
COMP 322: Fundamentals of
Parallel Programming

Lecture 39: Course Review

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 39 20 April 2012

COMP 322, Spring 2012 (V.Sarkar)

Places in HJ (Lectures 17, 18)
here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) = place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”

<place-expr>.id returns the id of the place as an int

async at(P) S

• Creates new task to execute statement S at place P

• async S is equivalent to async at(here) S

• Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child
task is executing, not the place where the parent task is executing

2

COMP 322, Spring 2012 (V.Sarkar)

Distributions --- hj.lang.dist
• A distribution maps points in a rectangular index space (region) to

places e.g.,
— i à place.factory.place(i % place.MAX_PLACES-1)

• Programmers are free to create any data structure they choose to
store and compute these mappings

• For convenience, the HJ language provides a predefined type,
hj.lang.dist, to simplify working with distributions

• Some public members available in an instance d of hj.lang.dist are:

—d.rank = number of dimensions in the input region for distribution d
—d.get(p) = place for point p mapped by distribution d. It is an error to

call d.get(p) if p.rank != d.rank.
—d.places() = set of places in the range of distribution d
—d.restrictToRegion(pl) = region of points mapped to place pl by

distribution d

3

COMP 322, Spring 2012 (V.Sarkar)

Block Distribution
• dist.factory.block([lo:hi]) creates a block distribution over the

one-dimensional region, lo:hi.

• A block distribution splits the region into contiguous subregions,
one per place, while trying to keep the subregions as close to
equal in size as possible.

• Block distributions can improve the performance of parallel loops
that exhibit spatial locality across contiguous iterations.

• Example in Table 1: dist.factory.block([0:15]) for 4 places

4

COMP 322, Spring 2012 (V.Sarkar)

Cyclic Distribution
• dist.factory.cyclic([lo:hi]) creates a cyclic distribution over the

one-dimensional region, lo:hi.

• A cyclic distribution “cycles” through places 0 … place.MAX
PLACES − 1 when spanning the input region

• Cyclic distributions can improve the performance of parallel
loops that exhibit load imbalance

• Example in Table 3: dist.factory.cyclic([0:15]) for 4 places

• Example in Table 4: dist.factory.cyclic([0:7,0:1]) for 4 places

5

COMP 322, Spring 2012 (V.Sarkar)

Homework 5: Solution to Problem 1a
 1.dist d = dist.factory.block([1:N]);
2.! for (point [iter] : [0:M-1]) {
3.! finish for(int j=1; j<=N; j++)
4.! async at(d[j]) {
5.! myNew[j] = (myVal[j-1] + myVal[j+1]) / 2.0;
6.! } //finish-for-async-at
7.! double[] temp = myNew; myNew = myVal; myVal = temp;
8.! } // for

Number of remote reads for block distribution ~ 2*M*P

Number of remote reads for cyclic distribution ~ 2*M*N

6

COMP 322, Spring 2012 (V.Sarkar)

HJ isolated statement (Lectures 20, 21, 37)

isolated <body>

• Two tasks executing isolated statements with interfering
accesses must perform the isolated statement in mutual
exclusion
—Two instances of isolated statements, ⟨stmt1⟩ and ⟨stmt2⟩, are said

to interfere with each other if both access a shared location, such
that at least one of the accesses is a write.

èWeak isolation guarantee: no mutual exclusion applies to non-isolated
statements i.e., to (isolated, non-isolated) and (non-isolated, non-
isolated) pairs of statement instances

• Isolated statements may be nested (redundant)

• Isolated statements must not contain any other parallel
statement that performs a blocking operation: finish, get, next

—Non-blocking operations (e.g., async) are fine

7

COMP 322, Spring 2012 (V.Sarkar)

Object-based isolation in HJ
isolated(<object-list>) <body>

• In this case, programmer specifies list of objects for
which isolation is required

• Mutual exclusion is only guaranteed for instances of
isolated statements that have a non-empty
intersection in their object lists

—Standard isolated is equivalent to isolated(*) by
default i.e., isolation across all objects

• Implementation can choose to distinguish between
read/write accesses for further parallelism

—Current HJ implementation supports object-based
isolation, does not exploit read/write distinction

8

COMP 322, Spring 2012 (V.Sarkar)

java.util.concurrent.AtomicInteger methods and their
equivalent isolated statements

9

Methods in java.util.concurrent.AtomicInteger class and their
equivalent HJ isolated statements. Variable v refers to an
AtomicInteger object in column 2 and to a standard non-atomic
Java object in column 3. val refers to a field of type int.

COMP 322, Spring 2012 (V.Sarkar)

Parallel Spanning Tree Algorithm using
isolated statement

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree

4. boolean tryLabeling(V n) {
5. isolated if (parent == null) parent=n;

6. return parent == n;
7. } // tryLabeling
8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {
10. V child = neighbors[i];

11. if (child.tryLabeling(this))
12. async child.compute(); //escaping async
13. }

14. } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .

10

COMP 322, Spring 2012 (V.Sarkar)

Parallel Spanning Tree Algorithm using
object-based isolation

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree

4. boolean tryLabeling(V n) {
5. isolated(this) if (parent == null) parent=n;

6. return parent == n;
7. } // tryLabeling
8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {
10. V child = neighbors[i];

11. if (child.tryLabeling(this))
12. async child.compute(); //escaping async
13. }

14. } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .

11

COMP 322, Spring 2012 (V.Sarkar)

Parallel Spanning Tree Algorithm using
java.util.concurrent.atomic.AtomicReference

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree
4. boolean tryLabeling(V n) {
5. return parent.compareAndSet(null ,n);
6.
7. } // tryLabeling
8. void compute() {
9. for (int i=0; i<neighbors.length; i++) {
10. V child = neighbors[i];
11. if (child.tryLabeling(this))
12. async child.compute(); //escaping async
13. }
14. } // compute
15.} // class V
16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();
19.. . .

12

COMP 322, Spring 2012 (V.Sarkar)

The Actor Model (Lectures 21, 22, 23)

• An actor may:
—process messages
—read/write local state
—create a new actor
—start a new actor
—send messages to

other actors
—terminate

• An actor processes
messages sequentially
—guaranteed mutual

exclusion on accesses
to local state

Thread

State

Mailbox
create

13

send

Thread

State

Mailbox

State

Mailbox

Thread

State

Mailbox

start

COMP 322, Spring 2012 (V.Sarkar)14

Actor Life Cycle

Actor states

l New: Actor has been created

l e.g., email account has been created

l Started: Actor can receive and process messages

l e.g., email account has been activated
l Terminated: Actor will no longer processes messages

l e.g., termination of email account after graduation

COMP 322, Spring 2012 (V.Sarkar)15

Using Actors in HJ
l Create your custom class which extends hj.lang.Actor<Object> ,and

implement the void process() method
class MyActor extends Actor<Object> {
 protected void process(Object message) {
 System.out.println(“Processing “ + message);
} }

l Instantiate and start your actor
!Actor<Object> anActor = new MyActor(); anActor.start()

l Send messages to the actor
 anActor.send(aMessage); //aMessage can be any object in general

l Use a special message to terminate an actor
 protected void process(Object message) {
 if (message.someCondition()) exit();
 }

l Actor execution implemented as async tasks in HJ
l Can use finish to await their completion

COMP 322, Spring 2012 (V.Sarkar)16

Simple Pipeline

Stage-1

Filter
even

length
strings

Stage-2

Filter
lowercase

strings

Stage-3

Print
results

a
s
d

A
Simple
pipeline
with
3
stages

Simple
pipeline
with
stages

pipeline
with
stages

COMP 322, Spring 2012 (V.Sarkar)

Simple Pipeline using HJ Actors
1. // Main program
2. finish {
3. Actor<Object> firstStage =
4. new EvenLengthFilter(
5. new LowerCaseFilter(
6. new LastStage()));
7. firstStage.start(); // starts others
8. firstStage.send("pipeline");
9. firstStage.send(new StopMessage());
10. }
11.
12.class LastStage extends Actor {
13. protected void process(Object msg) {
14. if (msg instanceof StopMessage) {
15. exit();
16. } else if (msg instanceof String) {
17. System.out.println(msg);
18.} } }

17

Sends are asynchronous
in actor model, but HJ
Actor library preserves
order of messages
between same sender and
receiver

COMP 322, Spring 2012 (V.Sarkar)

Simple Pipeline using HJ Actors (contd)
19.class LowerCaseFilter extends Actor {
20. protected void process(Object msg) {
21. if (msg instanceof StopMessage) {
22. exit(); nextStage.send(msg);
23. } else if (msg instanceof String) {
24. String str = (String) msg;
25. if (str.toLowerCase().equals(str)) {
26. nextStage.send(str);
27.} } } }
28.class EvenLengthFilter extends Actor {
29. protected void process(Object msg) {
30. if (msg instanceof StopMessage) {
31. nextStage.send(msg);
32. exit();
33. } else if (msg instanceof String) {
34. String msgStr = (String) msg;
35. if (msgStr.length() % 2 == 0) {
36. nextStage.send(msgStr);
37.} } } }

18

COMP 322, Spring 2012 (V.Sarkar)

Adding support for places in HJ actors
l Basic approach: include an optional place parameter in the

start() method

Actor<Object> anActor = new MyActor();

 anActor.start(p); // Start actor at place p

l Example:
 SievePlaceActor nextActor = new SievePlaceActor(...);

 // Start actor at next place, relative to current place
 nextActor.start(here.next());

19

COMP 322, Spring 2012 (V.Sarkar)20

Summary of Mutual Exclusion approaches in HJ

l Isolated --- analogous to critical sections

l Object-based isolation, isolated(a, b, ...)

l Single object in list --- like monitor operations on object

l Multiple objects in list --- deadlock-free mutual exclusion on sets
of objects

l Java atomic variables --- optimized implementation of object-
based isolation

l Java concurrent collections --- optimized implementation of
monitors

l Actors --- different paradigm from task parallelism (mutual
exclusion by default)

COMP 322, Spring 2012 (V.Sarkar)

Linearizability of Concurrent Objects
(Lectures 23, 24)

Concurrent object

• A concurrent object is an object that can correctly handle
methods invoked in parallel by different tasks or threads
—Examples: concurrent queue, AtomicInteger

Linearizability

• Assume that each method call takes effect “instantaneously” at
some distinct point in time between its invocation and return.

• An execution is linearizable if we can choose instantaneous
points that are consistent with a sequential execution in which
methods are executed at those points

• An object is linearizable if all its possible executions are
linearizable

21

COMP 322, Spring 2012 (V.Sarkar)

Example 1

time

q.enq(x)

q.enq(y)

q.deq():yq.enq(x)

q.enq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Is this execution linearizable?

22

COMP 322, Spring 2012 (V.Sarkar)

q.enq(x)

q.enq(y)

q.deq():y

q.deq():x

time

Example 2
Is this execution linearizable?

23

COMP 322, Spring 2012 (V.Sarkar)

Homework 5: Solution to Problem 2b
import java.util.concurrent.atomic.*;

1.class IQueue {
2. AtomicInteger head = new AtomicInteger(0);
3. AtomicInteger tail = new AtomicInteger(0);
4. Object[] items = new Object[Integer.MAX_VALUE];
5. public void enq(Object x) {
6. int slot ;
7. // Loop till enqueue slot is found
8. do slot = tail.get();
9. while (!tail.compareAndSet(slot,slot +1));
10. items[slot] = x;
11. } // enq
12. public Object deq() throws EmptyException {
13. Object value; int slot;
14. // Loop till dequeue slot is found
15. do {
16. slot = head.get(); value = items[slot];
17. if (value == null) throw new EmptyException();
18. } while (!head.compareAndSet(slot,slot+1));
19. return value;
20. } // deq
21.} // Iqueue

Not linearizable. Consider { async enq(A); enq(B); deq(); }

Assume that enq(A) pauses between lines 9 and 10

24

COMP 322, Spring 2012 (V.Sarkar)

Safety vs. Liveness (Lecture 25)

• In a concurrent setting, we need to specify both the safety
and the liveness properties of an object

• Need a way to define
—Safety: when an implementation is correct
—Liveness: the conditions under which it guarantees progress

• Linearizability is a safety property for concurrent objects

25

COMP 322, Spring 2012 (V.Sarkar)

Desirable Properties of Parallel Program
Executions

• Data-race freedom

• Termination

• But some applications are designed to be non-terminating

• Liveness = a program’s ability to make progress in a timely
manner

• Different levels of liveness guarantees (from weaker to
stronger)
—Deadlock freedom
—Livelock freedom
—Starvation freedom

• Today’s lecture discusses progress guarantees for HJ programs
— We will revisit progress guarantees for Java concurrency later

26

COMP 322, Spring 2012 (V.Sarkar)

Deadlock-Free Parallel Program Executions
• A parallel program execution is deadlock-free if no task’s execution remains

incomplete due to it being blocked awaiting some condition

• Example of a program with a deadlocking execution

 DataDrivenFuture left = new DataDrivenFuture();

 DataDrivenFuture right = new DataDrivenFuture();

 finish {

 async await (left) right.put(rightBuilder()); // Task1

 async await (right) left.put(leftBuilder()); // Task2

 }

• In this case, Task1 and Task2 are in a deadlock cycle.
– Only two constructs can lead to deadlock in HJ: async await or explicit

phaser wait (instead of next)

—There are many mechanisms that can lead to deadlock cycles in other
programming models (e.g., locks)

27

COMP 322, Spring 2012 (V.Sarkar)

Livelock-Free Parallel Program Executions
• A parallel program execution exhibits livelock if two or more tasks

repeat the same interactions without making any progress (special case
of nontermination)

• Livelock example:
// Task 1
incrToTwo(AtomicInteger ai) {
 // increment ai till it reaches 2
 while (ai.incrementAndGet() < 2);
}

• Many well-intended approaches to avoid deadlock result in livelock
instead

• Any data-race-free HJ program without isolated/atomic-variables/
actors is guaranteed to be livelock-free (may be nonterminating in a
single task, however)

// Task 2
decrToNegativeTwo(AtomicInteger ai) {
 // decrement ai till it reaches -2
 while (a.decrementAndGet() > -2);
}

28

COMP 322, Spring 2012 (V.Sarkar)

Starvation-Free Parallel Program
Executions

• A parallel program execution exhibits starvation if some task is
repeatedly denied the opportunity to make progress
—Starvation-freedom is sometimes referred to as “lock-out freedom”
—Starvation is possible in HJ programs, since all tasks in the same

program are assumed to be cooperating, rather than competing
– If starvation occurs in a deadlock-free HJ program, the

“equivalent” sequential program must have been non-terminating

• Classic source of starvation: “Priority Inversion” problem for OS
threads (usually from different processes)
—Thread A is at high priority, waiting for result or resource from

Thread C at low priority
—Thread B at intermediate priority is CPU-bound
—Thread C never runs, hence thread A never runs
—Fix: when a high priority thread waits for a low priority thread,

boost the priority of the low-priority thread

29

COMP 322, Spring 2012 (V.Sarkar)

Selecting the Right Pattern (Lecture 25)
(adapted from page 9, Parallel Programming w/ Microsoft .Net)

30

Application characteristics Algorithmic pattern Relevant HJ
constructs

Sequential loop with independent
iterations

1) Parallel Loop forall, forasync

Independent operations with well-
defined control flow

2) Parallel Task async, finish

Aggregating data from independent
tasks/iterations

3) Parallel Aggregation
(reductions)

finish accumulators,
atomic variables

Ordering of steps based on data
flow constraints

4) Futures futures, data-driven
tasks

Divide-and-conquer algorithms
with recursive data structures

5) Dynamic Task
Parallelism

async, finish

Repetitive operations on data
streams

6) Pipelines streaming phasers
(deterministic), actors
(non-deterministic)

COMP 322, Spring 2012 (V.Sarkar)31

Supporting Patterns
1) Master-worker
—A process or thread (the master) sets up a task queue and manages

other threads (the workers) as they grab a task from the queue,
carry out the computation, and then return for their next task.
This continues until the master detects that a termination condition
has been met, at which point the master ends the computation.

2) Single Instruction Multiple Data (SIMD)
—A supporting pattern for data parallelism, in which a single

instruction stream is applied to multiple data elements in parallel.

3) Single Program Multiple Data (SPMD)
—Multiple copies of a single program are launched typically with their

own view of the data. The path through the program for each
copy is determined in part based on a unique ID (a rank).

COMP 322, Spring 2012 (V.Sarkar)32

3) SPMD Supporting Pattern
• SPMD: Single Program Multiple Data

• Run the same program on P processing elements (PEs)

• Use the “rank” … an ID ranging from 0 to (P-1) … to determine
what computation is performed on what data by a given PE

• Different PEs can follow different paths through the same code
(unlike the SIMD pattern)

• Convenient pattern for hardware platforms that are not
amenable to efficient forms of dynamic task parallelism
—General-Purpose Graphics Processing Units (GPGPUs)
—Distributed-memory parallel machines

• Key design decisions --- what data and computation should be
replicated or partitioned across PEs?

COMP 322, Spring 2012 (V.Sarkar)

SPMD Example #2: Iterative Averaging
Example (Slide 9, Lecture 13)

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2];

2. gVal[n+1] = 1; // Boundary condition

3. int Cj = Runtime.getNumOfWorkers();

4. forall (point [jj]:[0:Cj-1]) { // SPMD computation

5. double[] myVal = gVal; double[] myNew = gNew; // Local copy

6. for (point [iter] : [0:numIters-1]) {

7. // Compute MyNew as function of input array MyVal

8. for (point [j]:getChunk([1:n],[Cj],[jj]))

9. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

10. next; // Barrier before executing next iteration of iter loop

11. // Swap myVal and myNew (replicated computation)

12. double[] temp=myVal; myVal=myNew; myNew=temp;

13. // myNew becomes input array for next iter

14. } // for

15.} // forall

33

COMP 322, Spring 2012 (V.Sarkar)

java.lang.Thread class (Lecture 27)
• Execution of a Java program begins with an instance of Thread created

by the Java Virtual Machine (JVM) that executes the program’s main()
method.

• Parallelism can be introduced by creating additional instances of class
Thread that execute as parallel threads.

34

COMP 322, Spring 2012 (V.Sarkar)

Listing 4: Two-way Parallel ArraySum
using Java threads

35

COMP 322, Spring 2012 (V.Sarkar)

Objects and Locks in Java --- synchronized
statements and methods (Lecture 29)

• Every Java object has an associated lock acquired via:
— synchronized statements

– synchronized(foo) { // acquire foo’s lock
 // execute code while holding foo’s lock
} // release foo’s lock

— synchronized methods
– public synchronized void op1() { // acquire ‘this‘ lock

 // execute method while holding ‘this’ lock
} // release ‘this’ lock

• Java language does not enforce any relationship between object used for locking and
objects accessed in isolated code
— If same object is used for locking and data access, then the object behaves like a

monitor

• Locking and unlocking are automatic
— Locks are released when a synchronized block exits

By normal means: end of block reached, return, break
When an exception is thrown and not caught

• Java’s synchronized is related to “mutex” locks in POSIX thread library

36

COMP 322, Spring 2012 (V.Sarkar)

Implementation of Java synchronized
statements/methods

• Every object has an associated lock

• “synchronized” is translated to matching monitorenter and
monitorexit bytecode instructions for the Java virtual machine
—monitorenter requests “ownership” of the object’s lock
—monitorexit releases “ownership” of the object’s lock

• If a thread performing monitorenter does not own the lock
(because another thread already owns it), it is placed in an
unordered “entry set” for the object’s lock

37

COMP 322, Spring 2012 (V.Sarkar)

The Java wait() Method
• A thread can perform a wait() method on an object that it owns:

1. the thread releases the object lock
2. thread state is set to blocked
3. thread is placed in the wait set

• Causes thread to wait until another thread invokes the notify() method
or the notifyAll() method for this object.

• Since interrupts and spurious wake-ups are possible, this method should
always be used in a loop e.g.,

 synchronized (obj) {

 while (<condition does not hold>)

 obj.wait();

 ... // Perform action appropriate to condition

 }

• Java’s wait-notify is related to “condition variables” in POSIX threads

38

COMP 322, Spring 2012 (V.Sarkar)39

Entry and Wait Sets

COMP 322, Spring 2012 (V.Sarkar)

The notify() Method
When a thread calls notify(), the following occurs:

1. selects an arbitrary thread T from the wait set
2. moves T to the entry set
3. sets T to Runnable

T can now compete for the object’s lock again

40

COMP 322, Spring 2012 (V.Sarkar)

java.util.concurrent.locks.Lock interface
(Lecture 30)

 interface Lock {

 void lock();

 void lockInterruptibly() throws InterruptedException;

 boolean tryLock();

 boolean tryLock(long timeout, TimeUnit unit)

 throws InterruptedException;

 void unlock();

 Condition newCondition();

 // can associate multiple condition vars with lock

}

• java.util.concurrent.locks.Lock interface is implemented by
java.util.concurrent.locks.ReentrantLock class

41

COMP 322, Spring 2012 (V.Sarkar)

Simple ReentrantLock() example

42

COMP 322, Spring 2012 (V.Sarkar)

Reading vs. writing
• Recall that the use of synchronization is to protect interfering accesses

— Multiple concurrent reads of same memory: Not a problem
— Multiple concurrent writes of same memory: Problem
— Multiple concurrent read & write of same memory: Problem

So far:
— If concurrent write/write or read/write might occur, use synchronization to

ensure one-thread-at-a-time

But:
— This is unnecessarily conservative: we could still allow multiple simultaneous

readers

Consider a hashtable with one coarse-grained lock
— So only one thread can perform operations at a time

But suppose:
— There are many simultaneous lookup operations
— insert operations are very rare

43

COMP 322, Spring 2012 (V.Sarkar)

java.util.concurrent.locks.ReadWriteLock
interface

 interface ReadWriteLock {

 Lock readLock();

 Lock writeLock();

 }

• Even though the interface appears to just define a pair of locks,
the semantics of the pair of locks is coupled as follows
—Case 1: a thread has successfully acquired writeLock().lock()

– No other thread can acquire readLock() or writeLock()
—Case 2: no thread has acquired writeLock().lock()

– Multiple threads can acquire readLock()
– No other thread can acquire writeLock()

• java.util.concurrent.locks.ReadWriteLock interface is implemented
by java.util.concurrent.locks.ReadWriteReentrantLock class

44

COMP 322, Spring 2012 (V.Sarkar)

Our First MPI Program
(mpiJava version, Lecture 33)

1.import mpi.*;
2.class Hello {
3. static public void main(String[] args) {
4. // Init() be called before other MPI calls
5. MPI.Init(args); /
6. int npes = MPI.COMM_WORLD.Size()
7. int myrank = MPI.COMM_WORLD.Rank() ;
8. System.out.println(”My process number is ” + myrank);
9. MPI.Finalize(); // Shutdown and clean-up
10. }
11.}

main() is enclosed in an
implicit “forall” --- each
process runs a separate
instance of main() with
“index variable” = myrank

45

COMP 322, Spring 2012 (V.Sarkar)

Example of Send and Recv
1.import mpi.*;

3.class myProg {
4. public static void main(String[] args) {
5. int tag0 = 0;
6. MPI.Init(args); // Start MPI computation
7. if (MPI.COMM_WORLD.rank() == 0) { // rank 0 = sender
8. int loop[] = new int[1]; loop[0] = 3;
9. MPI.COMM_WORLD.Send("Hello World!", 0, 12, MPI.CHAR, 1, tag0);
10. MPI.COMM_WORLD.Send(loop, 0, 1, MPI.INT, 1, tag0);
11. } else { // rank 1 = receiver
12. int loop[] = new int[1]; char msg[] = new char[12];
13. MPI.COMM_WORLD.Recv(msg, 0, 12, MPI.CHAR, 0, tag0);
14. MPI.COMM_WORLD.Recv(loop, 0, 1, MPI.INT, 0, tag0);
15. for (int i = 0; i < loop[0]; i++) System.out.println(msg);
16. }
17. MPI.Finalize(); // Finish MPI computation
18. }
19.}

Send() and Recv() calls are blocking operations by default

46

COMP 322, Spring 2012 (V.Sarkar)

Announcements
• Homework 6 due due by 11:55pm today

— An automatic 7-day penalty-free extension can be used till April 27th

• Homeworks 4 and 5 will be returned by end of Monday, April 23rd

• Exam 2 is a take-home exam
— Maximum duration = 2 hours
— Closed-book, closed-notes, closed-computer
— Pick up exam from Amanda Nokleby's office (Duncan Hall 3137) any time

starting 2pm today
— Return exam to Amanda’s office by 4pm on Friday, April 27th
— Written exam --- no penalty for minor syntactic errors in program text, so

long as the meaning of the program is unambiguous.
— If you believe there is any ambiguity or inconsistency in a question, you

should state the ambiguity or inconsistency that you see, and any assumptions
that you make to resolve it.

— Scope of exam includes Lectures 17-34, excluding Lecture 19 (midterm
review) and Lecture 28 (guest lecture)

47

COMP 322, Spring 2012 (V.Sarkar)

Acknowledgments
• Graduate TAs

— Sanjay Chatterjee
— Deepak Majeti
— Dragos Sbirlea

• Undergraduate TAs
— Max Grossman
— Damien Stone
— Yunming Zhang

• Research Programmer
— Vincent Cave

• Additional HJ expert
— Shams Imam

• Administrative assistant
— Amanda Nokleby

48

Have a great
summer!!

