
COMP 322: Fundamentals of
Parallel Programming

Lecture 35: Cloud Computing, Map Reduce

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 35 11 April 2012

COMP 322, Spring 2012 (V.Sarkar)

Acknowledgments for Today’s Lecture
• Slides from Lectures 1 and 2 in UC Berkeley CS61C course,

“Great Ideas in Computer Architecture (Machine Structures),
Spring 2012, Instructor: David Patterson
—http://inst.eecs.berkeley.edu/~cs61c/sp12/

• Slides from MapReduce lecture in Stanford CS 345A course
—http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

• Slides from COMP 422 lecture on MapReduce
—http://www.clear.rice.edu/comp422

2

COMP 322, Spring 2012 (V.Sarkar)

Outline
• Warehouse Scale Computers and Cloud Computing

• Map Reduce Programming Model and Runtime System

3

COMP 322, Spring 2012 (V.Sarkar)

Computer Eras: Mainframe 1950s-60s

4

“Big Iron”: IBM, UNIVAC, … build $1M computers
 for businesses => COBOL, Fortran, timesharing OS

Processor (CPU)

I/O

COMP 322, Spring 2012 (V.Sarkar)

Minicomputer Eras: 1970s-80s

5

Using integrated circuits, Digital, HP… build $10k
computers for labs, universities => C, UNIX OS

COMP 322, Spring 2012 (V.Sarkar)

PC Era: Mid 1980s - Mid 2000s

6

Using microprocessors, IBM, Apple, … build $1k
computer for 1 person => Basic, DOS, ...

COMP 322, Spring 2012 (V.Sarkar)

PostPC Era: Late 2000s - ??

7

	
 Personal	
 Mobile	

Devices	
 (PMD):	

Relying	
 on	
 wireless	

networking,	
 Apple,	

Nokia,	
 …	
 build	
 $500	

smartphone	
 and	

tablet	
 computers	
 for	

individuals	

=>	
 ObjecJve	
 C,	

Android	
 OS

Cloud	
 CompuJng:	

Using	
 Local	
 Area	
 Networks,	

Amazon,	
 Google,	
 …	
 build	
 $200M	

Warehouse	
 Scale	
 Computers	

with	
 100,000	
 servers	
 for	

Internet	
 Services	
 for	
 PMDs

=>	
 MapReduce,	
 Ruby	
 on	
 Rails

04/10/12 Spring	
 2012	
 -­‐-­‐	
 Lecture	
 #1 8

Warehouse
Scale	

Computer
(WSC)

COMP 322, Spring 2012 (V.Sarkar)

• Parallel Requests
Assigned to computer
e.g., Search “Rice

Marching Owl Band”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instrs
>1 instruction/cycle
e.g., 5 pipelined

instructions

• Parallel Data
>1 data access/cycle
e.g., Load of 4

consecutive words

9

Smart
Phone

Warehouse
Scale

Computer

Software Hardware

Leverage
Parallelism to

Achieve
Energy-Efficient

High
Performance

Core Core…
 Memory

Input/Output

Computer

Cache Memory

 Instruction
Unit(s)

 Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Parallelism is the dominant technology
trend in Cloud Computing

COMP 322, Spring 2012 (V.Sarkar)

Parallelism enables “Cloud Computing”
as a Utility

• Offers computing, storage, communication at pennies per hour
• No premium to scale:

 1000 computers @ 1 hour
= 1 computer @ 1000 hours

• Illusion of infinite scalability to cloud user
—As many computers as you can afford

• Leading examples: Amazon Web Services (AWS), Google App
Engine, Microsoft Azure
—Economies of scale pushed down cost of largest datacenter by

factors 3X to 8X
—Traditional datacenters utilized 10% - 20%
—Make profit offering pay-as-you-go use service at less than your

costs for as many computers as you need
—Strategic capability for company’s needs

10

COMP 322, Spring 2012 (V.Sarkar)

2012 AWS Instances & Prices

11

Instance Per Hour
Ratio

to
Small

Compute
Units

Virtual
Cores

Compute
Unit/
Core

Memory
(GB)

Disk
(GB) Address

Standard Small $0.08
5

1.0 1.0 1 1.00 1.7 160 32 bit
Standard Large $0.34

0
4.0 4.0 2 2.00 7.5 850 64 bit

Standard Extra Large $0.68
0

8.0 8.0 4 2.00 15.0 1690 64 bit
High-Memory Extra Large $0.50

0
5.9 6.5 2 3.25 17.1 420 64 bit

High-Memory Double Extra Large $1.20
0

14.1 13.0 4 3.25 34.2 850 64 bit
High-Memory Quadruple Extra
Large

$2.40
0

28.2 26.0 8 3.25 68.4 1690 64 bit
High-CPU Medium $0.17

0
2.0 5.0 2 2.50 1.7 350 32 bit

High-CPU Extra Large $0.68
0

8.0 20.0 8 2.50 7.0 1690 64 bit
Cluster Quadruple Extra Large $1.30

0
15.3 33.5 16 2.09 23.0 1690 64 bit

Eight Extra Large $2.40
0

28.2 88.0 32 2.75 60.5 1690 64 bit

COMP 322, Spring 2012 (V.Sarkar)

Equipment Inside a WSC

12

Server (in rack format):
1 ¾ inches high “1U”,
x 19 inches x 16-20
inches: 8 cores, 16 GB
DRAM, 4x1 TB disk

7 foot Rack: 40-80 servers + Ethernet
local area network (1-10 Gbps) switch in
middle (“rack switch”)

Array (aka cluster):
16-32 server racks + larger
local area network switch
(“array switch”) 10X faster
=> cost 100X: cost f(N2)

COMP 322, Spring 2012 (V.Sarkar)

Server, Rack, Array

13

COMP 322, Spring 2012 (V.Sarkar)

Parallelism enables Redundancy
• Redundancy so that a failing piece doesn’t make the whole

system fail

14

1+1=2 1+1=2 1+1=1

1+1=2 2 of 3 agree

FAIL!

Increasing transistor density reduces the cost of redundancy

COMP 322, Spring 2012 (V.Sarkar)

Redundancy enables Fault Tolerance and Resilience

• Applies to everything from datacenters to
storage to memory
—Redundant datacenters so that can lose 1
datacenter but Internet service stays online

—Redundant disks so that can lose 1 disk but not
lose data (Redundant Arrays of Independent
Disks/RAID)

—Redundant memory bits of so that can lose 1 bit
but no data (Error Correcting Code/ECC Memory)

15

COMP 322, Spring 2012 (V.Sarkar)

Request-Level Parallelism (RLP)

• Hundreds or thousands of requests per
second
—Not from your laptop or cell-phone, but from
popular Internet services like Google search

—Such requests are largely independent
– Mostly involve read-only databases
– Little read-write (aka “producer-consumer”) sharing
– Rarely involve read–write data sharing or

synchronization across requests

• Computation easily partitioned within a
request and across different requests

16

COMP 322, Spring 2012 (V.Sarkar)

Google Query-Serving Architecture

17

COMP 322, Spring 2012 (V.Sarkar)

Anatomy of a Web Search

• Google “Rice Marching Owl Band”
1. Direct request to “closest” Google Warehouse Scale

Computer
2. Front-end load balancer directs request to one of

many clusters of servers within WSC
3. Within cluster, select one of many Google Web

Servers (GWS) to handle the request and compose
the response pages

4. GWS communicates with Index Servers to find
documents that contain the search words, “Rice”,
“Marching”, “Owl”, “Band”. Uses location of search
as well.

5. Return document list with associated relevance score

18

COMP 322, Spring 2012 (V.Sarkar)

Anatomy of a Web Search

• Implementation strategy
—Randomly distribute the entries
—Make many copies of data (aka “replicas”)
—Load balance requests across replicas

• Redundant copies of indices and documents
—Breaks up hot spots, e.g., “Justin Bieber”
—Increases opportunities for request-level parallelism
—Makes the system more tolerant of failures
—Indices and documents can be safely duplicated since they cannot be

mutated
– Read-only or append-only semantics

• Different approach to distributed computing than MPI!

19

COMP 322, Spring 2012 (V.Sarkar)

Outline
• Warehouse Scale Computers and Cloud Computing

• Map Reduce Programming Model and Runtime System

20

COMP 322, Spring 2012 (V.Sarkar)

Motivation: Large Scale Data Processing
• Want to process terabytes of raw data

— documents found by a web crawl
— web request logs

• Produce various kinds of derived read-only/append-only data
— inverted indices

– e.g. mapping from words to locations in documents
— various representations of graph structure of documents

— summaries of number of pages crawled per host
— most frequent queries in a given day
— ...

• Input data is large

• Need to parallelize computation so it takes reasonable time
— need hundreds/thousands of CPUs

• Need for fault tolerance

21

COMP 322, Spring 2012 (V.Sarkar)

MapReduce Solution

• Apply Map function f to user supplied record of
key-value pairs

• Compute set of intermediate key/value pairs
• Apply Reduce operation g to all values that

share same key to combine derived data
properly
—Often produces smaller set of values

• User supplies Map and Reduce operations in
functional model so that the system can
parallelize them, and also re-execute them for
fault tolerance

22

COMP 322, Spring 2012 (V.Sarkar)

Operations on Sets of Key-Value Pairs
• Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki, vi)

consists of a key, ki, and a value, vi.
—Assume that the key and value objects are immutable, and that

equality comparison is well defined on all key objects.

• Map function f generates sets of intermediate key-value pairs,
f(ki,vi) = {(k1′ ,v1′),...(km′,vm′)}. The kj′ keys can be different
from ki key in the input of the map function.

—Assume that a flatten operation is performed as a post-pass after
the map operations, so as to avoid dealing with a set of sets.

• Reduce operation groups together intermediate key-value pairs,
{(k′, vj′)} with the same k’, and generates a reduced key-value
pair, (k′,v′′), for each such k’, using reduce function g

23

COMP 322, Spring 2012 (V.Sarkar)

MapReduce: The Map Step

vk

k' v'

k' v'
map

vk

vk

…
k' v'

map

Input set of
key-value pairs

Flattened intermediate
set of key-value pairs

…

k' v'map

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

24

COMP 322, Spring 2012 (V.Sarkar)

MapReduce: The Reduce Step

k' v'

…

k' v'

k' v'

k' v'

Intermediate
key-value pairs

group

reduce

reduce
k' v''

v''

v''

…

k' v'

…

k' v'

k' v' v'

v' v'

Key-value groups
Output
key-value pairs

k'

k'

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

25

COMP 322, Spring 2012 (V.Sarkar)

WordCount example
Input: set of words

Output: set of (word,count) pairs

Algorithm:

1. For each input word W, emit (W, 1) as a key-value pair (map step).

2. Group together all key-value pairs with the same key (reduce step).

3. Perform a sum reduction on all values with the same key(reduce
step).

• All map operations in step 1 can execute in parallel with only local
data accesses

• Step 2 may involve a major reshuffle of data as all key-value pairs
with the same key are grouped together.

• Step 3 performs a standard reduction algorithm for all values with
the same key, and in parallel for different keys.

26

COMP 322, Spring 2012 (V.Sarkar)

MapReduce Execution

27

Fine granularity
tasks: many more
map tasks than
machines

2000 servers =>
≈ 200,000 Map Tasks, ≈
5,000 Reduce tasks

Bucket sort
to get same keys
together

COMP 322, Spring 2012 (V.Sarkar)

Execution Setup

• Map invocations distributed by partitioning
input data into M splits
—Typically 16 MB to 64 MB per piece

• Input processed in parallel on different
servers

• Reduce invocations distributed by partitioning
intermediate key space into R pieces
—E.g., hash(key) mod R

• User picks M >> no. servers, R > no. servers
—Big M helps with load balancing, recovery from
failure

—One output file per R invocation, so not too many
28

COMP 322, Spring 2012 (V.Sarkar)

Google Uses MapReduce For …

• Web crawl: Find outgoing links from HTML
documents, aggregate by target document

• Google Search: Generating inverted index files
using a compression scheme

• Google Earth: Stitching overlapping satellite images
to remove seams and to select high-quality imagery

• Google Maps: Processing all road segments on Earth
and render map tile images that display segments

• More than 10,000 MR programs at Google in 4
years,
run 100,000 MR jobs per day (2008)

29

COMP 322, Spring 2012 (V.Sarkar)

MapReduce Popularity at Google

30

