
COMP 322 Spring 2013

Homework 2: due by 5pm on Wednesday, February 6, 2013

(Total: 100 points)
Instructor: Vivek Sarkar

All homeworks should be submitted in a directory named hw 2 using the turn-in script. In
case of problems using the script, you should email a zip file containing the directory to
comp322-staff@mailman.rice.edu before the deadline. See course wiki for late submission penal-
ties.

Honor Code Policy: All submitted homeworks are expected to be the result of your individual effort. You
are free to discuss course material and approaches to problems with your other classmates, the teaching
assistants and the professor, but you should never misrepresent someone elses work as your own. If you use
any material from external sources, you must provide proper attribution.

1 Written Assignments (50 points total)

Please submit your solutions to the written assignments in either a plain text file named hw 2 written.txt

or a PDF file named hw 2 written.pdf in the hw 2 directory.

1.1 Amdahl’s Law (20 points)

In Lecture 4, you learned the following statement of Amdahls Law:

If q ≤ 1 is the fraction of WORK in a parallel program that must be executed sequentially, then
the best speedup that can be obtained for that program, even with an unbounded number of
processors, is Speedup ≤ 1/q.

Now, consider the following generalization of Amdahls Law. Let q1 be the fraction of WORK in a parallel
program that must be executed sequentially, and q2 be the fraction of WORK that can use at most 2
processors. Assume that the fractions of WORK represented by q1 and q2 are disjoint. Your assignment is
to provide an upper bound on the Speedup as a function of q1 and q2, and justify why it is a correct upper
bound. (Hint: to check your answer, consider the cases when q1=0 or q2=0.)

1.2 Parallel Prefix Sum (30 points)

Lectures 8 and 9 will introduce the Parallel Prefix Sum algorithm, which computes partial sums for an array
of n elements with CPL(n) = O(log n). The algorithm will be described as an upward sweep followed by a
downward sweep.

1. For this part, your assignment is to provide pseudocode for the Parallel Prefix Sum problem using
whatever HJ constructs you choose for parallelism. For simplicity, you can assume that n is restricted
to be a power of 2. This is a written assignment, not a programming assignment i.e., you do not
need to compile and run your code. It is also acceptable if details that are not central to the parallel
structure of the code are written in English prose rather than real code. Your primary task is to specify
how the upward and downward sweeps can be implemented using HJ parallel constructs. You may
choose to provide an iterative or a recursive parallel solution.

2. For a given n, what is the minimum number of processors, P (n), that can be used to achieve a speedup
of O(n/ log n) relative to the O(n) sequential algorithm? As in the lectures, assume that the execution
time of this algorithm on P (n) processors can be approximated as WORK(n)/P (n) + CPL(n).

1 of 2

comp322-staff@mailman.rice.edu


COMP 322
Spring 2013

Homework 2: due by 5pm on Wednesday, February 6, 2013

(Total: 100 points)

2 Programming Assignment (50 points)

2.1 Setup

You should download four files posted alongside the HW2 link in the course web site: GeneralizedReduce.hj,
GeneralizedReduceApp.hj, SumReduction.hj, and TestSumReduction.hj.

IMPORTANT: For this homework, you should only edit GeneralizedReduce.hj, and leave the other
files unchanged. Further, you should not modify any of the existing declarations when adding code to
GeneralizedReduce.hj. Making additional modifications will make it difficult for the teaching staff to run
automated scripts to evaluate your code, and may result in penalties to your grade.

2.2 Generalized Reduce (50 points)

The goal of this assignment is to implement a GeneralizedReduce class in HJ to perform a user-specified
reduction on an array of Objects. A skeleton for this class is available in the GeneralizedReduce.hj file.

Your GeneralizedReduce class should support any class that implements the GeneralizedReduceApp inter-
face with init() and combine() methods to define a reduction operation. As an example, class SumReduction
implements the GeneralizedReduceApp interface to specify a sum reduction. Further, TestSumReduction.hj
contains a test harness for SumReduction. Since methods in GeneralizedReduceApp use objects as param-
eters, it is necessary to convert between primitive int values and Integer objects in SumReduction1.

You should use abstract metrics to evaluate the parallelism in your solution. Specifically, any reduction client
should include a call to perf.doWork(1) for each call to the combine() method, as in SumReduction.hj.
Thus, the total WORK and CPL (critical path length) for your HJ program executions will be evaluated
assuming that each call to combine() takes one unit of time. You will not be penalized if the actual execution
time of your parallel program is large due to overheads, so long as the abstract metrics are correct. Note
that the abstract metrics are independent of the computer that you run your HJ program on.

Your submission should include the following in the lab 2 directory; all code should include basic documen-
tation for each method in each class:

1. (20 points) A complete parallel implementation of the GeneralizedReduce class in HJ. You should
aim for maximum parallelism, assuming that each call to combine() just does 1 unit of work. The
implementation can use async, finish and/or future constructs, but not finish accumulators. Test
your implementation with the TestSumReduction test harness.

2. (15 points) A complete implementation of new MaxReduction and TestMaxReduction classes in HJ
to test your GeneralizedReduce implementation for a special max-index reduction that returns both
the max value and its index in an input integer array. If the max value has multiple occurrences in the
input array, then you should return the index of the first occurrence. For example, if the input array
is [5 1 -8 5 0], the output should consist of (maxValue=5, maxIndex=0), since 5 is the largest value in
the array and its first occurrence is at index 0.

3. (15 points) A report file formatted either as a plain text file named hw 2 report.txt or a PDF file
named hw 2 report.pdf in the hw 2 directory. The report should summarize the design of your
parallel solution, and explain why you believe that your implementation is correct, data-race-free, and
maximally parallel. It should also include the following:

(a) Abstract metrics obtained from executing both TestSumReduction and TestMaxReduction with
randomly-generated arrays of size n = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024. The report text
should include the the WORK, CPL, and IDEAL SPEEDUP (= WORK/CPL) from each run.

(b) Data race detection output for TestSumReduction executed on an input size of n = 64. (Recall
that both abstract metrics and data race detection options cannot be enabled at the same time
in DrHJ.)

1If you prefer, you can replace Object’s by generic type parameters.

2 of 2


	Written Assignments (50 points total)
	Amdahl's Law (20 points)
	Parallel Prefix Sum (30 points)

	Programming Assignment (50 points)
	Setup
	Generalized Reduce (50 points)


