
COMP 322: Fundamentals of
Parallel Programming

Lecture 7: Memory Models (contd),
Futures --- Tasks with Return Values

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 7 25 January 2012

COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture
• Code Transformations and Memory Consistency Models

• Futures --- Tasks with Return Values

2

• A memory consistency model, or memory model, is the part
of a programming language specification that defines what
write values a read may see in the presence of data races.

Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. System.out.println("First read = " + p.x);

11. System.out.println("Second read = " + q.x);

12. System.out.println("Third read = " + p.x);

13. }

COMP 322, Spring 2012 (V.Sarkar)

Memory Consistency Models (Recap)

Start

Step-0

aStep-1 Step-2

aStep-3 Step-4

aStep-5 Step-6

aStep-7 Step-8

End

1. p.x = 0;

2. p.x = 1;

3. p.x = 2;

5. = p.x;
6. = p.x;
7. = p.x;

10. = p.x;
11. = q.x;
12. = p.x;

• A memory consistency model, or memory model, is the part
of a programming language specification that defines what
write values a read may see in the presence of data races.

The following reads are prohibited by
Sequential Consistency (SC), but
permitted by the Java Memory Model
(JMM) and Habanero-Java Memory
Model (HJMM)

COMP 322, Spring 2012 (V.Sarkar)

Memory Consistency Models (Recap)

Start

Step-0

aStep-1 Step-2

aStep-3 Step-4

aStep-5 Step-6

aStep-7 Step-8

End

1. p.x = 0;

2. p.x = 1;

3. p.x = 2;

5. = p.x;
6. = p.x;
7. = p.x;

10. = p.x;
11. = q.x;
12. = p.x;

0
0
0

1
2
1

COMP 322, Spring 2012 (V.Sarkar)

Semantics-Preserving Code
Transformations in Sequential Programs

• A Code Transformation is said to be semantics-preserving if the
transformed program, P’, exhibits the same Input-Output behavior as
the original program, P

• For sequential programs, many local transformations are guaranteed to
be semantics-preserving regardless of the context
—e.g., replacing the second access of an object field or array

element by a local variable containing the result of the first access,
if there are no possible updates between the two accesses

5

1. static void foo(T p, T q) {

2. System.out.println(p.x);

3. System.out.println(q.x);

4. System.out.println(p.x);

5. }

1. static void foo(T p, T q) {

2. int xLocal = p.x

3. System.out.println(xLocal);

4. System.out.println(q.x);

5. System.out.println(xLocal);

6. }

P
P’

COMP 322, Spring 2012 (V.Sarkar)

Semantics-Preserving Code
Transformations in Parallel Programs

• Question: What should we expect if we perform a Code Transformation
on a sequential region of a parallel program, if the transformation is
knoen to be semantics-preserving for sequential programs?

• Answer: The transformation should be semantics-preserving for the
parallel program if there are no data races. Otherwise, it depends on
the memory model!

6

1. p.x = 0; q = p;

2. async p.x = 1;

3. async p.x = 2;

4. async foo(p, p);

5. async foo(p, q);

6. . . .

7. static void foo(T p, T q) {

8. System.out.println(p.x);

9. System.out.println(q.x);

10. System.out.println(p.x);

11. }

P P’ 1. p.x = 0; q = p;

2. async p.x = 1;

3. async p.x = 2;

4. async foo(p, p);

5. async foo(p, q);

6. . . .

7. static void foo(T p, T q) {

8. int xLocal = p.x

9. System.out.println(xLocal);

10. System.out.println(q.x);

11. System.out.println(xLocal);

12. }

Is this a legal
transformation?

It may result in the
following output:

0 0 0
1 2 1

==> Code transformation is legal for JMM & HJMM,
but not for SC !

COMP 322, Spring 2012 (V.Sarkar)

Summary of Memory Model Discussion
• Memory model specifies rules for what write values can

be seen by reads in the presence of data races
—In the absence of data races, program semantics specifies

exactly one write for each read

• A local code transformation performed on a sequential
code region may be semantics-preserving for sequential
programs, but not necessarily for parallel programs
—Stronger memory models (e.g., SC) are more restrictive

about permissible read sets than weaker memory models
(e.g., JMM, HJMM), and thus more restrictive about
allowing transformations

• Different memory models are appropriate for different
levels of the software stack
—e.g., SC at the OS/HW level, JMM at the thread level,

HJMM at the task level

7

SC

JMM

HJMM

COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture
• Code Transformations and Memory Consistency Models

• Futures --- Tasks with Return Values

8

COMP 322, Spring 2012 (V.Sarkar)

Extending Async Tasks with
Return Values

• Example Scenario in PseudoCode
1. // Parent task creates child async task

2. container = async<int> { return computeSum(X, low, mid); };

3. . . .

4. // Later, parent examines the return value

5. int sum = container.get();

• Two key issues to be addressed:
1) Distinction between container and value in container
2) Synchronization to avoid race condition in container accesses

9

Parent Task Child Task
container = async {...}
. . .
container.get()

computeSum(...)
return ...

return valuecontainer

COMP 322, Spring 2012 (V.Sarkar)10

HJ Futures: Tasks with Return Values

async<T> { <Stmt-Block> }

• Creates a new child task that
executes Stmt-Block, which
must terminate with a return
statement returning a value of
type T

• Async expression returns a
reference to a container of
type future<T>

• Values of type future<T> can
only be assigned to final
variables

Expr.get()

§ Evaluates Expr, and blocks if
Expr’s value is unavailable

§ Expr must be of type future<T>
§ Return value from Expr.get()

will then be T
§ Unlike finish which waits for all

tasks in the finish scope, a
get() operation only waits for
the specified async expression

1. // Parent Task T1 (main program)

2. // Compute sum1 (lower half) and sum2 (upper half) in parallel

3. final future<int> sum1 = async<int> { // Future Task T2

4. int sum = 0;

5. for(int i=0 ; i < X.length/2 ; i++) sum += X[i];

6. return sum;

7. }; //NOTE: semicolon needed to terminate assignment to sum1

8. final future<int> sum2 = async<int> { // Future Task T3

9. int sum = 0;

10. for(int i=X.length/2 ; i < X.length ; i++) sum += X[i];

11. return sum;

12. }; //NOTE: semicolon needed to terminate assignment to sum2

13. //Task T1 waits for Tasks T2 and T3 to complete

14. int total = sum1.get() + sum2.get();

COMP 322, Spring 2012 (V.Sarkar)11

Example: Two-way Parallel Array Sum
using Future Tasks

Why are these semicolons needed?

COMP 322, Spring 2012 (V.Sarkar)12

Future Task Declarations and Uses
• Variable of type future<T> is a reference to a future object

—Container for return value of T from future task
—The reference to the container is also known as a “handle”

• Two operations that can be performed on variable V1 of type
future<T1> (assume that type T2 is a subtype of type T1):
— Assignment: V1 can be assigned value of type future<T2>
— Blocking read: V1.get() waits until the future task referred

to by V1 has completed, and then propagates the return
value

• Future task body must start with a type declaration,
async<T1>, where T1 is the type of the task's return value

• Future task body must consist of a statement block enclosed in
{ } braces, terminating with a return statement

COMP 322, Spring 2012 (V.Sarkar)13

Comparison of Future Task and Regular
Async Versions of Two-Way Array Sum

• Future task version initializes two references to
future objects, sum1 and sum2, and both are
declared as final

• No finish construct needed in this example
—Instead parent task waits for child tasks by performing

sum1.get() and sum2.get()

• Guaranteed absence of race conditions in Future Task
example
—No race on sum because it is a local variable in tasks T2 and

T3
—No race on future variables, sum1 and sum2, because of

blocking-read semantics

COMP 322, Spring 2012 (V.Sarkar)14

Computation Graph Extensions for
Future Tasks

• Since a get() is a blocking operation, it must occur on boundaries
of CG nodes/steps
—May require splitting a statement into sub-statements e.g.,

– 14: int sum = sum1.get() + sum2.get();
 can be split into three sub-statements

– 14a int temp1 = sum1.get();
– 14b int temp2 = sum2.get();
– 14c int sum = temp1 + temp2;

• Spawn edge connects parent task to child future task, as before

• Join edge connects end of future task to Immediately Enclosing
Finish (IEF), as before

• Additional join edges are inserted from end of future task to
each get() operation on future object

COMP 322, Spring 2012 (V.Sarkar)15

Computation Graph for Two-way Parallel
Array Sum using Future Tasks

NOTE: Generation of computation graphs and data race detection
in current HJ implementation do not support futures as yet

COMP 322, Spring 2012 (V.Sarkar)16

Reduction Tree Schema in ArraySum1
(Recap)

Questions:

• How can we implement this schema using future tasks instead?

• Can we avoid overwriting elements of array X?

1. static int computeSum(int[] X, int lo, int hi) {
2. if (lo > hi) return 0;
3. else if (lo == hi) return X[lo];
4. else {
5. int mid = (lo+hi)/2;
 final future<int> sum1 =
6. async<int> { return computeSum(X, lo, mid); };
7. final future<int> sum2 =
8. async<int> { return computeSum(X, mid+1, hi); };
9. // Parent now waits for the container values
10. return sum1.get() + sum2.get();
11. }
12. } // computeSum

13. int sum = computeSum(X, 0, X.length-1); // main program

COMP 322, Spring 2012 (V.Sarkar)17

Array Sum using Future Tasks
(ArraySum2)

Recursive divide-and-conquer pattern

COMP 322, Spring 2012 (V.Sarkar)18

Extension of ArraySum2 to reduce an
arbitrary associative function, f

1.static int reduce(int[] X, int lo, int hi) {

2. if (lo > hi) return identity();

3. else if (lo == hi) return X[lo];

4. else {

5. int mid = (lo+hi)/2;

6. final future<int> sum1 =

7. async<int> {return computeSum(X, lo, mid);};

8. final future<int> sum2 =

9. async<int> {return computeSum(X, mid+1, hi);};

10. return f(sum1.get(), sum2.get());

11. }

12. } // computeSum

13. int retVal = reduce(X, 0, X.length-1); // main program

• Which of ArraySum1 or ArraySum2 will perform better if the
time taken by the reduction operator depends on its inputs
e.g., as in WordCount ?

COMP 322, Spring 2012 (V.Sarkar)19

Extra dependences in ArraySum1
program (for-finish-for-async)

f

X[2] X[3]

f

X[0] X[1]

f

X[4] X[5]

f

X[6] X[7]

X[0] X[2] X[4] X[6]

f f

X[0]

X[4]

f

X[0]

Extra dependence edges due to finish-async stages
(not present in ArraySum2 version with futures)

Text

COMP 322, Spring 2012 (V.Sarkar)20

Why must Future References be
declared as final?

static future<int> f1=null;

static future<int> f2=null;

void main(String[] args) {

 f1 = async<int> {return a1();};

 f2 = async<int> {return a2();};

int a1() { // Task T1
 while (f2 == null); // spin loop
 return f2.get(); //T1 waits for T2
}

int a2() { // Task T2
 while (f1 == null); // spin loop
 return f1.get(); //T2 waits for T1
}

• Above situation cannot arise in HJ because f1 and f2 must be final
• Final declaration ensures that variable (handle) cannot be modified after

initialization
• WARNING: such spin loops are an example of bad parallel programming

practice in application code (they should only be used by expert systems
programmers, and even then sparingly)
• Their semantics depends on the memory model!

cyclic wait condition

COMP 322, Spring 2012 (V.Sarkar)21

Future Tasks with void Return Type

• Key difference between
regular async’s and future
tasks is that future tasks
have a future<T> return
value

• We can get an
intermediate capability by
setting T=void as shown

• Can be useful if a task
needs to synchronize on a
specific task (instead of
finish), but doesn't need
a future object to
communicate a return
value

1. sum1 = 0; sum2 = 0; // Task T1

2. // Assume that sum1 & sum2 are fields

3. final future<void> a1 = async<void> {

4. for (int i=0; i < X.length/2; i++)

5. sum1 += X[i]; // Task T2

6. };

7. final future<void> a2 = async<void> {

8. for (int i=X.length/2; i < X.length; i++)

9. sum2 += X[i]; // Task T3

10. };

11. //Task T1 waits for Tasks T2 and T3

12. a1.get(); a2.get();

13. // Now fields sum1 and sum2 can be read

COMP 322, Spring 2012 (V.Sarkar)22

Future Tasks can generate more general
Computation Graphs than regular Async Tasks

A

B C

D E

F

Can you write a finish-async HJ program that generates
the following Computation Graph?

COMP 322, Spring 2012 (V.Sarkar)23

Using Future Tasks to generate previous
Computation Graph

1. // NOTE: return statement is optional

2. // when return type is void

3. final future<void> A = async<void>

4. { . . . };

5. final future<void> B = async<void>

6. { A.get(); . . . };

7. final future<void> C = async<void>

8. { A.get(); . . . };

9. final future<void> D = async<void>

10. { B.get(); C.get(); . . . };

11. final future<void> E = async<void>

12. { C.get(); . . . };

13. final future<void> F = async<void>

14. { D.get(); E.get(); . . . }

A

B C

D E

F

Computation Graph

COMP 322, Spring 2012 (V.Sarkar)

Homework 2 Reminder
• Programming assignment, due Monday, Jan 30th

• Post questions on Piazza (preferred), or send email to comp322-
staff at mailman.rice.edu

• You should plan to use turn-in script for HW2 submission
—Contact teaching staff if you cannot access turn-in by following the

instructions for Lab 1

• See course web site for penalties for late submissions

24

