COMP 322: Fundamentals of Parallel Programming

Lecture 36: Map Reduce (contd)

Vivek Sarkar Department of Computer Science, Rice University <u>vsarkar@rice.edu</u>

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322

Lecture 36

Acknowledgments for Today's Lecture

 Slides from Lectures 1 and 2 in UC Berkeley CS61C course, "Great Ideas in Computer Architecture (Machine Structures), Spring 2012, Instructor: David Patterson

-<u>http://inst.eecs.berkeley.edu/~cs61c/sp12/</u>

- Slides from MapReduce lecture in Stanford CS 345A course
 <u>http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt</u>
- Slides from COMP 422 lecture on MapReduce

- http://www.clear.rice.edu/comp422

Slides from Google Cluster Computing Faculty Training Workshop

 <u>Module IV: MapReduce Theory, Implementation, and Algorithms</u>

Recap of Map-Reduce Model: Operations on Sets of Key-Value Pairs

Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki, vi) consists of a key, ki, and a value, vi.

-Assume that the key and value objects are immutable, and that equality comparison is well defined on all key objects.

 Map function f generates sets of intermediate key-value pairs, f(ki,vi) = {(k1',v1'),...(km',vm')}. The kj' keys can be different from ki key in the input of the map function.

—Assume that a flatten operation is performed as a post-pass after the map operations, so as to avoid dealing with a set of sets.

 Reduce operation groups together intermediate key-value pairs, {(k', vj')} with the same k', and generates a reduced key-value pair, (k',v"), for each such k', using reduce function g

Summary of MapReduce API

Programmers must specify:
 map (k, v) → list(<k', v'>)

reduce (k', list(v')) $\rightarrow \langle k'', v'' \rangle$

All values with the same key are reduced together Optionally, also:

partition (k', number of partitions) \rightarrow partition for k'

Often a simple hash of the key, e.g., hash(k') mod n Divides up key space for parallel reduce operations combine $(k', v') \rightarrow \langle k', v' \rangle^*$

Mini-reducers that run in memory after the map phase Used as an optimization to reduce network traffic The execution framework handles everything else...

PseudoCode for WordCount

```
1.
   map(String input key, String input value):
2.
     // input key: document name
3.
     // input value: document contents
4.
     for each word w in input value:
5.
       EmitIntermediate(w, "1"); // Produce count of words
6.
7.
   reduce(String output key, Iterator intermediate values):
8
     // output key: a word
9.
     // intermediate values: a list of counts
10. int result = 0;
11. for each v in intermediate_values:
12.
        result += ParseInt(v); // get integer from key-value
13
     Emit(AsString(result));
```


Example Execution of WordCount Program

Distribute

COMP 322, Spring 2012 (V.Sarkar)

Overall schematic for MapReduce framework on a data center cluster

MapReduce is a Data-Parallel form of the "Divide and Conquer" Pattern

• Map:

- —Slice data into "shards" or "splits", distribute these to workers, compute sub-problem solutions
- --map(in_key,in_value)->list(out_key,intermediate value)
 - Processes input key/value pair
 - Produces set of intermediate pairs
- Reduce:
 - -Collect and combine sub-problem solutions
 - -- reduce(out_key,list(intermediate_value))->list(out_value)
 - Combines all intermediate values for a particular key
 - Produces a set of merged output values
- Easy to use: focus on problem, let MapReduce library deal with messy details

MapReduce Failure Handling

- On worker failure:
 - —Detect failure via periodic heartbeats
 - -Re-execute completed and in-progress map tasks
 - -Re-execute in progress reduce tasks
 - -Task completion committed through master
- Master failure:
 - —Could handle, but don't yet (master failure unlikely)
- Robust: lost 1600 of 1800 machines once, but finished fine

MapReduce Redundant Execution

- Slow workers significantly lengthen completion time
 - —Other jobs consuming resources on machine
 - —Bad disks with soft errors transfer data very slowly —Weird things: processor caches disabled (!!)
- Solution: Near end of phase, spawn backup backup copies of tasks

-Whichever one finishes first "wins"

• Effect: Dramatically shortens job completion time

-3% more resources, large tasks 30% faster

MapReduce Locality Optimization during Scheduling

- Master scheduling policy:
 - —Asks GFS (Google File System) for locations of replicas of input file blocks
 - —Map tasks typically split into 64MB (== GFS block size)
 - -Map tasks scheduled so GFS input block replica are on same machine or same rack
- Effect: Thousands of machines read input at local disk speed
- Without this, rack switches limit read rate

Additional Optimization: Combiner Functions

- "Combiner" functions can run on same machine as a mapper
- Causes a mini-reduce phase to occur before the real reduce phase, to save bandwidth

Outline

- Execution model for Map-Reduce Programs
- <u>Map Reduce Algorithms</u>

Algorithms for MapReduce

- <u>Sorting</u>
- Searching
- Indexing
- Classification
- <u>TF-IDF</u>
- <u>Breadth-First Search / SSSP</u>
- PageRank
- Clustering

Sort Algorithm

- Takes advantage of reducer properties: (key, value) pairs are processed in order by key; reducers are themselves ordered by hash function
- Mapper: Identity function for value

(k, v) \rightarrow (v, _)

- Reducer: Identity function (k', _) -> (k', "")
- Trick: (key, value) pairs from mappers are sent to a particular reducer based on hash(key)

-Must pick the hash function for your data such that $k_1 < k_2 => hash(k_1) < hash(k_2)$

Inverted Index: Data flow

TF-IDF

- Term Frequency Inverse Document Frequency
 - -Relevant to text processing
 - -Common web analysis algorithm

$$\begin{aligned} \mathrm{tf_i} &= \frac{n_i}{\sum_k n_k} \\ \mathrm{idf_i} &= \log \frac{|D|}{|\{d: t_i \in d\}|} \end{aligned}$$

 $tfidf = tf \cdot idf$

• |D| : total number of documents in the corpus • $|\{d: t_i \in d\}|$: number of documents where the term t_i appears (that is $n_i \neq 0$).

Information We Need

- Number of times term X appears in a given document
- Number of terms in each document
- Number of documents X appears in
- Total number of documents

Job 1: Word Frequency in Doc

• Mapper

- -Input: (docname, contents)
- -Output: ((word, docname), 1)

• Reducer

- -Sums counts for word in document
- -Outputs ((word, docname), n)
- Combiner is same as Reducer

Job 2: Word Counts For Docs

• Mapper

- -Input: ((word, docname), n)
- -Output: (docname, (word, n))

• Reducer

- -Sums frequency of individual n's in same doc
- -Feeds original data through
- -Outputs ((word, docname), (n, N))

Job 3: Word Frequency In Corpus

• Mapper

- -Input: ((word, docname), (n, N))
- -Output: (word, (docname, n, N, 1))

• Reducer

- -Sums counts for word in corpus
- -Outputs ((word, docname), (n, N, m))

Job 4: Calculate TF-IDF

• Mapper

- -Input: ((word, docname), (n, N, m))
- -Assume D is known (or, easy MR to find it)
- -Output ((word, docname), TF*IDF)
- Reducer
 - -Just the identity function

Breadth-First Search (BFS): Motivating Concepts

- Performing computation on a graph data structure requires processing at each node
- Each node contains node-specific data as well as links (edges) to other nodes
- Computation must traverse the graph and perform the computation step
- How do we traverse a graph in MapReduce? How do we represent the graph for this?

Breadth-First Search

- Breadth-First Search is an iterated algorithm over graphs
- Frontier advances from origin by one level with each pass

COMP 322, Spring 2012 (V.Sarkar)

Breadth-First Search & MapReduce

- Problem: This doesn't "fit" into MapReduce
- Solution: Iterated passes through MapReduce map some nodes, result includes additional nodes which are fed into successive MapReduce passes

Adjacency Matrices

- Another classic graph representation. M[i][j]= '1' implies a link from node i to j.
- Naturally encapsulates iteration over nodes

Adjacency Matrices: Sparse Representation

- Adjacency matrix for most large graphs (e.g., the web) will be overwhelmingly full of zeros.
- Each row of the graph is too long to store in a dense manner
- Sparse matrices only include non-zero elements
- 1: 3, 18, 200 2: 6, 12, 80, 400 3: 1, 14

Finding the Shortest Path

- A common graph search application is finding the shortest path from a start node to one or more target nodes
- Commonly done on a single machine with Dijkstra's Algorithm
- Can we use BFS to find the shortest path via MapReduce?

This is called the single-source shortest path problem. (a.k.a. SSSP)

Finding the Shortest Path: Intuition

• We can define the solution to this problem inductively:

- DistanceTo(startNode) = 0
- For all nodes n directly reachable from startNode, DistanceTo(n) = 1
- For all nodes *n* reachable from some other set of nodes *S*,

DistanceTo(n) = 1 + min(DistanceTo(m), $m \in S$)

<u>Algorithm</u>:

- A map task receives a node *n* as a key, and (*D*, points-to) as its value
 - D is the distance to the node from the start
 - points-to is a list of nodes reachable from n

```
\forall p \in points-to, emit (p, D+1)
```

- Reduce task gathers possible distances to a given \boldsymbol{p} and selects the minimum one

Termination

- This algorithm starts from one node
- Subsequent iterations include many more nodes of the graph as frontier advances
- Does this ever terminate?
 - Yes! Eventually, routes between nodes will stop being discovered and no better distances will be found. When distance is the same, we stop
 - Mapper should emit (n, D) to ensure that "current distance" is carried into the reducer
- Weighted-edge shortest path is more useful than cost==1 approach
 - Simple change: points-to list in map task includes a weight 'w' for each pointed-to node
 - emit (p, $D+w_p$) instead of (p, D+1) for each node p
 - Works for positive-weighted graph

Summary of Warehouse Scale Computing and Map Reduce

- Request-Level Parallelism
 - —High request volume, each largely independent of other
 - —Use replication for better request throughput, availability
- MapReduce Data Parallelism
 - -Map: Divide large data set into pieces for independent parallel processing
 - —Reduce: Combine and process intermediate results to obtain final result
- WSC CapEx vs. OpEx
 - —Economies of scale mean WSC can sell computing as a utility
 - —Servers currently dominate capital expense, and power distribution, cooling infrastructure dominate operating expense

