary condition

3. int Cj = Runtime.getNumOfWorkers();

4. forall (point [jj]:[0:Cj-1]) { // SPMD computation with “id” = jj

5. double[] myVal = gVal; double[] myNew = gNew; // Local copy

6. for (point [iter] : [0:numIters-1]) {

7. // Compute MyNew as function of input array MyVal

8. for (point [j]:getChunk([1:n],[Cj],[jj]))

9. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

10. next; // Barrier before executing next iteration of iter loop

11. // Swap myVal and myNew (replicated computation)

12. double[] temp=myVal; myVal=myNew; myNew=temp;

13. // myNew becomes input array for next iter

14. } // for

15.} // forall

7

COMP 322, Spring 2012 (V.Sarkar)

Data Distribution: Local View in
Distributed-Memory Systems

8

COMP 322, Spring 2012 (V.Sarkar)

Using the SPMD model with a Local View

Processors must communicate via messages for non-local data accesses

• Similar to communication constraint for actors (except that we allowed
hybrid combinations of global task parallelism and local actor parallelism in
HJ)

9

COMP 322, Spring 2012 (V.Sarkar)

MPI: The Message Passing Interface
• Sockets and Remote Method Invocation (RMI) are communication

primitives used for distributed Java programs.
—Designed for standard TCP/IP networks rather than high-performance

interconnects

• The Message Passing Interface (MPI) standard was designed to
exploit high-performance interconnects
—MPI was standardized in the early 1990s by the MPI Forum—a

substantial consortium of vendors and researchers
– http://www-unix.mcs.anl.gov/mpi

—It is an API for communication between nodes of a distributed memory
parallel computer

—The original standard defines bindings to C and Fortran (later C++)
– Java support is available from a research project, mpiJava,

developed at Indiana University 10+ years ago
http://www.hpjava.org/mpiJava.html

10

COMP 322, Spring 2012 (V.Sarkar)

Features of MPI

• MPI is a platform for Single Program Multiple Data (SPMD)
parallel computing on distributed memory architectures, with an
API for sending and receiving messages

• It includes the abstraction of a “communicator”, which is like
an N-way communication channel that connects a set of N
cooperating processes (analogous to a phaser)

• It also includes explicit datatypes in the API, that are used to
describe the contents of communication buffers.

11

COMP 322, Spring 2012 (V.Sarkar)

The Minimal Set of MPI Routines (mpiJava)

• MPI.Init(args)
—initialize MPI in each process

• MPI.Finalize()
—terminate MPI

• MPI.COMM_WORLD.Size()
—number of processes in COMM_WORLD communicator

• MPI.COMM_WORLD.Rank()
—rank of this process in COMM_WORLD communicator

• Note:
—In this subset, processes act independently with no information

communicated among the processes.
—“embarrassingly parallel”, Cleve Moler.

12

COMP 322, Spring 2012 (V.Sarkar)

Our First MPI Program
(mpiJava version)

1.import mpi.*;
2.class Hello {
3. static public void main(String[] args) {
4. // Init() be called before other MPI calls
5. MPI.Init(args); /
6. int npes = MPI.COMM_WORLD.Size()
7. int myrank = MPI.COMM_WORLD.Rank() ;
8. System.out.println(”My process number is ” + myrank);
9. MPI.Finalize(); // Shutdown and clean-up
10. }
11.}

main() is enclosed in an
implicit “forall” --- each
process runs a separate
instance of main() with
“index variable” = myrank

13

COMP 322, Spring 2012 (V.Sarkar)

MPI Communicators
• Communicator is an internal object

—Communicator registration is like phaser registration,
except that MPI does not support dynamic parallelism

• MPI programs are made up of communicating processes

• Each process has its own address space containing its
own attributes such as rank, size (and argc, argv, etc.)

• MPI provides functions to interact with it

• Default communicator is MPI.COMM_WORLD
—All processes are its members
—It has a size (the number of processes)
—Each process has a rank within it
—Can think of it as an ordered list of processes

• Additional communicator(s) can co-exist

• A process can belong to more than one communicator

• Within a communicator, each process has a unique rank

MPI.COMM_WORLD

0

12

5

3

4

6

7

14

COMP 322, Spring 2012 (V.Sarkar)

Adding Send() and Recv() to the Minimal Set
of MPI Routines (mpiJava)

• MPI.Init(args)

—initialize MPI in each process

• MPI.Finalize()

—terminate MPI

• MPI.COMM_WORLD.Size()
—number of processes in COMM_WORLD communicator

• MPI.COMM_WORLD.Rank()

—rank of this process in COMM_WORLD communicator

• MPI.COMM_WORLD.Send()
—send message using COMM_WORLD communicator

• MPI.COMM_WORLD.Recv()

—receive message using COMM_WORLD communicator

Point-to-
point
commn

15

COMP 322, Spring 2012 (V.Sarkar)

MPI Blocking Point to Point
Communication: Basic Idea

• A very simple communication between two processes is:
—process zero sends ten doubles to process one

• In MPI this is a little more complicated than you might
expect.

• Process zero has to tell MPI:
—to send a message to process one
—that the message contains ten entries
—the entries of the message are of type double
—the message has to be tagged with a label (integer number)

• Process one has to tell MPI:
—to receive a message from process zero
—that the message contains ten entries
—the entries of the message are of type double
—the label that process zero attached to the message

16

COMP 322, Spring 2012 (V.Sarkar)

mpiJava Class hierarchy

MPI

Group

Comm

Datatype

Status

Request

package mpi

Intracomm

Intercomm

Prequest

Cartcomm

Graphcomm

17

COMP 322, Spring 2012 (V.Sarkar)

mpiJava send and receive
• Send and receive members of Comm:
 void Send(Object buf, int offset, int count, Datatype type, int dst, int tag) ;

 Status Recv(Object buf, int offset, int count, Datatype type, int src, int tag) ;

• The arguments buf, offset, count, type describe the data
buffer—the storage of the data that is sent or received. They
will be discussed on the next slide.

• dst is the rank of the destination process relative to this
communicator. Similarly in Recv(), src is the rank of the source
process.

• An arbitrarily chosen tag value can be used in Recv() to select
between several incoming messages: the call will wait until a
message sent with a matching tag value arrives.

• The Recv() method returns a Status value, discussed later.
• Both Send() and Recv() are blocking operations by default

—Analogous to a phaser next operation

18

COMP 322, Spring 2012 (V.Sarkar)

Example of Send and Recv
1.import mpi.*;

3.class myProg {
4. public static void main(String[] args) {
5. int tag0 = 0;
6. MPI.Init(args); // Start MPI computation
7. if (MPI.COMM_WORLD.rank() == 0) { // rank 0 = sender
8. int loop[] = new int[1]; loop[0] = 3;
9. MPI.COMM_WORLD.Send("Hello World!", 0, 12, MPI.CHAR, 1, tag0);
10. MPI.COMM_WORLD.Send(loop, 0, 1, MPI.INT, 1, tag0);
11. } else { // rank 1 = receiver
12. int loop[] = new int[1]; char msg[] = new char[12];
13. MPI.COMM_WORLD.Recv(msg, 0, 12, MPI.CHAR, 0, tag0);
14. MPI.COMM_WORLD.Recv(loop, 0, 1, MPI.INT, 0, tag0);
15. for (int i = 0; i < loop[0]; i++) System.out.println(msg);
16. }
17. MPI.Finalize(); // Finish MPI computation
18. }
19.}

Send() and Recv() calls are blocking operations by default

19

COMP 322, Spring 2012 (V.Sarkar)

Message Envelope
• Communication across process is

performed using messages.

• Each message consists of a fixed
number of fields that is used to
distinguish them, called the Message
Envelope :
—Envelope comprises source,

destination, tag, communicator
—Message comprises Envelope + data

• Communicator refers to the
namespace associated with the
group of related processes

MPI.COMM_WORLD

0

12

5

3

4

6

7

Source	
 :	
 process0
Des>na>on	
 :	
 process1
Tag	
 :	
 1234
Communicator	
 :	
 MPI.COMM_WORLD

20

COMP 322, Spring 2012 (V.Sarkar)

Communication Buffers
• Most of the communication operations take a sequence of parameters

like
 Object buf, int offset, int count, Datatype type

• In the actual arguments passed to these methods, buf must be an
array (or a run-time exception will occur).
— The reason declaring buf as an Object rather than an array was that one

would then need to overload with about 9 versions of most methods fopr
arrays, e.g.

 void Send(int [] buf, …)
 void Send(long [] buf, …)
 …
 and about 81 versions of some odd operations that involve two buffers,

possibly of different type. Declaring Object buf allows any kind of array
in one signature.

• offset is the element in the buf array where message starts. count is
the number of items to send. type describes the type of these items.

21

COMP 322, Spring 2012 (V.Sarkar)

Layout of Buffer

• If type is a basic datatype (corresponding to a Java type),
the message corresponds to a subset of the array buf,
defined as follows:

– In the case of a send buffer, the red boxes represent
elements of the buf array that are actually sent.

– In the case of a receive buffer, the red boxes represent
elements where the incoming data may be written (other
elements will be unaffected). In this case count defines
the maximum message size that can be accepted.
Shorter incoming messages are also acceptable.

off
se

t +
co

un
t -

1

0 1 off
se

t
off

se
t +

1

… … …

22

COMP 322, Spring 2012 (V.Sarkar)

Basic Datatypes
• mpiJava defines 9 basic datatypes: these correspond to the 8

primitive types in the Java language, plus a basic datatype that
stands for an Object (or, more formally, a Java reference type).

• The basic datatypes are available as static fields of the MPI class.
They are:

ObjectMPI.OBJECT
doubleMPI.DOUBLE
floatMPI.FLOAT
longMPI.LONG
intMPI.INT
booleanMPI.BOOLEAN
shortMPI.SHORT
charMPI.CHAR
byteMPI.BYTE
Java typempiJava datatype

23

COMP 322, Spring 2012 (V.Sarkar)

Message Ordering in MPI

• FIFO ordering only
guaranteed for same source,
destination, data type, and
tag

• (In HJ actors, FIFO ordering
was guaranteed for same
source and destination)

Source Destination

Source Destination
tag = 1

tag = 2
tag = 3

24

COMP 322, Spring 2012 (V.Sarkar)

Status values

• The recv() method returns an instance of the Status class.

• This object (referred to as “retval” below) provides access
to several useful pieces about the message that arrived:
—int field retval.source holds the rank of the process that sent

the message (particularly useful if the message was received
with MPI.ANY_SOURCE).

—int field retval.tag holds the message tag specified by the
sender of the message (particularly useful if the message was
received with MPI.ANY_TAG).

—int method retval.Get_count(type) returns number of items
received in the message.

—int method retval.Get_elements(type) returns number of basic
elements received in the message.

—int field retval.index is set by methods like Request.Waitany(),
described later.

25

COMP 322, Spring 2011 (V.Sarkar)26

Deadlock Scenario #1
Consider:

int a[], b[];
...
if (MPI.COMM_WORLD.rank() == 0) {
 MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
 MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
}
else {
 Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 2);
 Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 1);
}
...

Blocking semantics for Send() and Recv() can lead to a
deadlock.

COMP 322, Spring 2011 (V.Sarkar)27

Deadlock Scenario #2
Consider the following piece of code, in which process i sends a message to
process i + 1 (modulo the number of processes) and receives a message from

process i - 1 (modulo the number of processes)

int a[], b[];
. . .
int npes = MPI.COMM_WORLD.siz();
int myrank = MPI.COMM_WORLD.rank()
MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, (myrank+1)%npes, 1);
MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, (myrank-1+npes)%npes, 1);

Once again, we have a deadlock if Send() and Recv() are
blocking

COMP 322, Spring 2011 (V.Sarkar)28

Approach #1 to Deadlock Avoidance ---
Reorder Send and Recv calls

We can break the circular wait to avoid deadlocks as follows:

int a[], b[];
...
if (MPI.COMM_WORLD.rank() == 0) {
 MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
 MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
}
else {
 Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 1);
 Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 2);
}
...

COMP 322, Spring 2011 (V.Sarkar)29

Approach #2 to Deadlock Avoidance ---
a combined Sendrecv() call

• Since it is fairly common to want to simultaneously send one
message while receiving another (as illustrated in Scenario #2),
MPI provides a more specialized operation for this.

• In mpiJava, the Sendrecv() method has the following signature:
Status Sendrecv(Object sendBuf, int sendOffset, int sendCount,
 Datatype sendType, int dst, int sendTag,
 Object recvBuf, int recvOffset, int recvCount,
 Datatype recvType, int src, int recvTag) ;
—This can be more efficient than doing separate sends and receives,

and it can be used to avoid deadlock conditions in certain situations
– Analogous to phaser “next” operation, where programmer does

not have access to individual signal/wait operations
—There is also a variant called Sendrecv_replace() which only

specifies a single buffer: the original data is sent from this buffer,
then overwritten with incoming data.

COMP 322, Spring 2011 (V.Sarkar)30

Using Sendrecv for Deadlock Avoidance
in Scenario #2

Consider the following piece of code, in which process i sends a message to
process i + 1 (modulo the number of processes) and receives a message from

process i - 1 (modulo the number of processes)

int a[], b[];
. . .
int npes = MPI.COMM_WORLD.size();
int myrank = MPI.COMM_WORLD.rank()
MPI.COMM_WORLD.Sendrecv(a, 0, 10, MPI.INT, (myrank+1)%npes, 1,
 b, 0, 10, MPI.INT, (myrank-1+npes)%npes, 1);

...

A combined Sendrecv() call avoids deadlock in this case

COMP 322, Spring 2012 (V.Sarkar)

Sources of nondeterminism:
ANY_SOURCE and ANY_TAG

• A recv() operation can explicitly specify which process within
the communicator group it wants to accept a message from,
through the src parameter.

• It can also explicitly specify what message tag the message
should have been sent with, through the tag parameter.

• The recv() operation will block until a message meeting both
these criteria arrives.
—If other messages arrive at this node in the meantime, this call

to recv() ignores them (which may or may not cause the senders
of those other messages to wait, until they are accepted).

• If you want the recv() operation to accept a message from
any source, or with any tag, you may specify the values
MPI.ANY_SOURCE or MPI.ANY_TAG for the respective
arguments.

31

COMP 322, Spring 2012 (V.Sarkar)

Reminders
• Graded midterms can be picked up from Amanda Nokleby in

Duncan Hall 3137

• Homework 5 due by 5pm TODAY

• Homework 3 has been graded
—Email will be sent this weekend

• Homework 6 will be posted this weekend

32

