COMP 322: Fundamentals of
Parallel Programming

Lecture 39: Course Review

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 39 20 April 2012

Places in HJ (Lectures 17, 18)

here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) = place corresponding to index i

<place-expr>.toString() returns a string of the form "place(id=0)"

<place-expr=.id returns the id of the place as an int
async at(P) S

« Creates new task to execute statement S at place P
« async S is equivalent to async at(here) S

* Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child
task is executing, not the place where the parent task is executing

2 COMP 322, Spring 2012 (V.Sarkar) &

Distributions --- hj.lang.dist

A distribution maps points in a rectangular index space (region) to
places e.g.,

— i > place.factory.place(i % place. MAX_PLACES-1)

* Programmers are free to create any data structure they choose to
store and compute these mappings

* For convenience, the HJ language provides a predefined type,
hj.lang.dist, to simplify working with distributions

« Some public members available in an instance d of hj.lang.dist are:

—d.rank = number of dimensions in the input region for distribution d

—d.get(p) = place for point p mapped by distribution d. It is an error to
call d.get(p) if p.rank I= d.rank.

—d.places() = set of places in the range of distribution d

—d.restrictToRegion(pl) = region of points mapped to place pl by
distribution d

3 COMP 322, Spring 2012 (V.Sarkar) &

Block Distribution

 dist.factory.block([lo:hi]) creates a block distribution over the
one-dimensional region, lo:hi.

« A block distribution splits the region into contiguous subregions,
one per place, while trying to keep the subregions as close to
equal in size as possible.

« Block distributions can improve the performance of parallel loops
that exhibit spatial locality across contiguous iterations.

Index 012 (34|56 |7|8[9 /10|11 (12|13 |14 | 15
Place id 0 1 2 3

4 COMP 322, Spring 2012 (V.Sarkar)

Cyclic Distribution

 dist.factory.cyclic([lo:hi]) creates a cyclic distribution over the
one-dimensional region, lo:hi.

« A cyclic distribution “cycles” through places O .. place. MAX
PLACES - 1 when spanning the input region

« Cyclic distributions can improve the performance of parallel
loops that exhibit load imbalance

« Example in Table 3: dist.factory.cyclic([0:15]) for 4 places

Index 01234 ,5|6|7 89|10 |11 12|13 |14 | 15

Placeid (O (123|012 /3|01 2 3|0 1]|2]|3

« Example in Table 4: dist.factory.cyclic([0:7,0:1]) for 4 places

Index | [0,0] | [0, | O] | L | 20] | 21 [B0 | B | 40 | 41 | 5,01 | Boa] | 6,0 | 16,1 | [7,0] | [7,1]

Place id 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

5 COMP 322, Spring 2012 (V.Sarkar) D

Homework 5: Solution to Problem 1a

l.dist d = dist.factory.block([1l:N]);
for (point [iter] : [0:M-1]) {
finish for(int j=1; Jj<=N; j++)
async at(d[]]) |
myNew[j] = (myVal[j-1] + myVal[j+1]) / 2.0;
} //finish-for-async-at
double[] temp = myNew; myNew = myVal; myVal = temp;
} // for

0O J o Ul & WIN
e o e e o e o

Number of remote reads for block distribution ~ 2*M*P

Number of remote reads for cyclic distribution ~ 2*M*N

6 COMP 322, Spring 2012 (V.Sarkar) %ﬂ

HJ isolated statement (Lectures 20, 21, 37)

isolated <body>

Two tasks executing isolated statements with interfering

accesses must perform the isolated statement in mutual

exclusion

— Two instances of isolated statements, (stmtl) and (stmt2), are said
to interfere with each other if both access a shared location, such
that at least one of the accesses is a write.

>Weak isolation guarantee: no mutual exclusion applies to non-isolated
statements i.e., to (isolated, non-isolated) and (non-isolated, non-
isolated) pairs of statement instances

Isolated statements may be nested (redundant)

Isolated statements must not contain any other parallel
statement that performs a blocking operation: finish, get, next

—Non-blocking operations (e.g., async) are fine

COMP 322, Spring 2012 (V.Sarkar) %@

Object-based isolation in HJ

isolated(<object-1list>) <body>

« In this case, programmer specifies list of objects for
which isolation is required

* Mutual exclusion is only guaranteed for instances of
isolated statements that have a non-empty
intersection in their object lists

—Standard isolated is equivalent to isolated(*) by
default i.e., isolation across all objects

* Implementation can choose to distinguish between
read/write accesses for further parallelism

—Current HJ implementation supports object-based
isolation, does not exploit read/write distinction

8 COMP 322, Spring 2012 (V.Sarkar)

java.util.concurrent.Atomicinteger methods and their
equivalent isolated statements

j.u.c.atomic Class
and Constructors

j.u.c.atomic Methods

Equivalent HJ isolated statements

AtomicInteger int j = v.get(); int j; isolated (v) j = v.val;
v.set(newVal); isolated (v) v.val = newVal;
AtomiclInteger() int] = v.getAndSet(newVal); | int j; isolated (v) { j = v.val; v.val = newVal; }
// init = 0 int] = v.addAndGet(delta); | isolated (v) { v.val += delta; j = v.val; }
int j = v.getAndAdd(delta); | isolated (v) { j = v.val; v.val += delta; }
AtomicInteger(init) || boolean b = boolean b;

v.compareAndSet
(expect,update);

isolated (v)
if (v.val==expect) {v.val=update; b=true;}
else b = false;

Methods in java.util.concurrent.AtomicInteger class and their
equivalent HJ isolated statements. Variable v refers to an
AtomicInteger object in column 2 and to a standard non-atomic
Java object in column 3. val refers to a field of type int.

COMP 322, Spring 2012 (V.Sarkar) G

Parallel Spanning Tree Algorithm using
isolated statement

1. class V {

2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree
4. boolean tryLabeling(V n) {

5. isolated if (parent == null) parent=n;

6. return parent == n;

7. } // tryLabeling

8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {

10. V child = neighbors[i];

11. if (child.tryLabeling(this))

12. async child.compute(); //escaping async
13. }

14. } // compute

15.} // class V

l6.. . .

17.root.parent = root; // Use self-cycle to identify root
18. finish root.compute();

19.. . .

10 COMP 322, Spring 2012 (V.Sarkar) &

Parallel Spanning Tree Algorithm using
object-based isolation

1. class V {

2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree
4. boolean tryLabeling(V n) {

5. isolated(this) if (parent == null) parent=n;

6. return parent == n;

7. } // tryLabeling

8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {

10. V child = neighbors[i];

11. if (child.tryLabeling(this))

12. async child.compute(); //escaping async
13. }

14. } // compute

15.} // class V

l6.. . .

17.root.parent = root; // Use self-cycle to identify root
18. finish root.compute();

19.. . .

11 COMP 322, Spring 2012 (V.Sarkar) &

Parallel Spanning Tree Algorithm using
java.util.concurrent.atomic.AtomicReference

1. class V {

2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree
4. boolean tryLabeling(V n) {

5. return parent.compareAndSet(null ,n);

6.

7. } // tryLabeling

8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {

10. V child = neighbors[i];

11. if (child.tryLabeling(this))

12. async child.compute(); //escaping async
13. }

14. } // compute

15.} // class V
16. L] L] L]
17.root.parent = root; // Use self-cycle to identify root

18. finish root.compute();
19. [] [] []

12 COMP 322, Spring 2012 (V.Sarkar) D

The Actor Model (Lectures 21, 22, 23)

- An actor may:
—process messages
—read/write local state

—create a new actor

create
—start a new actor

—send messages to
other actors

—terminate

- An actor processes
messages sequentially
—guaranteed mutual

exclusion on accesses
to local state

13 COMP 322, Spring 2012 (V.Sarkar) O

Actor Life Cycle

O—>| NEW [—>| STARTED —»| TERMINATED —>()

Actor states
* New: Actor has been created

* e.g., email account has been created

* Started: Actor can receive and process messages

* e.g., email account has been activated

* Terminated: Actor will no longer processes messages

* e.g., fermination of email account after graduation

14 COMP 322, Spring 2012 (V.Sarkar) %§

Using Actors in HJ

* Create your custom class which extends hj.lang.Actor<Object> ,and
implement the void process() method

class MyActor extends Actor<Object> {
protected void process(Object message) {
System.out.println(”“Processing “ + message);

b}

* Instantiate and start your actor
Actor<Object> anActor = new MyActor(); anActor.start()

* Send messages to the actor

anActor.send(aMessage); //aMessage can be any object in general

* Use a special message to terminate an actor

protected void process(Object message) {
if (message.someCondition()) exit();

}

Actor execution implemented as async tasks in HJ

* (Can use finish to await their completion

15 COMP 322, Spring 2012 (V.Sarkar) %}Q

Simple Pipeline

A

Simple

pipeline Simple

with pipeline pipeline
3 with with

stages stages stages

16 COMP 322, Spring 2012 (V.Sarkar)

Simple Pipeline using HJ Actors

1. // Main program

2. finish {

3. Actor<Object> firstStage =

4. new EvenLengthFilter (

5. new LowerCaseFilter (

6. new LastStage())); Sends are asynchronous
7. firstStage.start(); // starts others in actor model, but HJ
8. firstStage.send("pipeline");)

9. firstStage.send(new StopMessage()); Actor hbrary preserves
10. } order of messages

11. between same sender and
12.class LastStage extends Actor { receiver

13. protected void process(Object msg) {

14. if (msg instanceof StopMessage) {

15. exit();

16. } else if (msg instanceof String) {

17. System.out.println(msgqg);

18.} } }

17 COMP 322, Spring 2012 (V.Sarkar) %@

Simple Pipeline using HJ Actors (contd)

19.class LowerCaseFilter extends Actor {
20. protected void process(Object msg) {

21. if (msg instanceof StopMessage) {

22, exit(); nextStage.send(msgqg);

23. } else if (msg instanceof String) {
24. String str = (String) msg;

25. if (str.toLowerCase().equals(str)) {
26. nextStage.send(str);

27.} } } }

28.class EvenLengthFilter extends Actor {
29. protected void process(Object msg) {

30. if (msg instanceof StopMessage) {
31. nextStage.send(msg);

32. exit();

33. } else if (msg instanceof String) {
34. String msgStr = (String) msg;

35. if (msgStr.length() % 2 == 0) {
36. nextStage.send (msgStr);
37.} } } }

18 COMP 322, Spring 2012 (V.Sarkar)

@s

Adding support for places in HJ actors

* Basic approach: include an optional place parameter in the
start() method

Actor<Object> anActor = new MyActor();

anActor.start(p); // Start actor at place p
* Example:
SievePlaceActor nextActor = new SievePlaceActor(...);

// Start actor at next place, relative to current place
nextActor.start (here.next());

19 COMP 322, Spring 2012 (V.Sarkar) &

Summary of Mutual Exclusion approaches in HJ

* TIsolated --- analogous to critical sections

Object-based isolation, isolated(a, b, ...)
* Single object in list --- like monitor operations on object

* Multiple objects in list --- deadlock-free mutual exclusion on sets
of objects

* Java atomic variables --- optimized implementation of object-
based isolation

 Java concurrent collections --- optimized implementation of
monitors

* Actors --- different paradigm from task parallelism (mutual
exclusion by default)

20 COMP 322, Spring 2012 (V.Sarkar) D

Linearizability of Concurrent Objects
(Lectures 23, 24)

Concurrent object

* A concurrent object is an object that can correctly handle
methods invoked in parallel by different tasks or threads

—Examples: concurrent queue, AtomicInteger

Linearizability

« Assume that each method call takes effect “instantaneously” at
some distinct point in time between its invocation and return.

* An execution is linearizable if we can choose instantaneous
points that are consistent with a sequential execution in which
methods are executed at those points

* An gbject is linearizable if all its possible executions are
linearizable

21 COMP 322, Spring 2012 (V.Sarkar) D

Example 1

Is this execution linearizable?

[plele__

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

22 COMP 322, Spring 2012 (V.Sarkar)

Example 2

Is this execution linearizable?

23 COMP 322, Spring 2012 (V.Sarkar)

Homework 5: Solution to Problem 2b

import java.util.concurrent.atomic.*;
l.class IQueue {
2 AtomicInteger head = new AtomicInteger(0);
3 AtomicInteger tail = new AtomicInteger(0);
4. Object[] items = new Object[Integer.MAX VALUE];
5. public void eng(Object x) {
6 int slot ;
7 // Loop till enqueue slot is found
8. do slot = tail.get();
9. while (!tail.compareAndSet(slot,slot +1));
10. items[slot] = x;
11. } // eng
12. public Object deq() throws EmptyException {

13. Object value; int slot;

14. // Loop till dequeue slot is found

15. do {

16. slot = head.get(); value = items[slot];

17. if (value == null) throw new EmptyException();
18. } while (!head.compareAndSet(slot,slot+l));

19. return value;

20. } // deq
21.} // Iqueue

Not linearizable. Consider { async enq(A): enq(B): deq(): }

Assume that enq(A) pauses between lines 9 and 10

24 COMP 322, Spring 2012 (V.Sarkar) %ﬂ

Safety vs. Liveness (Lecture 25)

- In a concurrent setting, we need to specify both the safety
and the liveness properties of an object

- Need a way to define
—Safety: when an implementation is correct
—Liveness: the conditions under which it guarantees progress

* Linearizability is a safety property for concurrent objects

COMP 322, Spring 2012 (V.Sarkar) &

Desirable Properties of Parallel Program
Executions

« Data-race freedom
« Termination
« But some applications are designed to be non-terminating

 Liveness = a program'’s ability to make progress in a timely
manner

« Different levels of liveness guarantees (from weaker to
stronger)
—Deadlock freedom
—Livelock freedom
—Starvation freedom

Today's lecture discusses progress guarantees for HJ programs

— We will revisit progress guarantees for Java concurrency later

26 COMP 322, Spring 2012 (V.Sarkar) <

Deadlock-Free Parallel Program Executions

* A parallel program execution is deadlock-free if no task's execution remains
incomplete due to it being blocked awaiting some condition

« Example of a program with a deadlocking execution
DataDrivenFuture left = new DataDrivenFuture();
DataDrivenFuture right = new DataDrivenFuture():
finish {

async await (left) right.put(rightBuilder()); // Taskl
async await (right) left.put(leftBuilder()): // Task2
}

« In this case, Taskl and Task2 are in a deadlock cycle.

- Only two constructs can lead to deadlock in HJ: async await or explicit
phaser wait (instead of next)

— There are many mechanisms that can lead to deadlock cycles in other
programming models (e.g., locks)

27 COMP 322, Spring 2012 (V.Sarkar) &

Livelock-Free Parallel Program Executions

* A parallel program execution exhibits livelock if two or more tasks
repeat the same interactions without making any progress (special case
of nontermination)

 Livelock example:
/7 Task 1 // Task 2

incrToTwo(AtomicInteger ai) {
// increment ai till it reaches 2
while (ai.incrementAndGet() < 2):

}

* Many well-intended approaches to avoid deadlock result in livelock
instead

decrToNegativeTwo(AtomicInteger ai) {
// decrement ai till it reaches -2
while (a.decrementAndGet() > -2);

}

* Any data-race-free HJ program without isolated/atomic-variables/
actors is guaranteed to be livelock-free (may be nonterminating in a
single task, however)

28 COMP 322, Spring 2012 (V.Sarkar) &

Starvation-Free Parallel Program
Executions

« A parallel program execution exhibits starvation if some task is
repeatedly denied the opportunity to make progress

— Starvation-freedom is sometimes referred to as "“lock-out freedom”

— Starvation is possible in HJ programs, since all tasks in the same
program are assumed to be cooperating, rather than competing

- If starvation occurs in a deadlock-free HJ program, the
“equivalent” sequential program must have been non-terminating

 Classic source of starvation: "Priority Inversion” problem for OS
threads (usually from different processes)

—Thread A is at high priority, waiting for result or resource from
Thread C at low priority

—Thread B at intermediate priority is CPU-bound
—Thread C never runs, hence thread A never runs

—Fix: when a high priority thread waits for a low priority thread,
boost the priority of the low-priority thread

29 COMP 322, Spring 2012 (V.Sarkar) D

Selecting the Right Pattern (Lecture 25)

(adapted from page 9, Parallel Programming w/ Microsoft .Net)

Application characteristics

Algorithmic pattern

Relevant HJ
constructs

Sequential loop with independent
Iterations

1) Parallel Loop

forall, forasync

Independent operations with well-
defined control flow

2) Parallel Task

async, finish

Aggregating data from independent
tasks/iterations

3) Parallel Aggregation
(reductions)

finish accumulators,
atomic variables

Ordering of steps based on data
flow constraints

4) Futures

futures, data-driven
tasks

streams

Divide-and-conquer algorithms 5) Dynamic Task async, finish
with recursive data structures Parallelism
Repetitive operations on data 6) Pipelines streaming phasers

(deterministic), actors
(non-deterministic)

30

COMP 322, Spring 2012 (V.Sarkar)

Supporting Patterns

1) Master-worker

— A process or thread (the master) sets up a task queue and manages
other threads (the workers) as they grab a task from the queue,
carry out the computation, and then return for their next task.
This continues until the master detects that a termination condition
has been met, at which point the master ends the computation.

2) Single Instruction Multiple Data (SIMD)

—A supporting pattern for data parallelism, in which a single
instruction stream is applied to multiple data elements in parallel.

3) Single Program Multiple Data (SPMD)

— Multiple copies of a single program are launched typically with their
own view of the data. The path through the program for each
copy is determined in part based on a unique ID (a rank).

31 COMP 322, Spring 2012 (V.Sarkar) %

3) SPMD Supporting Pattern

« SPMD: Single Program Multiple Data

« Run the same program on P processing elements (PEs)

« Use the "rank” .. an ID ranging from O to (P-1) .. to determine
what computation is performed on what data by a given PE

« Different PEs can follow different paths through the same code
(unlike the SIMD pattern)

« Convenient pattern for hardware platforms that are not
amenable to efficient forms of dynamic task parallelism

— General-Purpose Graphics Processing Units (GPGPUs)
— Distributed-memory parallel machines

« Key design decisions --- what data and computation should be
replicated or partitioned across PEs?

32 COMP 322, Spring 2012 (V.Sarkar)

SPMD Example #2: Iterative Averaging
Example (Slide 9, Lecture 13)

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2];

2. gval[n+l1l] = 1; // Boundary condition
3. int Cj = Runtime.getNumOfWorkers();
4. forall (point [jj]:[0:Cj-1]) { // SPMD computation

5. double[] myVal = gVal; double[] myNew = gNew; // Local copy

6. for (point [iter] : [O:numIters-1]) {

7. // Compute MyNew as function of input array MyVal

8. for (point [j]:getChunk([1l:n],[Cjl,[331))

9. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

10. next; // Barrier before executing next iteration of iter loop
11. // Swap myVal and myNew (replicated computation)

12. double[] temp=myVal; myVal=myNew; myNew=temp;

13. // myNew becomes input array for next iter

14. } // for
15.} // forall

33 COMP 322, Spring 2012 (V.Sarkar) %ﬂ

java.lang.Thread class (Lecture 27)

« Execution of a Java program begins with an instance of Thread created
by the Java Virtual Machine (JVM) that executes the program's main()
method.

* Parallelism can be introduced by creating additional instances of class
Thread that execute as parallel threads.

1 public class Thread extends Object implements Runnable {

2 Thread() { ... } // Creates a new Thread

3 Thread (Runnable r) { ... } // Creates a new Thread with Runnable object r
4 void run() { ... } // Code to be executed by thread

5 // Case 1: If this thread was created using a Runnable object,

6 // then that object’s run method is called

7 // Case 2: If this class is subclassed, then the run() method

8 // in the subclass is called

9 void start() { ... } // Causes this thread to start execution

10 void join() { ... } // Wait for this thread to die

11 void join(long m) // Wait at most m milliseconds for thread to die
12 static Thread currentThread() // Returns currently executing thread
13

14}

Listing 3: java.lang.Thread class

34 COMP 322, Spring 2012 (V.Sarkar) %}

Listing 4: Two-way Parallel ArraySum
using Java threads

B b

o ~1 & O s W

// Start of Task T1 (main program)
suml = 0; sum2 = 0; // Assume that suml & sum2 are fields (not local vars)
// Compute suml (lower half) and sum2 (upper half) in parallel
final int len = X.length;
Runnable rl = new Runnable() {
public void run(){ for(int i=0 ; i < len/2 ; i++) suml += X[i];}
};

Thread t1 = new Thread(rl);
tl.start ();
Runnable r2 = new Runnable() {
public void run(){ for(int i=len/2 ; i < len ; i++4+) sum2 += X[i];}
}s

Thread t2 = new Thread (r2);

t2.start ();

// Wait for threads tl and t2 to complete
tl.join(); t2.join();

int sum = suml + sum?2;

35 COMP 322, Spring 2012 (V.Sarkar) 2

Objects and Locks in Java --- synchronized
statements and methods (Lecture 29)

« Every Java object has an associated lock acquired via:

— synchronized statements

- synchronized(foo) { // acquire foo's lock
// execute code while holding foo's lock
} // release foo's lock

— synchronized methods

- public synchronized void op1() { // acquire 'this' lock
// execute method while holding ‘this’' lock
} // release ‘this’ lock

« Java language does not enforce any relationship between object used for locking and
objects accessed in isolated code

— If same object is used for locking and data access, then the object behaves like a
monitor

« Locking and unlocking are automatic
— Locks are released when a synchronized block exits
By normal means: end of block reached, return, break
When an exception is thrown and not caught

« Java's synchronized is related to "mutex” locks in POSIX thread library

36 COMP 322, Spring 2012 (V.Sarkar) &

Implementation of Java synchronized
statements/methods

« Every object has an associated lock

« "“synchronized” is translated to matching monitorenter and
monitorexit bytecode instructions for the Java virtual machine

—monitorenter requests “ownership” of the object’s lock
—monitorexit releases “ownership” of the object’s lock

« If a thread performing monitorenter does not own the lock
(because another thread already owns it), it is placed in an
unordered “entry set” for the object's lock

acquire lock

S S

entry set

37 COMP 322, Spring 2012 (V.Sarkar) D

The Java wait() Method

« A thread can perform a wait() method on an object that it owns:

1. the thread releases the object lock
2. thread state is set to blocked
3. thread is placed in the wait set

« Causes thread to wait until another thread invokes the notify() method
or the notifyAll() method for this object.

« Since interrupts and spurious wake-ups are possible, this method should
always be used in a loop e.g.,

synchronized (obj) {
while (<condition does not hold>)
obj.wait();

... // Perform action appropriate to condition

}

» Java's wait-notify is related to “condition variables” in POSIX threads

38 COMP 322, Spring 2012 (V.Sarkar)

Entry and Wait Sets

acquire lock wait
I I
entry set wait set

39 COMP 322, Spring 2012 (V.Sarkar) <

The notify() Method

When a thread calls notify(), the following occurs:

1. selects an arbitrary thread T from the wait set
2. moves T to the entry set
3. sets T to Runnable

T can now compete for the object’s lock again

40 COMP 322, Spring 2012 (V.Sarkar) %ﬁ

java.util.concurrent.locks.Lock interface
(Lecture 30)

interface Lock {
void lock() ;
void lockInterruptibly () throws InterruptedException;
boolean tryLock() ;
boolean trylLock (long timeout, TimeUnit unit)
throws InterruptedException;
void unlock () ;
Condition newCondition() ;

// can associate multiple condition vars with lock

- java.util.concurrent.locks.Lock interface is implemented by
java.util.concurrent.locks.ReentrantlLock class

41 COMP 322, Spring 2012 (V.Sarkar) &

Simple ReentrantLock() example

Used extensively within java.util.concurrent

final Lock lock = new ReentrantLock() ;

lock.lock () ;
try {

// perform operations protected by lock
}

catch (Exception ex) {
// restore invariants & rethrow
}

finally ({
lock.unlock() ;
}

Must manually ensure lock is released

42 COMP 322, Spring 2012 (V.Sarkar) A

Reading vs. writing

* Recall that the use of synchronization is to protect interfering accesses

— Multiple concurrent reads of same memory: Not a problem
— Multiple concurrent writes of same memory: Problem
— Multiple concurrent read & write of same memory: Problem

So far:

— If concurrent write/write or read/write might occur, use synchronization to
ensure one-thread-at-a-time

But:

— This is unnecessarily conservative: we could still allow multiple simultaneous
readers

Consider a hashtable with one coarse-grained lock

— So only one thread can perform operations at a time

But suppose:
— There are many simultaneous lookup operations
— insert operations are very rare

43 COMP 322, Spring 2012 (V.Sarkar) D

java.util.concurrent.locks.ReadWriteLock
interface

interface ReadWriteLock {
Lock readLock () ;
Lock writelLock() ;
}
« Even though the interface appears to just define a pair of locks,
the semantics of the pair of locks is coupled as follows
—Case 1: a thread has successfully acquired writeLock().lock()
- No other thread can acquire readLock() or writeLock()
—Case 2: no thread has acquired writeLock().lock()
- Multiple threads can acquire readLock()
- No other thread can acquire writelLock()
« java.util.concurrent.locks.ReadWriteLock interface is implemented
by java.util.concurrent.locks.ReadWriteReentrantlLock class

44 COMP 322, Spring 2012 (V.Sarkar) &

1.import

2.class Hello {
static public void main(String[] args) {

=0 N OO A W

45

Our First MPI Program
(mpiJava version, Lecture 33)

main() is enclosed in an
implicit “forall” --- each
process runs a separate
instance of main() with
mpi.*; “index variable” = myrank

// Init() be called before other MPI calls
MPI.Init(args); /
int npes = MPI. COMM_WORLD .Size ()

int myrank = MPI.COMM WORLD.Rank() ;

System.out.println(”"My process number is ” + myrank) ;
MPI.Finalize(); // Shutdown and clean-up

COMP 322, Spring 2012 (V.Sarkar)

Example of Send and Recv

1 .import mpi.*;

3.c1ass myProg {
4. public static void main(String[] args) {

5. int tag0 = 0;
6. MPI.Init(args); // Start MPI computation
7. if (MPI.COMM WORLD.rank() == 0) { // rank 0 = sender
8. int loop[] = new int[1l]; loop[0] = 3;
9. MPI.COMM WORLD.Send("Hello World!", 0, 12, MPI.CHAR, 1, tag0);
10. MPI.COMM WORLD.Send(loop, O, 1, MPI.INT, 1, tag0);
11. } else { // rank 1 = receiver
12. int loop[] = new int[l]; char msg[] = new char[12];
13. MPI.COMM WORLD.Recv(msg, 0, 12, MPI.CHAR, 0, tag0);
14. MPI.COMM WORLD.Recv(loop, 0, 1, MPI.INT, 0, tag0);
15. for (int i = 0; i < loop[0]; i++) System.out.println(msg);
16.
%g. MPI.Finalize() // Finish MPI computation
. 1}
19.

Send() and Recv() calls are blocking operations by default

46 COMP 322, Spring 2012 (V.Sarkar)

Announcements

« Homework 6 due due by 11:55pm today
— An automatic 7-day penalty-free extension can be used till April 27th

« Homeworks 4 and 5 will be returned by end of Monday, April 23rd

« Exam 2 is a take-home exam
— Maximum duration = 2 hours
— Closed-book, closed-notes, closed-computer

— Pick up exam from Amanda Nokleby's office (Duncan Hall 3137) any time
starting 2pm today

— Return exam to Amanda’s office by 4pm on Friday, April 27th

— Written exam --- no penalty for minor syntactic errors in program text, so
long as the meaning of the program is unambiguous.

— If you believe there is any ambiguity or inconsistency in a question, you
should state the ambiguity or inconsistency that you see, and any assumptions
that you make to resolve it.

— Scope of exam includes Lectures 17-34, excluding Lecture 19 (midterm
review) and Lecture 28 (guest lecture)

47 COMP 322, Spring 2012 (V.Sarkar) &

Acknowledgments

* 6raduate TAs
— Sanjay Chatterjee
— Deepak Majeti
— Dragos Sbirlea

« Undergraduate TAs
— Max 6Grossman

— Damien Stone

Have a great
summerl!

— Yunming Zhang

« Research Programmer

— Vincent Cave

« Additional HJ expert
— Shams Imam

« Administrative assistant
— Amanda Nokleby

48 COMP 322, Spring 2012 (V.Sarkar) %ﬁ

