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Places in HJ (Lectures 17, 18)
here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) =  place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”

<place-expr>.id returns the id of the place as an int

async at(P) S

• Creates new task to execute statement S at place P

• async S is equivalent to async at(here) S

• Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child 
task is executing, not the place where the parent task is executing
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Distributions --- hj.lang.dist
• A distribution maps points in a rectangular index space (region) to 

places e.g.,
—   i à place.factory.place(i % place.MAX_PLACES-1)

• Programmers are free to create any data structure they choose to 
store and compute these mappings

• For convenience, the HJ language provides a predefined type, 
hj.lang.dist, to simplify working with distributions

• Some public members available in an instance d of hj.lang.dist are:

—d.rank = number of dimensions in the input region for distribution d
—d.get(p) = place for point p mapped by distribution d. It is an error to 

call d.get(p) if p.rank != d.rank.
—d.places() = set of places in the range of distribution d
—d.restrictToRegion(pl) = region of points mapped to place pl by 

distribution d
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Block Distribution
• dist.factory.block([lo:hi]) creates a block distribution over the 

one-dimensional region, lo:hi.

• A block distribution splits the region into contiguous subregions, 
one per place, while trying to keep the subregions as close to 
equal in size as possible. 

• Block distributions can improve the performance of parallel loops 
that exhibit spatial locality across contiguous iterations.

• Example in Table 1: dist.factory.block([0:15]) for 4 places
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Cyclic Distribution
• dist.factory.cyclic([lo:hi]) creates a cyclic distribution over the 

one-dimensional region, lo:hi. 

• A cyclic distribution “cycles” through places 0 … place.MAX 
PLACES − 1 when spanning the input region

• Cyclic distributions can improve the performance of parallel 
loops that exhibit load imbalance

• Example in Table 3: dist.factory.cyclic([0:15]) for 4 places

• Example in Table 4: dist.factory.cyclic([0:7,0:1]) for 4 places
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Homework 5: Solution to Problem 1a 
   1.dist d = dist.factory.block([1:N]);
2.! for (point [iter] : [0:M-1]) {
3.!   finish for(int j=1; j<=N; j++) 
4.!     async at(d[j]) {
5.!       myNew[j] = (myVal[j-1] + myVal[j+1]) / 2.0; 
6.!     } //finish-for-async-at
7.!   double[] temp = myNew; myNew = myVal; myVal = temp; 
8.! } // for      

Number of remote reads for block distribution ~ 2*M*P

Number of remote reads for cyclic distribution ~ 2*M*N
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HJ isolated statement (Lectures 20, 21, 37)

isolated <body>

• Two tasks executing isolated statements with interfering 
accesses must perform the isolated statement in mutual 
exclusion
—Two instances of isolated statements, ⟨stmt1⟩ and ⟨stmt2⟩, are said 

to interfere with each other if both access a shared location, such 
that at least one of the accesses is a write.

èWeak isolation guarantee: no mutual exclusion applies to non-isolated 
statements i.e., to (isolated, non-isolated) and (non-isolated, non-
isolated) pairs of statement instances

• Isolated statements may be nested (redundant)

• Isolated statements must not contain any other parallel 
statement that performs a blocking operation: finish, get, next

—Non-blocking operations (e.g., async) are fine
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Object-based isolation in HJ 
isolated(<object-list>) <body>

• In this case, programmer specifies list of objects for 
which isolation is required

• Mutual exclusion is only guaranteed for instances of 
isolated statements that have a non-empty 
intersection in their object lists 

—Standard isolated is equivalent to isolated(*) by 
default i.e., isolation across all objects

• Implementation can choose to distinguish between 
read/write accesses for further parallelism

—Current HJ implementation supports object-based 
isolation, does not exploit read/write distinction

8



COMP 322, Spring 2012 (V.Sarkar)

java.util.concurrent.AtomicInteger methods and their 
equivalent isolated statements

9

Methods in java.util.concurrent.AtomicInteger class and their 
equivalent HJ isolated statements.  Variable v refers to an 
AtomicInteger object in column 2 and to a standard non-atomic 
Java object in column 3.  val refers to a field of type int.
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Parallel Spanning Tree Algorithm using 
isolated statement

1. class V  {
2.   V [] neighbors; // adjacency list for input graph
3.   AtomicReference parent; // output value of parent in spanning tree

4.   boolean tryLabeling(V n) {
5.     isolated if (parent == null) parent=n;

6.     return parent == n; 
7.   } // tryLabeling
8.   void compute() {

9.     for (int i=0; i<neighbors.length; i++) { 
10.      V child = neighbors[i];  

11.      if (child.tryLabeling(this))
12.          async child.compute(); //escaping async
13.     } 

14.  } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .

10



COMP 322, Spring 2012 (V.Sarkar)

Parallel Spanning Tree Algorithm using 
object-based isolation

1. class V  {
2.   V [] neighbors; // adjacency list for input graph
3.   AtomicReference parent; // output value of parent in spanning tree

4.   boolean tryLabeling(V n) {
5.     isolated(this) if (parent == null) parent=n;

6.     return parent == n; 
7.   } // tryLabeling
8.   void compute() {

9.     for (int i=0; i<neighbors.length; i++) { 
10.      V child = neighbors[i];  

11.      if (child.tryLabeling(this))
12.          async child.compute(); //escaping async
13.     } 

14.  } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .
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Parallel Spanning Tree Algorithm using 
java.util.concurrent.atomic.AtomicReference

1. class V  {
2.   V [] neighbors; // adjacency list for input graph
3.   AtomicReference parent; // output value of parent in spanning tree
4.   boolean tryLabeling(V n) {
5.     return parent.compareAndSet(null ,n);
6.  
7.   } // tryLabeling
8.   void compute() {
9.     for (int i=0; i<neighbors.length; i++) { 
10.      V child = neighbors[i];  
11.      if (child.tryLabeling(this))
12.          async child.compute(); //escaping async
13.     } 
14.  } // compute
15.} // class V
16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();
19.. . .
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The Actor Model (Lectures 21, 22, 23)

• An actor may: 
—process messages
—read/write local state
—create a new actor
—start a new actor 
—send messages to 

other actors
—terminate

• An actor processes 
messages sequentially
—guaranteed mutual 

exclusion on accesses 
to local state

Thread

State

Mailbox
create
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Actor Life Cycle

Actor states

l New: Actor has been created

l e.g., email account has been created

l Started: Actor can receive and process messages

l e.g., email account has been activated
l Terminated: Actor will no longer processes messages 

l e.g., termination of email account after graduation
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Using Actors in HJ
l Create your custom class which extends hj.lang.Actor<Object> ,and 

implement the void process() method
class MyActor extends Actor<Object> {
  protected void process(Object message) {
    System.out.println(“Processing “ + message);
} }

l Instantiate and start your actor
!Actor<Object> anActor = new MyActor(); anActor.start()

l Send messages to the actor
  anActor.send(aMessage); //aMessage can be any object in general

l Use a special message to terminate an actor
  protected void process(Object message) {
    if (message.someCondition()) exit(); 
  }

l Actor execution implemented as async tasks in HJ
l Can use finish to await their completion
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Simple Pipeline

Stage-1

Filter 
even 

length 
strings

Stage-2

Filter 
lowercase 

strings

Stage-3

Print 
results
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d
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Simple Pipeline using HJ Actors
1.   // Main program 
2.   finish {
3.     Actor<Object> firstStage =
4.       new EvenLengthFilter(
5.         new LowerCaseFilter(
6.           new LastStage()));
7.     firstStage.start(); // starts others
8.     firstStage.send("pipeline");
9.     firstStage.send(new StopMessage());
10.  }
11. 
12.class LastStage extends Actor {
13.  protected void process(Object msg) {
14.    if (msg instanceof StopMessage) {
15.      exit();
16.    } else if (msg instanceof String) {
17.      System.out.println(msg);
18.} } } 

17

Sends are asynchronous 
in actor model, but HJ 
Actor library preserves 
order of messages 
between same sender and 
receiver
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Simple Pipeline using HJ Actors (contd)
19.class LowerCaseFilter extends Actor {
20.  protected void process(Object msg) {
21.    if (msg instanceof StopMessage) {
22.      exit(); nextStage.send(msg);
23.    } else if (msg instanceof String) {
24.      String str = (String) msg;
25.      if (str.toLowerCase().equals(str)) {
26.        nextStage.send(str);
27.} } } }
28.class EvenLengthFilter extends Actor {
29.  protected void process(Object msg) {
30.    if (msg instanceof StopMessage) {
31.      nextStage.send(msg);
32.      exit();
33.    } else if (msg instanceof String) {
34.      String msgStr = (String) msg;
35.      if (msgStr.length() % 2 == 0) {
36.        nextStage.send(msgStr);
37.} } } } 
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Adding support for places in HJ actors
l Basic approach: include an optional place parameter in the 

start() method

Actor<Object> anActor = new MyActor();
 
    anActor.start(p);    // Start actor at place p

l Example:
   SievePlaceActor nextActor = new SievePlaceActor(...); 

   // Start actor at next place, relative to current place
   nextActor.start(here.next());
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Summary of Mutual Exclusion approaches in HJ

l Isolated --- analogous to critical sections

l Object-based isolation, isolated(a, b, ...)

l Single object in list --- like monitor operations on object

l Multiple objects in list --- deadlock-free mutual exclusion on sets 
of objects

l Java atomic variables --- optimized implementation of object-
based isolation

l Java concurrent collections --- optimized implementation of 
monitors

l Actors --- different paradigm from task parallelism (mutual 
exclusion by default)
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Linearizability of Concurrent Objects 
(Lectures 23, 24)

Concurrent object

• A concurrent object is an object that can correctly handle 
methods invoked in parallel by different tasks or threads
—Examples: concurrent queue, AtomicInteger

Linearizability

• Assume that each method call takes effect “instantaneously” at 
some distinct point in time between its invocation and return.

• An execution is linearizable if we can choose instantaneous 
points that are consistent with a sequential execution in which 
methods are executed at those points

• An object is linearizable if all its possible executions are 
linearizable
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Example 1

time

q.enq(x)

q.enq(y)

q.deq():yq.enq(x)

q.enq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 

Is this execution linearizable?

22



COMP 322, Spring 2012 (V.Sarkar)

q.enq(x)

q.enq(y)

q.deq():y

q.deq():x

time

Example 2
Is this execution linearizable?
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Homework 5: Solution to Problem 2b
import java.util.concurrent.atomic.*;

1.class IQueue {
2.  AtomicInteger head = new AtomicInteger(0); 
3.  AtomicInteger tail = new AtomicInteger(0); 
4.  Object[] items = new Object[Integer.MAX_VALUE]; 
5.  public void enq(Object x) {
6.    int slot ;
7.    // Loop till enqueue slot is found
8.    do slot = tail.get();
9.    while (!tail.compareAndSet(slot,slot +1)); 
10.    items[slot] = x;
11.  } // enq
12.  public Object deq() throws EmptyException {
13.    Object value; int slot; 
14.    // Loop till dequeue slot is found
15.    do {
16.      slot = head.get(); value = items[slot];
17.      if (value == null) throw new EmptyException();
18.    } while (!head.compareAndSet(slot,slot+1));
19.    return value;
20.  } // deq
21.} // Iqueue

Not linearizable.  Consider { async enq(A); enq(B); deq(); }

Assume that enq(A) pauses between lines 9 and 10 
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Safety vs. Liveness (Lecture 25)

• In a concurrent setting, we need to specify both the safety 
and the liveness properties of an object

• Need a way to define 
—Safety: when an implementation is correct
—Liveness: the conditions under which it guarantees progress

• Linearizability is a safety property for concurrent objects
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Desirable Properties of Parallel Program 
Executions

• Data-race freedom

• Termination

• But some applications are designed to be non-terminating

• Liveness = a program’s ability to make progress in a timely 
manner

• Different levels of liveness guarantees (from weaker to 
stronger)
—Deadlock freedom
—Livelock freedom
—Starvation freedom

• Today’s lecture discusses progress guarantees for HJ programs
— We will revisit progress guarantees for Java concurrency later
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Deadlock-Free Parallel Program Executions
• A parallel program execution is deadlock-free if no task’s execution remains 

incomplete due to it being blocked awaiting some condition

• Example of a program with a deadlocking execution

 DataDrivenFuture left = new DataDrivenFuture();

 DataDrivenFuture right = new DataDrivenFuture();

 finish {

   async await ( left ) right.put(rightBuilder()); // Task1

      async await ( right ) left.put(leftBuilder()); // Task2

 }

• In this case, Task1 and Task2 are in a deadlock cycle.  
– Only two constructs can lead to deadlock in HJ: async await or explicit 

phaser wait (instead of next)

—There are many mechanisms that can lead to deadlock cycles in other 
programming models (e.g., locks) 
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Livelock-Free Parallel Program Executions
• A parallel program execution exhibits livelock if two or more tasks 

repeat the same interactions without making any progress (special case 
of nontermination)

• Livelock example: 
// Task 1
incrToTwo(AtomicInteger ai) {
  // increment ai till it reaches 2  
  while (ai.incrementAndGet() < 2);
}

• Many well-intended approaches to avoid deadlock result in livelock 
instead

• Any data-race-free HJ program without isolated/atomic-variables/
actors is guaranteed to be livelock-free (may be nonterminating in a 
single task, however)

// Task 2
decrToNegativeTwo(AtomicInteger ai) {
  // decrement ai till it reaches -2 
  while (a.decrementAndGet() > -2);
}
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Starvation-Free Parallel Program 
Executions

• A parallel program execution exhibits starvation if some task is 
repeatedly denied the opportunity to make progress
—Starvation-freedom is sometimes referred to as “lock-out freedom”
—Starvation is possible in HJ programs, since all tasks in the same 

program are assumed to be cooperating, rather than competing
– If starvation occurs in a deadlock-free HJ program, the 

“equivalent” sequential program must have been non-terminating 

• Classic source of starvation: “Priority Inversion” problem for OS 
threads (usually from different processes)
—Thread A is at high priority, waiting for result or resource from 

Thread C at low priority
—Thread B at intermediate priority is CPU-bound
—Thread C never runs, hence thread A never runs
—Fix: when a high priority thread waits for a low priority thread, 

boost the priority of the low-priority thread
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Selecting the Right Pattern (Lecture 25)
(adapted from page 9, Parallel Programming w/ Microsoft .Net)

30

Application characteristics Algorithmic pattern Relevant HJ 
constructs

Sequential loop with independent 
iterations

1) Parallel Loop forall, forasync

Independent operations with well-
defined control flow

2) Parallel Task async, finish

Aggregating data from independent 
tasks/iterations

3) Parallel Aggregation 
(reductions)

finish accumulators, 
atomic variables

Ordering of steps based on data 
flow constraints

4) Futures futures, data-driven 
tasks

Divide-and-conquer algorithms 
with recursive data structures

5) Dynamic Task 
Parallelism

async, finish

Repetitive operations on data 
streams

6) Pipelines streaming phasers 
(deterministic), actors 
(non-deterministic)
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Supporting Patterns
1) Master-worker
—A process or thread (the master) sets up a task queue and manages 

other threads (the workers) as they grab a task from the queue, 
carry out the computation, and then return for their next task. 
This continues until the master detects that a termination condition 
has been met, at which point the master ends the computation. 

2) Single Instruction Multiple Data (SIMD)
—A supporting pattern for data parallelism, in which a single 

instruction stream is applied to multiple data elements in parallel.

3) Single Program Multiple Data (SPMD)
—Multiple copies of a single program are launched typically with their 

own view of the data.  The path through the program for each 
copy is determined in part based on a unique ID (a rank). 
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3) SPMD Supporting Pattern
• SPMD: Single Program Multiple Data

• Run the same program on P processing elements (PEs)

• Use the “rank” … an ID ranging from 0 to (P-1) … to determine 
what computation is performed on what data by a given PE

• Different PEs can follow different paths through the same code 
(unlike the SIMD pattern)

• Convenient pattern for hardware platforms that are not 
amenable to efficient forms of dynamic task parallelism
—General-Purpose Graphics Processing Units (GPGPUs)
—Distributed-memory parallel machines

• Key design decisions --- what data and computation should be 
replicated or partitioned across PEs?
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SPMD Example #2: Iterative Averaging 
Example (Slide 9, Lecture 13)

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2]; 

2. gVal[n+1] = 1; // Boundary condition

3. int Cj = Runtime.getNumOfWorkers();

4. forall (point [jj]:[0:Cj-1]) { // SPMD computation

5.   double[] myVal = gVal; double[] myNew = gNew; // Local copy

6.   for (point [iter] : [0:numIters-1]) {

7.     // Compute MyNew as function of input array MyVal

8.     for (point [j]:getChunk([1:n],[Cj],[jj]))

9.        myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

10.    next; // Barrier before executing next iteration of iter loop

11.    // Swap myVal and myNew (replicated computation)

12.    double[] temp=myVal; myVal=myNew; myNew=temp;

13.    // myNew becomes input array for next iter

14.  } // for

15.} // forall
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java.lang.Thread class (Lecture 27)
• Execution of a Java program begins with an instance of Thread created 

by the Java Virtual Machine (JVM) that executes the program’s main() 
method. 

• Parallelism can be introduced by creating additional instances of class 
Thread that execute as parallel threads. 

34
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Listing 4: Two-way Parallel ArraySum 
using Java threads
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Objects and Locks in Java --- synchronized 
statements and methods (Lecture 29)

• Every Java object has an associated lock acquired via:
— synchronized statements

–   synchronized( foo ) { // acquire foo’s lock
   // execute code while holding foo’s lock
} // release foo’s lock

— synchronized methods
–   public synchronized void op1() { // acquire ‘this‘ lock

   // execute method while holding ‘this’ lock
} // release ‘this’ lock

• Java language does not enforce any relationship between object used for locking and 
objects accessed in isolated code
— If same object is used for locking and data access, then the object behaves like a 

monitor

• Locking and unlocking are automatic
— Locks are released when a synchronized block exits

By normal means: end of block reached, return, break
When an exception is thrown and not caught

•  Java’s synchronized is related to “mutex” locks in POSIX thread library
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Implementation of Java synchronized 
statements/methods

• Every object has an associated lock

• “synchronized” is translated to matching monitorenter and 
monitorexit bytecode instructions for the Java virtual machine
—monitorenter requests “ownership” of the object’s lock
—monitorexit releases “ownership” of the object’s lock

• If a thread performing monitorenter does not own the lock 
(because another thread already owns it), it is placed in an 
unordered “entry set” for the object’s lock
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The Java wait() Method
• A thread can perform a wait() method on an object that it owns:

1.  the thread releases the object lock
2.  thread state is set to blocked
3.  thread is placed in the wait set

• Causes thread to wait until another thread invokes the notify() method 
or the notifyAll() method for this object. 

• Since interrupts and spurious wake-ups are possible, this method should 
always be used in a loop e.g., 

     synchronized (obj) {

         while (<condition does not hold>)

             obj.wait();

         ... // Perform action appropriate to condition

     }

•   Java’s wait-notify is related to “condition variables” in POSIX threads

 
38
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Entry and Wait Sets
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The notify() Method
When a thread calls notify(), the following occurs:

1.  selects an arbitrary thread T  from the wait set
2.  moves T  to the entry set
3.  sets T  to Runnable

T can now compete for the object’s lock again

40
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java.util.concurrent.locks.Lock interface
(Lecture 30)

  interface Lock {

  void lock();

  void lockInterruptibly() throws InterruptedException;

  boolean tryLock();

  boolean tryLock(long timeout, TimeUnit unit)

                           throws InterruptedException;

  void unlock();

  Condition newCondition(); 

     // can associate multiple condition vars with lock

}

• java.util.concurrent.locks.Lock interface is implemented by 
java.util.concurrent.locks.ReentrantLock class

41
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Simple ReentrantLock() example

42
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Reading vs. writing
• Recall that the use of synchronization is to protect interfering accesses

— Multiple concurrent reads of same memory: Not a problem
— Multiple concurrent writes of same memory: Problem
— Multiple concurrent read & write of same memory: Problem

So far:
— If concurrent write/write or read/write might occur, use synchronization to 

ensure one-thread-at-a-time

But:
— This is unnecessarily conservative: we could still allow multiple simultaneous 

readers

Consider a hashtable with one coarse-grained lock
— So only one thread can perform operations at a time

But suppose:
— There are many simultaneous lookup operations
— insert operations are very rare
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java.util.concurrent.locks.ReadWriteLock 
interface

  interface ReadWriteLock {

  Lock readLock();

  Lock writeLock();

  }

• Even though the interface appears to just define a pair of locks, 
the semantics of the pair of locks is coupled as follows
—Case 1: a thread has successfully acquired writeLock().lock()

– No other thread can acquire readLock() or writeLock()
—Case 2: no thread has acquired writeLock().lock()

– Multiple threads can acquire readLock()
– No other thread can acquire writeLock()

• java.util.concurrent.locks.ReadWriteLock interface is implemented 
by java.util.concurrent.locks.ReadWriteReentrantLock class
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Our First MPI Program 
(mpiJava version, Lecture 33)

1.import mpi.*;
2.class Hello {
3.    static public void main(String[] args) {
4.       // Init() be called before other MPI calls
5.       MPI.Init(args); /
6.       int npes = MPI.COMM_WORLD.Size() 
7.       int myrank = MPI.COMM_WORLD.Rank() ;
8.       System.out.println(”My process number is ” + myrank);
9.       MPI.Finalize(); // Shutdown and clean-up
10.    }
11.}

main() is enclosed in an 
implicit “forall” --- each 
process runs a separate 
instance of main() with 
“index variable” = myrank
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Example of Send and Recv
1.import mpi.*;

3.class myProg {
4.  public static void main( String[] args ) {
5.    int tag0 = 0;
6.    MPI.Init( args );        // Start MPI computation
7.    if ( MPI.COMM_WORLD.rank() == 0 ) { // rank 0 = sender
8.      int loop[] = new int[1]; loop[0] = 3;
9.      MPI.COMM_WORLD.Send( "Hello World!", 0, 12, MPI.CHAR, 1, tag0 );
10.      MPI.COMM_WORLD.Send( loop, 0, 1, MPI.INT, 1, tag0 );
11.    } else {                            // rank 1 = receiver
12.      int loop[] = new int[1]; char msg[] = new char[12];
13.      MPI.COMM_WORLD.Recv( msg, 0, 12, MPI.CHAR, 0, tag0 );
14.      MPI.COMM_WORLD.Recv( loop, 0, 1, MPI.INT, 0, tag0 );
15.      for ( int i = 0; i < loop[0]; i++ ) System.out.println( msg );
16.    }
17.    MPI.Finalize( );        // Finish MPI computation
18.  }
19.}

Send() and Recv() calls are blocking operations by default
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Announcements 
• Homework 6 due due by 11:55pm today

— An automatic 7-day penalty-free extension can be used till April 27th

• Homeworks 4 and 5 will be returned by end of Monday, April 23rd

• Exam 2 is a take-home exam
— Maximum duration = 2 hours
— Closed-book, closed-notes, closed-computer
— Pick up exam from Amanda Nokleby's office (Duncan Hall 3137) any time 

starting 2pm today
— Return exam to Amanda’s office by 4pm on Friday, April 27th
— Written exam --- no penalty for minor syntactic errors in program text, so 

long as the meaning of the program is unambiguous.
— If you believe there is any ambiguity or inconsistency in a question, you 

should state the ambiguity or inconsistency that you see, and any assumptions 
that you make to resolve it. 

— Scope of exam includes Lectures 17-34, excluding Lecture 19 (midterm 
review) and Lecture 28 (guest lecture)
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summer!!


