
COMP 322: Fundamentals of
Parallel Programming

Lecture 37: Speculative parallelization

of isolated blocks
Swarat Chaudhuri

Vivek Sarkar
Department of Computer Science, Rice University

swarat@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 37 16 April 2012

2 COMP 322, Spring 2012 (V.Sarkar)

HJ isolated statement 
(Recap from Lecture 20)"

isolated <body>
•  Two tasks executing isolated statements with interfering

accesses must perform the isolated statement in mutual
exclusion

— Two instances of isolated statements, ⟨stmt1⟩ and ⟨stmt2⟩, are said
to interfere with each other if both access a shared location, such
that at least one of the accesses is a write.

è Weak isolation guarantee: no mutual exclusion applies to non-isolated
statements i.e., to (isolated, non-isolated) and (non-isolated, non-
isolated) pairs of statement instances

•  Isolated statements may be nested (redundant)
•  Isolated statements must not contain any other parallel

statement that performs a blocking operation: finish, get, next
— Non-blocking operations (e.g., async) are fine

3 COMP 322, Spring 2012 (V.Sarkar)

Implementations of isolated statement"
•  isolated statements are convenient for the programmer but pose

significant challenges for the language implementation
— Implementation does not know ahead of time if two dynamic

instances of isolated statements will interfere or not

•  HJ implementation used in COMP 322 takes a simple single-lock
approach to implementing isolated statements
— Entry to isolated statement is treated as an acquire() operation on

the lock
— Exit from isolated statement is treated as a release() operation on

the lock
— Though correct, this approach essentially implements isolated

statements as critical sections, thereby serializing all interfering
and non-interfering isolated statement instances.

•  How can we do better?

4 COMP 322, Spring 2012 (V.Sarkar)

•  Execution of an isolated statement is treated as a transaction
— In database systems, a transaction refers to a “unit of work” that has “all-

or-nothing” semantics. Each unit of work must either complete in its
entirety or have no visible effect.

•  A TM system optimistically permits transactions to run in parallel,
speculating that there won’t be interference

•  At the end of a transaction, a TM system checks if interference
occurred with another transaction
— If not, the transaction can be committed
— If so, the transaction fails and has to be “retried”

•  Both software and hardware implementations of TM have been explored
extensively by the research community, but no implementation has
proved suitable for mainstream use as yet.

Research Idea 1: Transactional Memory "

isolated <body>
•  Exploit Cache coherence protocols

•  Already do almost what we need
— Invalidation
— Consistency checking

•  Exploit Speculative execution
— Branch prediction = optimistic synch

•  Related work:
— First wave: Herlihy&Moss 93, Stone et al. 93
— Second wave: Rajwar&Goodman 02, Martinez&Torellas 02,

Oplinger&Lam 02, TCC 04, VTM 05, …

Hardware Transactional Memory"

5 COMP 322, Spring 2012 (V.Sarkar). Original slide by Herlihy and Shavit

HW Transactional Memory"

Interconnect

caches

memory

read active

T

6 COMP 322, Spring 2012 (V.Sarkar). Original slide by Herlihy and Shavit

Transactional Memory"

caches

memory

read

active
T T

active

7 COMP 322, Spring 2012 (V.Sarkar). Original slide by Herlihy and Shavit

Transactional Memory"

caches

memory

active
T T

active committed

8 COMP 322, Spring 2012 (V.Sarkar). Original slide by Herlihy and Shavit

Transactional Memory"

caches

memory

write

active

committed

T
D

9 COMP 322, Spring 2012 (V.Sarkar). Original slide by Herlihy and Shavit

Rewind"

caches

memory

active
T T

active write aborted

D

10 COMP 322, Spring 2012 (V.Sarkar). Original slide by Herlihy and Shavit

•  At commit point
— If no cache conflicts, we win.

•  Mark transactional entries
— Read-only: valid
— Modified: dirty (eventually written back)

•  Challenges:
— Limits to

–  Transactional cache size
–  Scheduling quantum

— Transaction cannot commit if it is
–  Too big
–  Too slow
–  Actual limits platform-dependent

Transaction Commit"

11 COMP 322, Spring 2012 (V.Sarkar). Original slide by Herlihy and Shavit

Software TMs (e.g., DSTM)"
•  Logs all read and write operations performed in a transaction.

Implements conflict detection and aborts in software

•  Minimal hardware support: compare-and-swap is enough
•  Example implementation questions:

— Do zombie (orphan) transactions see consistent states?
— Undo or redo?

–  Undo logs
Update in place; Reads are fast; Rolling back wedged
transaction complex

–  Redo logs
Apply changes on commit; Reads require look-aside; Rolling
back wedged transaction easy

— Does interference detection need a global view of the heap?

•  Especially challenging: irregular applications, where parallelism
depends heavily on the input

12 COMP 322, Spring 2012 (V.Sarkar)

Irregular parallelism: Delaunay Mesh
Refinement"

•  Input: a 2d triangle mesh that
satisfies:
 the Delaunay property: no point is
contained in the circumcircle of a triangle

•  Output: a 2d triangle mesh that
— satisfies the Delaunay property
— contains all points in the original mesh
— satisfies an extra quality constraint

–  no triangle can have an angle < 25°

•  Algorithm (Ruppert’s algorithm)
— iteratively select a triangle that violates
the quality constraint and refine the mesh
around it.

13 COMP 322, Spring 2012 (V.Sarkar)

DMR Algorithm (Sequential and HJ)"
Mesh m = /* read input mesh */
Worklist wl = new worklist(m.getBad());
foreach triangle t in wl {
 if (t in m) {
 Cavity c = new Cavity(t)

 c.expand()
 c.retriangulate(m)
 wl.add(c.getBad()); } }

...
foreach triangle t in wl {
 isolated {
 if (t in m) {
 Cavity c = new Cavity(t);

 c.expand();
 c.retriangulate(m);
 wl.add(c.getBad());} }}

Sequential

With isolated
construct

14 COMP 322, Spring 2012 (V.Sarkar)

Another example: Boruvka’s MST
algorithm"

!Graph g = ...  
Forest mst = g.getNodes();  
Workset ws = g.getNodes();  
foreach Node n in ws {  
 Node m = minWeight(n, g.getOutEdges(n));  
 Node l = edgeContract(n, m);  
 mst.addEdge(n, m);  
 ws.add(l);  
}!

Before
contraction

After
contraction

15 COMP 322, Spring 2012 (V.Sarkar)

16 COMP 322, Spring 2012 (V.Sarkar)

Research Idea 2: Delegated Isolation"

•  Challenge: scalable implementation of isolated without using a single
global lock and without incurring transactional memory overheads

•  Delegated isolation:
— Restrict attention to “async isolated” case

–  replace non-async “isolated” by “finish async isolated”
— Task dynamically acquires ownership of each object accessed in

isolated block (optimistic parallelism)
— On conflict, task A transfers all ownerships to worker executing

conflicting task B and delegates execution of isolated block to B
 (Chorus execution model)

— Deadlock-freedom and livelock-freedom guarantees

— Reference: “Delegated Isolation”, R. Lublinerman, J. Zhao, Z.
Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2011

The Chorus execution model"
Heap =

directed graph

Nodes =
memory locations

Labeled edges =
pointers

Regions =
subgraphs induced by a
partitioning

Assembly =
task + owned region

async isolated {
 …
}

An assembly can only access
objects that it owns

17 COMP 322, Spring 2012 (V.Sarkar)

 Conflict management: merging"
•  Assembly i merges with

assembly j along an edge f

•  Delegation:
— j keeps local state
— i dies passing closure to j.

Effects of i rolled back

•  Alternative: preemption (i
keeps local state,j gets
killed. More difficult to
implement.

•  Guarantees aside from
isolation:
— Deadlock-freedom
— Progress: For each conflict,

at least one commit

f i j

DMR Algorithm (Delegated isolation)"

processTriangle (Triangle t) {
 async isolated {
 if (t in m) {
 Cavity c = new Cavity(t);

 c.expand();
 c.retriangulate();
 for (s in c.badTriangles());

 processTriangle (s); } } }

main () {
 finish {
 for (t in initial set of bad triangles)
 processTriangle (t);
 }
}

20 COMP 322, Spring 2012 (V.Sarkar)

Delauney Mesh Refinement in Habanero-Java  
using Delegated Isolation"

Figure source:
http://lcpc10.rice.edu/Keynote_Speakers_files/PingaliKeynote.pdf

Boruvka’s MST algorithm"

processTree (Node n) {  
async isolated {  
 Node m = minWeight(n, g.getOutEdges(n));  
 Node l = edgeContract(n, m);  
 l.mst.addEdge(n, m);  
 processTree(l); }!

main () {
finish {
 for nodes n
 processTree(n); } }

!
21 COMP 322, Spring 2012 (V.Sarkar)

22 COMP 322, Spring 2012 (V.Sarkar)

Performance: DMR benchmark on 16-core Xeon SMP
(100,770 initial triangles of which 47,768 are “bad”; average # retriangulations is ~ 130,000)

23 COMP 322, Spring 2012 (V.Sarkar)

Properties of isolated statements"
How small or big should an isolated statement be?
• Too small è may lose invariants desired from mutual exclusion
• Too big è limits parallelism

Deadlock freedom guarantees
• Observation: no combination of the following HJ constructs can
create a deadlock cycle among tasks

— finish, async, get, forall, next, isolated

• There are only two HJ constructs that can lead to deadlock
— async await (data-driven tasks)
— explicit phaser wait operation (instead of next)

24 COMP 322, Spring 2012 (V.Sarkar)

Three cases of contention among
isolated statements"

1.  Low contention: when isolated statements are executed infrequently
—  A single-lock approach as in HJ is often the best solution. No visible

benefit from other techniques because they incur overhead that is not
needed since contention is low.

2.  Moderate contention: when the serialization of all isolated statements
in a single-lock approach limits the performance of the parallel
program due to Amdahl’s Law, but a finer-grained approach that only
serializes interfering isolated statements results in good scalability

—  Atomic variables usually do well in this scenario since the benefit obtained
from reduced serialization far outweighs any extra overhead incurred.

3.  High contention: when interfering isolated statements dominate the
program execution time in certain phases

—  Best approach in such cases is to find an alternative algorithm to using
isolated

BACKUP SLIDES START HERE 
"

25

26 COMP 322, Spring 2012 (V.Sarkar)

Object-based isolation in HJ "
isolated(<object-list>) <body>!

•  In this case, programmer specifies list of objects for
which isolation is required

•  Mutual exclusion is only guaranteed for instances of
isolated statements that have a non-empty intersection
in their object lists
— Standard isolated is equivalent to isolated(*) by
default i.e., isolation across all objects

•  Implementation can choose to distinguish between read/
write accesses for further parallelism
— Current HJ implementation supports object-based
isolation, does not exploit read/write distinction

