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Acknowledgments for Today’s Lecture
• Slides from Lectures 1 and 2 in UC Berkeley CS61C course, 

“Great Ideas in Computer Architecture (Machine Structures), 
Spring 2012, Instructor: David Patterson
—http://inst.eecs.berkeley.edu/~cs61c/sp12/ 

• Slides from MapReduce lecture in Stanford CS 345A course
—http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

• Slides from COMP 422 lecture on MapReduce
—http://www.clear.rice.edu/comp422

• Slides from Google Cluster Computing Faculty Training Workshop
—Module IV: MapReduce Theory, Implementation, and Algorithms
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Outline
• Execution model for Map-Reduce Programs

• Map Reduce Algorithms
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Recap of Map-Reduce Model:
Operations on Sets of Key-Value Pairs

• Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki, vi) 
consists of a key, ki, and a value, vi. 
—Assume that the key and value objects are immutable, and that 

equality comparison is well defined on all key objects.

• Map function f generates sets of intermediate key-value pairs,  
f(ki,vi) = {(k1′ ,v1′),...(km′,vm′)}.  The kj′ keys can be different 
from ki key in the input of the map function.

—Assume that a flatten operation is performed as a post-pass after 
the map operations, so as to avoid dealing with a set of sets.

• Reduce operation groups together intermediate key-value pairs, 
{(k′, vj′)} with the same k’, and generates a reduced key-value 
pair, (k′,v′′), for each such k’, using reduce function g
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Summary of MapReduce API
• Programmers must specify:

map (k, v) → list(<k’, v’>)

reduce (k’, list(v’)) → <k’’, v’’>

    All values with the same key are reduced together
Optionally, also:

partition (k’, number of partitions) → partition for k’

    Often a simple hash of the key, e.g., hash(k’) mod n
    Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*

    Mini-reducers that run in memory after the map phase
    Used as an optimization to reduce network traffic

The execution framework handles everything else…
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PseudoCode for WordCount
1.  map(String input_key, String input_value):
2.    // input_key: document name
3.    // input_value: document contents
4.    for each word w in input_value:
5.      EmitIntermediate(w, "1"); // Produce count of words
6. 
7.  reduce(String output_key, Iterator intermediate_values):
8.    // output_key: a word
9.    // intermediate_values: a list of counts
10.    int result = 0;
11.    for each v in intermediate_values:
12.      result += ParseInt(v); // get integer from key-value
13.    Emit(AsString(result));
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Example Execution of WordCount 
Program

that that is is that that is not is not is that it it is

is 1, that 2 is 1, that 2 is 2, not 2 is 2, it 2, that 1
Map 1 Map 2 Map 3 Map 4

Reduce 1 Reduce 2
is 6; it 2 not 2; that 5

Shuffle

Collect

is 6; it 2; not 2; that 5 

Distribute

that 2,2,1
not 2

is 1,1,2,2
it 2 
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Overall schematic for MapReduce 
framework on a data center cluster
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MapReduce Processing
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MapReduce Processing

1. MR 1st splits the 
input files into M 
“splits” then starts 
many copies of 
program on servers
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MapReduce Processing
2. One copy—the master— 
is special. The rest
are workers. The master 
picks idle workers and
assigns each 1 of M map 
tasks or 1 of R reduce 
tasks.
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MapReduce Processing
3. A map worker reads the 
input split. It parses key/value 
pairs of the input data and 
passes each pair to the user-
defined map function. 

(The intermediate
key/value pairs produced 
by the map function are 
buffered in memory.)
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MapReduce Processing
4. Periodically, the buffered 
pairs are written to local disk, 
partitioned
into R regions by the 
partitioning function. 
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MapReduce Processing
5. When a reduce worker has 
read all intermediate data for 
its partition, it bucket sorts 
using inter-mediate keys so 
that occur-rences of same 
keys are grouped together

(The sorting is needed 
because typically many 
different keys map to
the same reduce task )

Shuffle 
phase
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MapReduce Processing
6. Reduce worker iterates over 
sorted intermediate data and 
for each unique intermediate 
key, it passes key and 
corresponding set of values to 
the user’s reduce function.

The output of the reduce 
function is appended to a 
final output file for this 
reduce partition.
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MapReduce Processing
7. When all map tasks and 
reduce tasks have been 
completed, the master
wakes up the user program. 
The MapReduce call
in user program returns back 
to user code. 

Output of MR is in R 
output files (1 per reduce 
task, with file names 
specified by user); often 
passed into another MR 
job so don’t combine 
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MapReduce is a Data-Parallel form 
of the “Divide and Conquer” Pattern

• Map:
—Slice data into “shards” or “splits”, distribute these 
to workers, compute sub-problem solutions

— map(in_key,in_value)->list(out_key,intermediate value)

– Processes input key/value pair
– Produces set of intermediate pairs

• Reduce:
—Collect and combine sub-problem solutions
— reduce(out_key,list(intermediate_value))->list(out_value)

– Combines all intermediate values for a particular key
– Produces a set of merged output values 

• Easy to use: focus on problem, let MapReduce 
library deal with messy details
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MapReduce Failure Handling

• On worker failure:
—Detect failure via periodic heartbeats
—Re-execute completed and in-progress map tasks
—Re-execute in progress reduce tasks
—Task completion committed through master

• Master failure:
—Could handle, but don't yet (master failure 
unlikely)

• Robust: lost 1600 of 1800 machines once, 
but finished fine 
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MapReduce Redundant Execution

• Slow workers significantly lengthen completion 
time
—Other jobs consuming resources on machine
—Bad disks with soft errors transfer data very slowly
—Weird things: processor caches disabled (!!)

• Solution: Near end of phase, spawn backup 
backup copies of tasks
—Whichever one finishes first "wins"

• Effect: Dramatically shortens job completion 
time
—3% more resources, large tasks 30% faster
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MapReduce Locality Optimization during 
Scheduling

• Master scheduling policy:
—Asks GFS (Google File System) for locations of 
replicas of input file blocks

—Map tasks typically split into 64MB (== GFS 
block size)

—Map tasks scheduled so GFS input block replica 
are on same machine or same rack

• Effect: Thousands of machines read input 
at local disk speed

• Without this, rack switches limit read rate
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Additional Optimization: Combiner 
Functions

• “Combiner” functions can run on same 
machine as a mapper

• Causes a mini-reduce phase to occur before 
the real reduce phase, to save bandwidth
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Outline
• Execution model for Map-Reduce Programs

• Map Reduce Algorithms
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Algorithms for MapReduce
• Sorting

• Searching

• Indexing

• Classification

• TF-IDF

• Breadth-First Search / SSSP

• PageRank

• Clustering
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Sort Algorithm

• Takes advantage of reducer properties: (key, 
value) pairs are processed in order by key; 
reducers are themselves ordered by hash function

• Mapper: Identity function for value
    (k, v) à (v, _)

• Reducer: Identity function (k’, _) -> (k’, “”)

• Trick: (key, value) pairs from mappers are sent to 
a particular reducer based on hash(key)
—Must pick the hash function for your data such 
that k1 < k2 => hash(k1) < hash(k2)
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Inverted Index: Data flow

This page contains 
so much text

My page contains 
text too

Foo

Bar

contains: Bar
My: Bar
page : Bar
text: Bar
too: Bar

contains: Foo
much: Foo
page : Foo
so : Foo
text: Foo
This : Foo

contains: Foo, Bar
much: Foo
My: Bar
page : Foo, Bar
so : Foo
text: Foo, Bar
This : Foo
too: Bar

Reduced output

Foo map output

Bar map output

• Mapper: For each word in (file, words), map 
to (word, file)

• Reducer: Identity function
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TF-IDF
• Term Frequency – Inverse Document Frequency

—Relevant to text processing
—Common web analysis algorithm

• | D | : total number of documents in the corpus 
•                  : number of documents where the term ti 
appears (that is          ). 
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Information We Need
• Number of times term X appears in a given document

• Number of terms in each document

• Number of documents X appears in

• Total number of documents 
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Job 1: Word Frequency in Doc
• Mapper

—Input: (docname, contents)
—Output: ((word, docname), 1)

• Reducer
—Sums counts for word in document
—Outputs ((word, docname), n)

• Combiner is same as Reducer
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Job 2: Word Counts For Docs
• Mapper

—Input: ((word, docname), n)
—Output: (docname, (word, n)) 

• Reducer
—Sums frequency of individual n’s in same doc
—Feeds original data through
—Outputs ((word, docname), (n, N))
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Job 3: Word Frequency In Corpus
• Mapper

—Input: ((word, docname), (n, N))
—Output: (word, (docname, n, N, 1))

• Reducer
—Sums counts for word in corpus
—Outputs ((word, docname), (n, N, m))
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Job 4: Calculate TF-IDF
• Mapper

—Input: ((word, docname), (n, N, m))
—Assume D is known (or, easy MR to find it)
—Output ((word, docname), TF*IDF)

• Reducer
—Just the identity function
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Breadth-First Search (BFS): 
Motivating Concepts

• Performing computation on a graph data structure requires 
processing at each node

• Each node contains node-specific data as well as links (edges) 
to other nodes

• Computation must traverse the graph and perform the 
computation step

• How do we traverse a graph in MapReduce? How do we represent 
the graph for this?
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Breadth-First Search

• Breadth-First 
Search is an 
iterated algorithm 
over graphs

• Frontier advances 
from origin by one 
level with each 
pass

1
2

2 2

3

3

3

3

4

4
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Breadth-First Search & MapReduce

• Problem: This doesn't “fit” into MapReduce

• Solution: Iterated passes through MapReduce – map some 
nodes, result includes additional nodes which are fed into 
successive MapReduce passes
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Adjacency Matrices

• Another classic graph representation. M[i][j]= '1' implies a 
link from node i to j.

• Naturally encapsulates iteration over nodes

01014
00103
11012
10101
4321
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Adjacency Matrices: Sparse 
Representation

• Adjacency matrix for most large graphs (e.g., the web) will be 
overwhelmingly full of zeros. 

• Each row of the graph is too long to store in a dense manner

• Sparse matrices only include non-zero elements

1: 3, 18, 200
2: 6, 12, 80, 400
3: 1, 14
…
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Finding the Shortest Path

• A common graph 
search application is 
finding the shortest 
path from a start node 
to one or more target 
nodes

• Commonly done on a 
single machine with 
Dijkstra's Algorithm

• Can we use BFS to 
find the shortest path 
via MapReduce?

This is called the single-source shortest path problem. 
(a.k.a. SSSP)
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Finding the Shortest Path: Intuition
• We can define the solution to this problem inductively: 

– DistanceTo(startNode) = 0
– For all nodes n directly reachable from startNode, DistanceTo(n) = 1
– For all nodes n reachable from some other set of nodes S, 

DistanceTo(n) = 1 + min(DistanceTo(m), m ∈ S)

Algorithm:
• A map task receives a node n as a key, and (D, points-to) as its 

value
– D is the distance to the node from the start
– points-to is a list of nodes reachable from n
–         ∀p ∈ points-to, emit (p, D+1)

• Reduce task gathers possible distances to a given p and selects the 
minimum one
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Termination
• This algorithm starts from one node
• Subsequent iterations include many more nodes of the graph as 

frontier advances
• Does this ever terminate?

– Yes! Eventually, routes between nodes will stop being discovered 
and no better distances will be found. When distance is the same, 
we stop

– Mapper should emit (n, D) to ensure that “current distance” is 
carried into the reducer

• Weighted-edge shortest path is more useful than cost==1 
approach

— Simple change: points-to list in map task includes a weight 'w' 
for each pointed-to node
– emit (p, D+w

p
) instead of (p, D+1) for each node p

– Works for positive-weighted graph
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Summary of Warehouse Scale 
Computing and Map Reduce

• Request-Level Parallelism
—High request volume, each largely independent of other 
—Use replication for better request throughput, availability

• MapReduce Data Parallelism
—Map: Divide large data set into pieces for independent 

parallel processing
—Reduce: Combine and process intermediate results to 

obtain final result 
• WSC CapEx vs. OpEx

—Economies of scale mean WSC can sell computing as a 
utility

—Servers currently dominate capital expense, and power 
distribution, cooling infrastructure dominate operating 
expense
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