
COMP 322: Fundamentals of
Parallel Programming

Lecture 36: Map Reduce (contd)

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 36 13 April 2012

COMP 322, Spring 2012 (V.Sarkar)

Acknowledgments for Today’s Lecture
• Slides from Lectures 1 and 2 in UC Berkeley CS61C course,

“Great Ideas in Computer Architecture (Machine Structures),
Spring 2012, Instructor: David Patterson
—http://inst.eecs.berkeley.edu/~cs61c/sp12/

• Slides from MapReduce lecture in Stanford CS 345A course
—http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

• Slides from COMP 422 lecture on MapReduce
—http://www.clear.rice.edu/comp422

• Slides from Google Cluster Computing Faculty Training Workshop
—Module IV: MapReduce Theory, Implementation, and Algorithms

2

COMP 322, Spring 2012 (V.Sarkar)

Outline
• Execution model for Map-Reduce Programs

• Map Reduce Algorithms

3

COMP 322, Spring 2012 (V.Sarkar)

Recap of Map-Reduce Model:
Operations on Sets of Key-Value Pairs

• Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki, vi)
consists of a key, ki, and a value, vi.
—Assume that the key and value objects are immutable, and that

equality comparison is well defined on all key objects.

• Map function f generates sets of intermediate key-value pairs,
f(ki,vi) = {(k1′ ,v1′),...(km′,vm′)}. The kj′ keys can be different
from ki key in the input of the map function.

—Assume that a flatten operation is performed as a post-pass after
the map operations, so as to avoid dealing with a set of sets.

• Reduce operation groups together intermediate key-value pairs,
{(k′, vj′)} with the same k’, and generates a reduced key-value
pair, (k′,v′′), for each such k’, using reduce function g

4

COMP 322, Spring 2012 (V.Sarkar)

Summary of MapReduce API
• Programmers must specify:

map (k, v) → list(<k’, v’>)

reduce (k’, list(v’)) → <k’’, v’’>

 All values with the same key are reduced together
Optionally, also:

partition (k’, number of partitions) → partition for k’

 Often a simple hash of the key, e.g., hash(k’) mod n
 Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*

 Mini-reducers that run in memory after the map phase
 Used as an optimization to reduce network traffic

The execution framework handles everything else…

5

COMP 322, Spring 2012 (V.Sarkar)

PseudoCode for WordCount
1. map(String input_key, String input_value):
2. // input_key: document name
3. // input_value: document contents
4. for each word w in input_value:
5. EmitIntermediate(w, "1"); // Produce count of words
6.
7. reduce(String output_key, Iterator intermediate_values):
8. // output_key: a word
9. // intermediate_values: a list of counts
10. int result = 0;
11. for each v in intermediate_values:
12. result += ParseInt(v); // get integer from key-value
13. Emit(AsString(result));

6

COMP 322, Spring 2012 (V.Sarkar)

Example Execution of WordCount
Program

that that is is that that is not is not is that it it is

is 1, that 2 is 1, that 2 is 2, not 2 is 2, it 2, that 1
Map 1 Map 2 Map 3 Map 4

Reduce 1 Reduce 2
is 6; it 2 not 2; that 5

Shuffle

Collect

is 6; it 2; not 2; that 5

Distribute

that 2,2,1
not 2

is 1,1,2,2
it 2

7

COMP 322, Spring 2012 (V.Sarkar)

Overall schematic for MapReduce
framework on a data center cluster

8

COMP 322, Spring 2012 (V.Sarkar)

MapReduce Processing

9

COMP 322, Spring 2012 (V.Sarkar)

MapReduce Processing

1. MR 1st splits the
input files into M
“splits” then starts
many copies of
program on servers

10

COMP 322, Spring 2012 (V.Sarkar)

MapReduce Processing
2. One copy—the master—
is special. The rest
are workers. The master
picks idle workers and
assigns each 1 of M map
tasks or 1 of R reduce
tasks.

11

COMP 322, Spring 2012 (V.Sarkar)

MapReduce Processing
3. A map worker reads the
input split. It parses key/value
pairs of the input data and
passes each pair to the user-
defined map function.

(The intermediate
key/value pairs produced
by the map function are
buffered in memory.)

12

COMP 322, Spring 2012 (V.Sarkar)

MapReduce Processing
4. Periodically, the buffered
pairs are written to local disk,
partitioned
into R regions by the
partitioning function.

13

COMP 322, Spring 2012 (V.Sarkar)

MapReduce Processing
5. When a reduce worker has
read all intermediate data for
its partition, it bucket sorts
using inter-mediate keys so
that occur-rences of same
keys are grouped together

(The sorting is needed
because typically many
different keys map to
the same reduce task)

Shuffle
phase

14

COMP 322, Spring 2012 (V.Sarkar)

MapReduce Processing
6. Reduce worker iterates over
sorted intermediate data and
for each unique intermediate
key, it passes key and
corresponding set of values to
the user’s reduce function.

The output of the reduce
function is appended to a
final output file for this
reduce partition.

15

COMP 322, Spring 2012 (V.Sarkar)

MapReduce Processing
7. When all map tasks and
reduce tasks have been
completed, the master
wakes up the user program.
The MapReduce call
in user program returns back
to user code.

Output of MR is in R
output files (1 per reduce
task, with file names
specified by user); often
passed into another MR
job so don’t combine

16

COMP 322, Spring 2012 (V.Sarkar)

MapReduce is a Data-Parallel form
of the “Divide and Conquer” Pattern

• Map:
—Slice data into “shards” or “splits”, distribute these
to workers, compute sub-problem solutions

— map(in_key,in_value)->list(out_key,intermediate value)

– Processes input key/value pair
– Produces set of intermediate pairs

• Reduce:
—Collect and combine sub-problem solutions
— reduce(out_key,list(intermediate_value))->list(out_value)

– Combines all intermediate values for a particular key
– Produces a set of merged output values

• Easy to use: focus on problem, let MapReduce
library deal with messy details

17

COMP 322, Spring 2012 (V.Sarkar)

MapReduce Failure Handling

• On worker failure:
—Detect failure via periodic heartbeats
—Re-execute completed and in-progress map tasks
—Re-execute in progress reduce tasks
—Task completion committed through master

• Master failure:
—Could handle, but don't yet (master failure
unlikely)

• Robust: lost 1600 of 1800 machines once,
but finished fine

18

COMP 322, Spring 2012 (V.Sarkar)

MapReduce Redundant Execution

• Slow workers significantly lengthen completion
time
—Other jobs consuming resources on machine
—Bad disks with soft errors transfer data very slowly
—Weird things: processor caches disabled (!!)

• Solution: Near end of phase, spawn backup
backup copies of tasks
—Whichever one finishes first "wins"

• Effect: Dramatically shortens job completion
time
—3% more resources, large tasks 30% faster

19

COMP 322, Spring 2012 (V.Sarkar)

MapReduce Locality Optimization during
Scheduling

• Master scheduling policy:
—Asks GFS (Google File System) for locations of
replicas of input file blocks

—Map tasks typically split into 64MB (== GFS
block size)

—Map tasks scheduled so GFS input block replica
are on same machine or same rack

• Effect: Thousands of machines read input
at local disk speed

• Without this, rack switches limit read rate

20

COMP 322, Spring 2012 (V.Sarkar)

Additional Optimization: Combiner
Functions

• “Combiner” functions can run on same
machine as a mapper

• Causes a mini-reduce phase to occur before
the real reduce phase, to save bandwidth

21

COMP 322, Spring 2012 (V.Sarkar)

Outline
• Execution model for Map-Reduce Programs

• Map Reduce Algorithms

22

COMP 322, Spring 2012 (V.Sarkar)

Algorithms for MapReduce
• Sorting

• Searching

• Indexing

• Classification

• TF-IDF

• Breadth-First Search / SSSP

• PageRank

• Clustering

23

COMP 322, Spring 2012 (V.Sarkar)

Sort Algorithm

• Takes advantage of reducer properties: (key,
value) pairs are processed in order by key;
reducers are themselves ordered by hash function

• Mapper: Identity function for value
 (k, v) à (v, _)

• Reducer: Identity function (k’, _) -> (k’, “”)

• Trick: (key, value) pairs from mappers are sent to
a particular reducer based on hash(key)
—Must pick the hash function for your data such
that k1 < k2 => hash(k1) < hash(k2)

24

COMP 322, Spring 2012 (V.Sarkar)

Inverted Index: Data flow

This page contains
so much text

My page contains
text too

Foo

Bar

contains: Bar
My: Bar
page : Bar
text: Bar
too: Bar

contains: Foo
much: Foo
page : Foo
so : Foo
text: Foo
This : Foo

contains: Foo, Bar
much: Foo
My: Bar
page : Foo, Bar
so : Foo
text: Foo, Bar
This : Foo
too: Bar

Reduced output

Foo map output

Bar map output

• Mapper: For each word in (file, words), map
to (word, file)

• Reducer: Identity function

25

COMP 322, Spring 2012 (V.Sarkar)

TF-IDF
• Term Frequency – Inverse Document Frequency

—Relevant to text processing
—Common web analysis algorithm

• | D | : total number of documents in the corpus
• : number of documents where the term ti
appears (that is).

26

COMP 322, Spring 2012 (V.Sarkar)

Information We Need
• Number of times term X appears in a given document

• Number of terms in each document

• Number of documents X appears in

• Total number of documents

27

COMP 322, Spring 2012 (V.Sarkar)

Job 1: Word Frequency in Doc
• Mapper

—Input: (docname, contents)
—Output: ((word, docname), 1)

• Reducer
—Sums counts for word in document
—Outputs ((word, docname), n)

• Combiner is same as Reducer

28

COMP 322, Spring 2012 (V.Sarkar)

Job 2: Word Counts For Docs
• Mapper

—Input: ((word, docname), n)
—Output: (docname, (word, n))

• Reducer
—Sums frequency of individual n’s in same doc
—Feeds original data through
—Outputs ((word, docname), (n, N))

29

COMP 322, Spring 2012 (V.Sarkar)

Job 3: Word Frequency In Corpus
• Mapper

—Input: ((word, docname), (n, N))
—Output: (word, (docname, n, N, 1))

• Reducer
—Sums counts for word in corpus
—Outputs ((word, docname), (n, N, m))

30

COMP 322, Spring 2012 (V.Sarkar)

Job 4: Calculate TF-IDF
• Mapper

—Input: ((word, docname), (n, N, m))
—Assume D is known (or, easy MR to find it)
—Output ((word, docname), TF*IDF)

• Reducer
—Just the identity function

31

COMP 322, Spring 2012 (V.Sarkar)

Breadth-First Search (BFS):
Motivating Concepts

• Performing computation on a graph data structure requires
processing at each node

• Each node contains node-specific data as well as links (edges)
to other nodes

• Computation must traverse the graph and perform the
computation step

• How do we traverse a graph in MapReduce? How do we represent
the graph for this?

32

COMP 322, Spring 2012 (V.Sarkar)

Breadth-First Search

• Breadth-First
Search is an
iterated algorithm
over graphs

• Frontier advances
from origin by one
level with each
pass

1
2

2 2

3

3

3

3

4

4

33

COMP 322, Spring 2012 (V.Sarkar)

Breadth-First Search & MapReduce

• Problem: This doesn't “fit” into MapReduce

• Solution: Iterated passes through MapReduce – map some
nodes, result includes additional nodes which are fed into
successive MapReduce passes

34

COMP 322, Spring 2012 (V.Sarkar)

Adjacency Matrices

• Another classic graph representation. M[i][j]= '1' implies a
link from node i to j.

• Naturally encapsulates iteration over nodes

01014
00103
11012
10101
4321

35

COMP 322, Spring 2012 (V.Sarkar)

Adjacency Matrices: Sparse
Representation

• Adjacency matrix for most large graphs (e.g., the web) will be
overwhelmingly full of zeros.

• Each row of the graph is too long to store in a dense manner

• Sparse matrices only include non-zero elements

1: 3, 18, 200
2: 6, 12, 80, 400
3: 1, 14
…

36

COMP 322, Spring 2012 (V.Sarkar)

Finding the Shortest Path

• A common graph
search application is
finding the shortest
path from a start node
to one or more target
nodes

• Commonly done on a
single machine with
Dijkstra's Algorithm

• Can we use BFS to
find the shortest path
via MapReduce?

This is called the single-source shortest path problem.
(a.k.a. SSSP)

37

COMP 322, Spring 2012 (V.Sarkar)

Finding the Shortest Path: Intuition
• We can define the solution to this problem inductively:

– DistanceTo(startNode) = 0
– For all nodes n directly reachable from startNode, DistanceTo(n) = 1
– For all nodes n reachable from some other set of nodes S,

DistanceTo(n) = 1 + min(DistanceTo(m), m ∈ S)

Algorithm:
• A map task receives a node n as a key, and (D, points-to) as its

value
– D is the distance to the node from the start
– points-to is a list of nodes reachable from n
– ∀p ∈ points-to, emit (p, D+1)

• Reduce task gathers possible distances to a given p and selects the
minimum one

38

COMP 322, Spring 2012 (V.Sarkar)

Termination
• This algorithm starts from one node
• Subsequent iterations include many more nodes of the graph as

frontier advances
• Does this ever terminate?

– Yes! Eventually, routes between nodes will stop being discovered
and no better distances will be found. When distance is the same,
we stop

– Mapper should emit (n, D) to ensure that “current distance” is
carried into the reducer

• Weighted-edge shortest path is more useful than cost==1
approach

— Simple change: points-to list in map task includes a weight 'w'
for each pointed-to node
– emit (p, D+w

p
) instead of (p, D+1) for each node p

– Works for positive-weighted graph

39

COMP 322, Spring 2012 (V.Sarkar)

Summary of Warehouse Scale
Computing and Map Reduce

• Request-Level Parallelism
—High request volume, each largely independent of other
—Use replication for better request throughput, availability

• MapReduce Data Parallelism
—Map: Divide large data set into pieces for independent

parallel processing
—Reduce: Combine and process intermediate results to

obtain final result
• WSC CapEx vs. OpEx

—Economies of scale mean WSC can sell computing as a
utility

—Servers currently dominate capital expense, and power
distribution, cooling infrastructure dominate operating
expense

40

