
COMP 322: Fundamentals of
Parallel Programming

Lecture 5: Data and Control Flow in Async
Tasks, Data Races

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 5 20 January 2012

COMP 322, Spring 2012 (V.Sarkar)

Acknowledgments
• Chapter 4 of “The Art and Science of Java”, Eric Roberts, Stanford

University

• CS201J Lecture 2: Java Semantics, David Evans
—www.cs.virginia.edu/cs201j/lectures/lecture2.ppt

2

COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture
• Understanding Data and Control Flow between an Async Task

and its Parent

• Data Races and How to Avoid Them

3

COMP 322, Spring 2012 (V.Sarkar)

static
fields

Stack
Frame 1

heap
data

objects,
arrays

Stack
Frame 2

Recap of Java’s Storage Model
for Sequential Programs

Java’s storage model contains three memory regions:

1. Static Data: region of memory reserved for
variables that are not allocated or destroyed
during a class’ lifetime, such as static fields.

2. Stack Data: Each time you call a method, Java
allocates a new block of memory called a stack
frame to hold its local variables.

3. Heap Data: region of memory for dynamically
allocated objects and arrays (created by “new”).

All references (pointers) must point to heap data
--- no references can point to static or stack data

. . .

4

public void run() {
 Point p1 = new Point(0, 0);
 Point p2 = new Point(200, 200);
 Line line = new Line(p1, p2); // Heap-stack diagram is for this stmt
}

public class Line {
 public Line(Point p1,
 Point p2) {
 start = p1;
 finish = p2;
 }
 . . .
 private Point start;
 private Point finish;
}

public class Point {
 public Point(int x, int y) {
 cx = x;
 cy = y;
 }
 . . .
 private int cx;
 private int cy;
}

COMP 322, Spring 2012 (V.Sarkar)

 finish
 start

200cy
200cx

0cy
0cx

p1
p2
line

heap

stack
frame

Example of Stack-to-Heap and
Heap-to-Heap Pointers

5

COMP 322, Spring 2012 (V.Sarkar)6

“hi”“high”

Mutability

• If an object is modified, all references to the
object see the new value

sb
java.lang.StringBuffer

tb

StringBuffer sb = new (“hi”);
StringBuffer tb = sb;
tb.append (“gh”);Stack Frame

Heap Object

COMP 322, Spring 2012 (V.Sarkar)7

Parameter Passing in Java
• Call-by-value: All parameters in Java are passed by value. The method
receives a copy of the parameter, not the caller’s local variable.

• Parameters can only contain primitives and references. Copying a
reference (pointer) does not make a copy of the object pointed to.

• Caller and callee methods can communicate in the following ways
—Parameters: callee receives a parameter from the caller in the form

of a local variable (stack data)
—Return values: callee can return a single value as a local variable for

the caller (stack data)
—Caller and callee can both read/write the same static fields (static

data)
—Caller and callee can both read/write the same objects and arrays

(heap data)

COMP 322, Spring 2012 (V.Sarkar)

Example: Use of Static Fields to Communicate Return
Values from a Method (Poor Programming Practice)

1. static int sum1 = 0, sum2 = 0;

2. static void computeSum1Sum2(int[] X) { // callee

3. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];

4. for(int i=0; i < X.length/2; i++) sum1 += X[i];

5. }

6. public static void main(String[] argv) { // caller

7. int[] X = new int[...];

8. ... // Initialize X

9. int sum;

10. computeSum1Sum2(X); // Call cannot update sum in main()

11. sum = sum1 + sum2;

12.

13. }

8

COMP 322, Spring 2012 (V.Sarkar)

Example: Use of an Object to Communicate
Return Values from a Method (Preferred Approach)
1. public class TwoIntegers {int sum1; int sum2;}

2. . . .

3. static TwoIntegers computeSum1Sum2(int[] X) { // callee

4. TwoIntegers r = new TwoIntegers();

5. for(int i=X.length/2; i < X.length; i++) r.sum2 += X[i];

6. for(int i=0; i < X.length/2; i++) r.sum1 += X[i];

7. return r;

8. }

9. public static void main(String[] argv) { // caller

10. int[] X = new int[...]; ... // Initialize X

11. int sum;

12. TwoIntegers s = computeSum1Sum2(X);

13. sum = s.sum1 + s.sum2;

14.

15. }

9

COMP 322, Spring 2012 (V.Sarkar)

How can an Async Task interact with its
Parent Task?

• Data flow
—Async task can read from static fields, objects, arrays, and local

variables written by parent task
– Same rule as method calls, except that parent’s local variables are

passed as implicit parameters
— Async task can write to static fields, objects, arrays (but not parent’s

local variables) to be read by parent task after end-finish
– Same rule as method calls, except that method calls also have return

values
– We will learn soon about an extension to asyncs with return values

(futures)

• Control flow
—Async task can execute a return statement (different from method return)
— Async task can throw an exception
—NOTE: break/continue cannot cross async boundaries

10

COMP 322, Spring 2012 (V.Sarkar)

Data Flow: Use of Static Fields to Communicate Return
Value from an Async Tasks (Poor Programming Practice)

1. static int sum1 = 0, sum2 = 0;

2. public static void main(String[] argv) { // caller

3. int[] X = new int[...];

4. ... // Initialize X

5. int sum;

6. finish { // Async’s have same access rules as methods

7. async for(int i=X.length/2; i < X.length; i++)

8. sum2 += X[i];

9. async for(int i=0; i < X.length/2; i++)

10. sum1 += X[i];

11. }

12. sum = sum1 + sum2;

13.

14. }

11

COMP 322, Spring 2012 (V.Sarkar)

Data Flow: Use of an Object to Communicate Return
Values from Async Tasks (Preferred Approach)

1. public class TwoIntegers {int sum1; int sum2;}

2. . . .

3. public static void main(String[] argv) { // caller

4. int[] X = new int[...]; ... // Initialize X

5. int sum;

6. TwoIntegers r = new TwoIntegers();

7. finish { // Async’s have same access rules as methods

8. async for(int i=X.length/2; i < X.length; i++)

9. r.sum2 += X[i];

10. async for(int i=0; i < X.length/2; i++)

11. r.sum1 += X[i];

12. }

13. sum = r.sum1 + r.sum2;

14.

15. }

12

COMP 322, Spring 2012 (V.Sarkar)

Control Flow: Semantics of HJ return
statement

• Java semantics for return
—Return from enclosing method

• HJ semantics for return statement
—Return from immediately enclosing async or method

1.void foo() {

2. if (...) return; // Returns from method foo()

3. async { ... return; ... } // Returns from async

4. . . .

5.}

13

COMP 322, Spring 2012 (V.Sarkar)

Control Flow: Semantics of HJ break
and continue statements

• Java semantics for break/continue
—Perform appropriate action for innermost enclosing loop (or labeled loop)
—It’s an error to execute a break/continue statement without an

enclosing loop

• HJ semantics for break/continue
—It’s also an error to execute a break/continue statement in an async

without an enclosing loop in the same async
—Cryptic error message from HJ compiler

– “Target of branch statement not found”

1. void foo() {

2. async {

3. while (...) { ... break; ... } // Okay

4. break; // Error

5. }

14

COMP 322, Spring 2012 (V.Sarkar)

Some Common Errors in Lab 2
1. finish for (int i = 0; i <= N - M; i++) {

2. int j;

3. async {

4. for (j = 0; j < M; j++) {

5. async {

6. if (text[i+j] != pattern[j]) break;

7. }

8. if (j == M) return i;// found at offset i

9. }

10. }

15

COMP 322, Spring 2012 (V.Sarkar)

Some Common Errors in Lab 2
1. finish for (int i = 0; i <= N - M; i++) {

2. int j;

3. async {

4. for (j = 0; j < M; j++) {

5. async {

6. if (text[i+j] != pattern[j]) break;

7. }

8. if (j == M) return i;// found at offset i

9. }

10. }

Async cannot
modify local variable in

parent’s scope

No loop
enclosing break

in async

Return statement
in basic async task cannot take

a value

16

COMP 322, Spring 2012 (V.Sarkar)17

Async-Finish Exception Semantics
• Exceptions thrown by multiple async’s are accumulated into a

“MultipleExceptions” collection at their Immediately Enclosing Finish
1. try {

2. finish for (int i = 0; i < size; i++)

3. async {

4. // Add explicit ArrayIndexOutOfBoundsException with X[-1]

5. X[2*i*step] += X[(2*i+1)*step] + X[-1];

6. } // finish-for-async

7. } // try

8. catch (Throwable t) {

9. if (t instanceof MultipleExceptions)

10. ... // Process the collection, t.exceptions

11. else // single exception

12. ... // Process t

13. }

COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture
• Understanding Data and Control Flow between an Async Task

and its Parent

• Data Races and How to Avoid Them

18

COMP 322, Spring 2012 (V.Sarkar)19

Example of Incorrect Parallelization
from Homework 1

1. // Sequential version
2. for (p = first; p != null; p = p.next) p.x = p.y + p.z;
3. for (p = first; p != null; p = p.next) sum += p.x;
4.
5. // Incorrect parallel version
6. for (p = first; p != null; p = p.next)
7. async p.x = p.y + p.z;
8. for (p = first; p != null; p = p.next)
9. sum += p.x;

Why was this version incorrect?

COMP 322, Spring 2012 (V.Sarkar)20

Formal Definition of Data Races
	 Formally, a data race occurs on location L in a program

execution with computation graph CG if there exist steps
(nodes) S1 and S2 in CG such that:
1. S1 does not depend on S2 and S2 does not depend on S1 i.e.,

there is no path of dependence edges from S1 to S2 or from S2
to S1 in CG, and

2. Both S1 and S2 read or write L, and at least one of the accesses
is a write.

	 Data races are challenging because of
• Nondeterminism: different executions of the parallel program with

the same input may result in different outputs.

• Debugging and Testing: it is usually impossible to guarantee that all
possible orderings of the accesses to a location will be encountered
during program debugging and testing.

COMP 322, Spring 2012 (V.Sarkar)21

Five Observations related to Data Races
1. Immutability property: there cannot be a data race on shared

immutable data.
— A location, L, is immutable if it is only written during initialization, and can

only be read after initialization. In this case, no read can potentially
execute in parallel with the write.

• Parallel programming tip: use immutable objects and arrays to avoid
data races
— May require making copies of objects and arrays
— Copying overhead may be prohibitive in some cases, but acceptable in others

• Example with java.lang.String
finish {
 String s1 = "XYZ";
 async { String s2 = s1.toLowerCase(); ... }
 System.out.println(s1);
}

COMP 322, Spring 2012 (V.Sarkar)22

Observations
2. Single-task ownership property: there cannot be a data race

on a location that is only read or written by a single task.
— Define: step S in computation graph CG “owns” location L if S

performs a read or write access on L. If step S belongs to Task
T, we can also say that Task T owns L when executing S.

— Consider a location L that is only owned by steps that belong to
the same task, T. Since all steps in Task T must be connected
by continue edges in CG, all reads and writes to L must be ordered
by the dependences in CG. Therefore, no data race is possible on
location L.

COMP 322, Spring 2012 (V.Sarkar)23

Avoiding Data Races:
Copying for Single-task ownership

• If an object or array needs to be written multiple times after initialization,
then try and restrict its ownership to a single task.
— Entails making copies when sharing the object with other tasks.
— As with Immutability, copying overhead may be prohibitive in some cases, but

acceptable in others.

• Example
1.finish { // Task T1 owns A
2. int[] A = new int[n]; // ... initialize array A ...

3. // create a copy of array A in B

4. int[] B = new int[A.length]; System.arraycopy(A,0,B,0,A.length);

5. async { // Task T2 owns B

6. int sum = computeSum(B,0,B.length-1);// Modifies B (ArraySum1 algorithm)

7. System.out.println("sum = " + sum);

8. }

9. // ... update Array A ...

10. System.out.println(Arrays.toString(A)); //printed by task T1

11.}

COMP 322, Spring 2012 (V.Sarkar)24

Observations (contd)
3. Ownership-transfer property: there cannot be a data race on

a location if all steps that read or write it are totally ordered
in CG (i.e., if the steps belong to a single directed path)

— Think of the ownership of L being ``transferred'' from one step
to another, even across task boundaries, as execution follows the
path of dependence edges in the total order.

4. Local-variable ownership property: there cannot be a data
race on a local variable.

— If L is a local variable, it can only be written by the task in
which it is declared (L's owner). The copy-in semantics for local
variables ensures that the value of the local variable is copied on
async creation thus guaranteeing that there is no race condition
between the read access in the descendant task and the write
access in L’s owner.

COMP 322, Spring 2012 (V.Sarkar)25

Observations (contd)
5. Determinism property: if a parallel program with async and

finish operations never exhibits a data race, then it must be
deterministic with respect to its inputs.

— A computation is said to be “deterministic with respect to its
inputs” if it always computes the same answer, when given the
same inputs.

— For the class of parallel programs that we have studied thus far,
the absence of data races is sufficient to guarantee that the
parallel program must be deterministic with respect to its inputs.

— Such programs are said to to be “data-race-free”. Programs that
may exhibit data races are said to be “racy”.

COMP 322, Spring 2012 (V.Sarkar)

Homework 2 Reminder
• Programming assignment, due Monday, Jan 30th

• Post questions on Piazza (preferred), or send email to comp322-
staff at mailman.rice.edu

• You should plan to use turn-in script for HW2 submission
—Contact teaching staff if you cannot access turn-in by following the

instructions for Lab 1

• See course web site for penalties for late submissions

26

