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Acknowledgments for Today’s Lecture
• Slides from Lectures 1 and 2 in UC Berkeley CS61C course, 

“Great Ideas in Computer Architecture (Machine Structures), 
Spring 2012, Instructor: David Patterson
—http://inst.eecs.berkeley.edu/~cs61c/sp12/ 

• Slides from MapReduce lecture in Stanford CS 345A course
—http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

• Slides from COMP 422 lecture on MapReduce
—http://www.clear.rice.edu/comp422
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Outline
• Warehouse Scale Computers and Cloud Computing

• Map Reduce Programming Model and Runtime System
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Computer Eras: Mainframe 1950s-60s
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“Big Iron”: IBM, UNIVAC, … build $1M computers
 for businesses => COBOL, Fortran, timesharing OS

Processor (CPU)

I/O
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Minicomputer Eras: 1970s-80s
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Using integrated circuits, Digital, HP… build $10k 
computers for labs, universities => C, UNIX OS
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PC Era: Mid 1980s - Mid 2000s

6

Using microprocessors, IBM, Apple, … build $1k 
computer for 1 person => Basic, DOS, ...
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PostPC Era: Late 2000s - ??
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• Parallel Requests
Assigned to computer
e.g., Search “Rice 

Marching Owl Band”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instrs
>1 instruction/cycle
e.g., 5 pipelined 

instructions

• Parallel Data
>1 data access/cycle
e.g., Load of 4 

consecutive words
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Computer
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Input/Output

Computer
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         Instruction 
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A3+B3A2+B2A1+B1A0+B0

Parallelism is the dominant technology 
trend in Cloud Computing
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Parallelism enables “Cloud Computing”
as a Utility

• Offers computing, storage, communication at pennies per hour 
• No premium to scale:

      1000 computers @       1 hour 
=       1 computer   @ 1000 hours

• Illusion of infinite scalability to cloud user
—As many computers as you can afford

• Leading examples: Amazon Web Services (AWS), Google App 
Engine, Microsoft Azure
—Economies of scale pushed down cost of largest datacenter by 

factors 3X to 8X
—Traditional datacenters utilized 10% - 20%
—Make profit offering pay-as-you-go use service at less than your 

costs for as many computers as you need
—Strategic capability for company’s needs
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2012 AWS Instances & Prices

11

Instance Per Hour
Ratio 

to 
Small

Compute 
Units

Virtual 
Cores

Compute 
Unit/ 
Core

Memory 
(GB)

Disk 
(GB) Address

Standard Small $0.08
5 

1.0 1.0 1 1.00 1.7 160 32 bit
Standard Large $0.34

0 
4.0 4.0 2 2.00 7.5 850 64 bit

Standard Extra Large $0.68
0 

8.0 8.0 4 2.00 15.0 1690 64 bit
High-Memory Extra Large $0.50

0 
5.9 6.5 2 3.25 17.1 420 64 bit

High-Memory Double Extra Large $1.20
0 

14.1 13.0 4 3.25 34.2 850 64 bit
High-Memory Quadruple Extra 
Large

$2.40
0 

28.2 26.0 8 3.25 68.4 1690 64 bit
High-CPU Medium $0.17

0 
2.0 5.0 2 2.50 1.7 350 32 bit

High-CPU Extra Large $0.68
0 

8.0 20.0 8 2.50 7.0 1690 64 bit
Cluster Quadruple Extra Large $1.30

0 
15.3 33.5 16 2.09 23.0 1690 64 bit

Eight Extra Large $2.40
0 

28.2 88.0 32 2.75 60.5 1690 64 bit
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Equipment Inside a WSC
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Server (in rack format):
1 ¾ inches high “1U”, 
x 19 inches x 16-20 
inches: 8 cores, 16 GB 
DRAM, 4x1 TB disk

7 foot Rack:  40-80 servers + Ethernet 
local area network (1-10 Gbps) switch in 
middle (“rack switch”)

Array (aka cluster):  
16-32 server racks + larger 
local area network switch 
(“array switch”) 10X faster 
=> cost 100X: cost f(N2)
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Server, Rack, Array
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Parallelism enables Redundancy
• Redundancy so that a failing piece doesn’t make the whole 

system fail

14

1+1=2 1+1=2 1+1=1

1+1=2 2 of 3 agree

FAIL!

Increasing transistor density reduces the cost of redundancy
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Redundancy enables Fault Tolerance and Resilience

• Applies to everything from datacenters to 
storage to memory
—Redundant datacenters so that can lose 1 
datacenter but Internet service stays online

—Redundant disks so that can lose 1 disk but not 
lose data (Redundant Arrays of Independent 
Disks/RAID)

—Redundant memory bits of so that can lose 1 bit 
but no data (Error Correcting Code/ECC Memory)
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Request-Level Parallelism (RLP)

• Hundreds or thousands of requests per 
second
—Not from your laptop or cell-phone, but from 
popular Internet services like Google search

—Such requests are largely independent
– Mostly involve read-only databases
– Little read-write (aka “producer-consumer”) sharing
– Rarely involve read–write data sharing or 

synchronization across requests

• Computation easily partitioned within a 
request and across different requests
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Google Query-Serving Architecture
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Anatomy of a Web Search

• Google “Rice Marching Owl Band”
1. Direct request to “closest” Google Warehouse Scale 

Computer
2. Front-end load balancer directs request to one of 

many clusters of servers within WSC
3. Within cluster, select one of many Google Web 

Servers (GWS) to handle the request and compose 
the response pages

4. GWS communicates with Index Servers to find 
documents that contain the search words, “Rice”, 
“Marching”, “Owl”, “Band”.  Uses location of search 
as well.

5. Return document list with associated relevance score
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Anatomy of a Web Search

• Implementation strategy
—Randomly distribute the entries
—Make many copies of data (aka “replicas”)
—Load balance requests across replicas

• Redundant copies of indices and documents
—Breaks up hot spots, e.g., “Justin Bieber”
—Increases opportunities for request-level parallelism
—Makes the system more tolerant of failures
—Indices and documents can be safely duplicated since they cannot be 

mutated
– Read-only or append-only semantics

• Different approach to distributed computing than MPI!
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Outline
• Warehouse Scale Computers and Cloud Computing

• Map Reduce Programming Model and Runtime System
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Motivation: Large Scale Data Processing
• Want to process terabytes of raw data 

— documents found by a web crawl
— web request logs

• Produce various kinds of derived read-only/append-only data 
— inverted indices

– e.g. mapping from words to locations in documents
— various representations of graph structure of documents

— summaries of number of pages crawled per host
— most frequent queries in a given day
— ...

• Input data is large

• Need to parallelize computation so it takes reasonable time 
— need hundreds/thousands of CPUs

• Need for fault tolerance
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MapReduce Solution

• Apply Map function f to user supplied record of 
key-value pairs

• Compute set of intermediate key/value pairs
• Apply Reduce operation g to all values that 

share same key to combine derived data 
properly
—Often produces smaller set of values

• User supplies Map and Reduce operations in 
functional model so that the system can 
parallelize them, and also re-execute them for 
fault tolerance
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Operations on Sets of Key-Value Pairs
• Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki, vi) 

consists of a key, ki, and a value, vi. 
—Assume that the key and value objects are immutable, and that 

equality comparison is well defined on all key objects.

• Map function f generates sets of intermediate key-value pairs,  
f(ki,vi) = {(k1′ ,v1′ ),...(km′,vm′)}.  The kj′ keys can be different 
from ki key in the input of the map function.

—Assume that a flatten operation is performed as a post-pass after 
the map operations, so as to avoid dealing with a set of sets.

• Reduce operation groups together intermediate key-value pairs, 
{(k′, vj′ )} with the same k’, and generates a reduced key-value 
pair, (k′,v′′), for each such k’, using reduce function g
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MapReduce: The Map Step

vk

k' v'

k' v'
map

vk

vk

…
k' v'

map

Input set of 
key-value pairs

Flattened intermediate
set of key-value pairs

…

k' v'map

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt
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MapReduce: The Reduce Step

k' v'

…

k' v'

k' v'

k' v'

Intermediate
key-value pairs

group

reduce

reduce
k' v''

v''

v''

…

k' v'

…

k' v'

k' v' v'

v' v'

Key-value groups
Output 
key-value pairs

k'

k'

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt
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WordCount example
Input: set of words

Output: set of (word,count) pairs

Algorithm:

1. For each input word W, emit (W, 1) as a key-value pair (map step).

2. Group together all key-value pairs with the same key (reduce step).

3. Perform a sum reduction on all values with the same key(reduce 
step).

• All map operations in step 1 can execute in parallel with only local 
data accesses

• Step 2 may involve a major reshuffle of data as all key-value pairs 
with the same key are grouped together.

• Step 3 performs a standard reduction algorithm for all values with 
the same key, and in parallel for different keys.
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MapReduce Execution
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Fine granularity 
tasks: many more 
map tasks than 
machines

2000 servers => 
≈ 200,000 Map Tasks, ≈ 
5,000 Reduce tasks

Bucket sort
to get same keys
together
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Execution Setup

• Map invocations distributed by partitioning 
input data into M splits
—Typically 16 MB to 64 MB per piece

• Input processed in parallel on different 
servers

• Reduce invocations distributed by partitioning 
intermediate key space into R pieces
—E.g., hash(key) mod R

• User picks M >> no. servers, R > no. servers
—Big M helps with load balancing, recovery from 
failure

—One output file per R invocation, so not too many
28
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Google Uses MapReduce For …

• Web crawl: Find outgoing links from HTML 
documents, aggregate by target document

• Google Search: Generating inverted index files 
using a compression scheme

• Google Earth: Stitching overlapping satellite images 
to remove seams and to select high-quality imagery

• Google Maps: Processing all road segments on Earth 
and render map tile images that display segments

• More than 10,000 MR programs at Google in 4 
years, 
run 100,000 MR jobs per day (2008)
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MapReduce Popularity at Google
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