
COMP 322 Spring 2012

Homework 3: due by 11:55pm on Friday, February 22, 2013

(Total: 100 points)
Instructor: Vivek Sarkar

All homeworks should be submitted in a directory named hw 3 using the turn-in script. In
case of problems using the script, you should email a zip file containing the directory to
comp322-staff@mailman.rice.edu before the deadline. See course wiki for late submission penal-
ties.

IMPORTANT: The programming assignment in this homework is more challenging than in
past homeworks. It is critical that you start early on the programming assignment to meet
the deadline.

Honor Code Policy: All submitted homeworks are expected to be the result of your individual effort. You
are free to discuss course material and approaches to problems with your other classmates, the teaching
assistants and the professor, but you should never misrepresent someone elses work as your own. If you use
any material from external sources, you must provide proper attribution.

1 Written Assignments (25 points total)

Please submit your solutions to the written assignments in either a plain text file named hw 3 written.txt

or a PDF file named hw 3 written.pdf in the hw 3 directory.

1.1 Future Tasks and Data-Driven Futures

1. (10 points) Summarize the similarities and differences between futures and data-driven futures in HJ.
In your summary, you should state if it is possible to create a race condition or a deadlock when
accessing the value in the future container when using either construct.

2. (15 points) Consider the HJ code fragment below that operates on an array of DataDrivenFutures.
(Note that there are no get() operations in this example, so the only purpose of the put() operation
is to synchronize with await clauses. For simplicity, we just use an empty string "" as the object being
put into a DataDrivenFuture.)

Is it possible for any instance of the async statement in line 6 to be indefinitely blocked on its await
clause? If so, explain how. If not, explain why not.

1. DataDrivenFuture[] A = new DataDrivenFuture[n];

2. for (int i = 0 ; i < n ; i++) {

3. A[i] = new DataDrivenFuture();

4. }

5. for (int i = n-1 ; i >= 1 ; i--) {

6. async await(A[i-1]) {

7. . . .

8. A[i].put();

9. } // async

10. } // for

11. A[0].put();
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2 Programming Assignment (75 points)

2.1 Pairwise Sequence Alignment

In this homework, we will focus on the pairwise sequence alignment problem in evolutionary and molecular
biology, and how parallelism can help in solving this problem. (This homework is adapted from Homework
7 from the Spring 2011 offering of COMP 182 by Prof. Luay Nakhleh.)

Let X and Y be two sequences over alphabet Σ (for DNA sequences, Σ = {A,C, T,G}). An alignment of X
and Y is two sequences X ′ and Y ′ over the alphabet Σ ∪ {−}, where X ′ is formed from X by adding only
dashes to it, and Y ′ is formed from Y by adding only dashes to it, such that

1 |X ′| = |Y ′| i.e., X ′ and Y ′ have the same size,

2 there does not exist an i such that X ′[i] = Y ′[i] = −, and

This alignment is also referred to as global pairwise alignment (as opposed to local pairwise alignment, which
is used to align selected regions of sequences X and Y ).

Sequence alignment helps biologists make inferences about the evolutionary relationship between two DNA
sequences. Aligning two sequences amounts to “reverse engineering” the evolutionary process that acted
upon the two sequences and modified them so that their characters and their lengths differ. As an example,
one possible alignment of the two sequences X = ACCT and Y = TACGGT is as follows:

X ′ = - A C - C T
Y ′ = T A C G G T

As you may imagine, there may be multiple alignments for the same pair of sequences. For example, a trivial
alternate alignment for X and Y is as follows:

X ′′ = A C C T - - - - - -
Y ′′ = - - - - T A C G G T

2.2 Scoring in Pairwise Sequence Alignment: Optimality Criterion

As discussed above, a number of alignments exist for a given pair of sequences; therefore, we define a scoring
scheme that gives higher scores to “better” alignments. Once the scoring scheme is defined, we seek an
alignment with the highest score (among all feasible alignments). For DNA, a scoring scheme is given by a
5×5 matrix M , where for p, q ∈ {A,C, T,G}, Mp,q specifies the score for aligning p in sequence X ′ with q in
sequence Y ′, Mp,− denotes the penalty for aligning p in sequence X ′ with a dash in sequence Y ′, and M−,q
denotes the penalty for aligning q in sequence Y ′ with a dash in sequence X ′. Assuming |X ′| = |Y ′| = k,
the score of the alignment is

k∑
i=1

MX′[i],Y ′[i]. (1)

For this assignment, we will assume the following scoring scheme: Mp,p = 5, Mp,q = 2 (for p 6= q),
Mp,− = −2 and M−,q = −4.

For this scoring scheme. the score of the (X ′, Y ′) alignment in Section 2.1 is

M−,T + MA,A + MC,C + M−,G + MC,G + MT,T = (−4) + 5 + 5 + (−4) + 2 + 5 = 9

and the score of the (X ′′, Y ′′) alignment is 4×Mp,− + 6×M−,q = −32.
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2.3 Sequential Algorithm to compute the Optimal Scoring for Pairwise Sequence Alignment

In this problem, we introduce a sequential dynamic programming algorithm (called the Smith-Waterman
algorithm) to compute the Optimal Scoring for Pairwise Sequence Alignment. For two sequences X and Y
of lengths m and n, respectively, denote by S[i, j], 0 ≤ i ≤ m and 0 ≤ j ≤ n, the score of the best alignment
of the first i characters of X with the first j characters of Y . The boundary values are, S[i, 0] = i ∗Mp,−
and S[0, j] = j ∗M−,p. It has been shown that this optimal scoring can be defined as follows ∀i, j ≥ 1:

S[i, j] = max

 S[i− 1, j − 1] + MX[i],Y [j]

S[i− 1, j] + MX[i],−
S[i, j − 1] + M−,Y [j]

. (2)

The above definition directly leads to a sequential dynamic programming algorithm that can be implemented
as shown in Listing 1. Assume that the input sequences are represented as Java strings, and the scoring
matrix, S, is represented as a 2-dimensional array of size (X.length()+1) × (Y.length()+1). After the
algorithm terminates, the final score is available in S[X.length()][Y.length()].

The dependence structure of the iterations in Listing 1 is shown in Figure 1. The cells in the figure correspond
to S[i, j] values, and the arrows show the dependences among the S[i, j] computations.

1 for (point [ i , j ] : [ 1 :X. l ength ( ) , 1 :Y. l ength ( ) ] ){
2 char xChar = X. charAt ( i −1);
3 char YChar = Y. charAt ( j −1);
4 int diagScore = S [ i −1] [ j −1] + M[ charMap ( xChar ) ] [ charMap (YChar ) ] ;
5 int topColScore = S [ i −1] [ j ] + M[ charMap ( xChar ) ] [ 0 ] ;
6 int l e f tRowScore = S [ i ] [ j −1] + M[ 0 ] [ charMap (YChar ) ] ;
7 S [ i ] [ j ] = Math .max( diagScore , Math .max( leftRowScore , topColScore ) ) ;
8 }
9 }

10 int f i n a l S c o r e = S [X. l ength ( ) ] [Y. l ength ( ) ] ;

Listing 1: Sequential implementation of Smith-Waterman Algorithm for Optimal Scoring for Pairwise Se-
quence Alignment

Figure 1: Dependences in Pairwise Sequence Alignment

This homework focuses on computing the optimal score for pairwise sequence alignment, not on the alignment
itself. Though a biologist is ultimately interested in seeing the alignment, there are many applications
where the score alone is of interest. For example, in multiple sequence alignment, the most commonly used
approach is called progressive alignment, where an evolutionary tree is first built based on the scores of
pairwise alignments, and then the tree is used as a guide for doing the multiple sequence alignment. In
this case, the pairwise alignments are performed solely for the sake of obtaining scores, and the alignments
themselves are not needed. However, it is important to compute the scores as quickly as possible when
exploring alignments of large DNA sequences.
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2.4 Your Assignment: Parallel Optimal Scoring for Pairwise Sequence Alignment

Your assignment is to design and implement parallel algorithms for optimal scoring for pairwise sequence
alignment. You are free to use whichever HJ runtime system you choose (e.g., work-sharing vs. work-stealing)
that supports the constructs that you need and delivers good performance for your code.

We have provided a sequential implementation of the algorithm in SeqScoring.hj that you can use as
a starting point. Your homework deliverables are as follows. To facilitate automated testing of your
programs, both programs that you submit must take exactly two command-line arguments, string1 and
string2, as in SeqScoring.hj. Please use the provided templates for the files, UsefulParScoring.hj and
SparseParScoring.hj.

1. Useful parallelism on Sugar compute nodes (35 points) Create a new parallel version of
SeqScoring.hj that is designed to achieve the smallest execution time using 8 cores on a dedicated
Sugar compute node, and call it UsefulParScoring.hj.

For this part of the assignment, we recommend first debugging your solution on small strings for
correctness (which can be done on any platform), and then evaluating the performance of your imple-
mentation with pairs of strings of length O(104) on dedicated Sugar compute nodes (as explained in
Lab 4).

Since each Sugar compute node has 16GB of memory, it is recommended that you increase the maximum
heap size to 8GB by using the -mx option when running HJ programs on a Sugar compute node: “hj
-mx 8000m -places 1:8 UsefulParScoring string1 string2 ”.

2. Sparse memory version and useful parallelism on Sugar compute nodes (40 points)

The sequential algorithm outlined in Listing 1 and SeqScoring.hj allocates and uses a two-dimensional
matrix which requires O(n2) space when processing strings of size O(n). The goal of this part of the
assignment is to create a sparse memory version of the program that can process strings of length
O(105) or greater by using space that’s less than O(n2). The key idea to think about is what data
really needs to be retained as the computation advances. For example, in the sequential version,
row 1 of the S matrix can be freed (set to null and garbage-collected, or reused elsewhere) when the
computation reaches row 3, since computation of row 3 only needs row 2 and not row 1.

You will need to design and implement an analogous approach to reducing the space requirements of
the parallel version. This will require reworking the data structure for matrix S, and may even require
using a different algorithm from UsefulParScoring.hj. Call this version SparseParScoring.hj. As
before, we recommend first debugging your solution on small strings for correctness, and then testing
with pairs of strings of length O(105) on dedicated Sugar compute nodes. These runs may last a few
minutes, so be sure to run these computations only on Sugar compute nodes, and not on the login
node. Also, there may be be some impact of Java’s garbage collection (GC) on the performance you
observe. Please contact a teaching staff member if you believe that GC overheads are interfering with
your performance measurements.

3. [Homework report You should submit a brief report summarizing the design of your parallel al-
gorithms in UsefulParScoring.hj and SparseParScoring.hj, explaining why you believe that each
implementation is correct and data-race-free.

Your report should also include the following measurements for UsefulParScoring.hj and SparseParScoring.hj:

(a) Execution time of SeqScoring.hj and UsefulParScoring.hj on a Sugar compute node with
inputs of length (approximately) 10,000. SeqScoring.hj can be executed with the default runtime
options. UsefulParScoring.hj should be executed with the “-places 1:8” option to run with 8
workers (so as to use all 8 cores).

(b) Execution time of sequential and parallel versions of SparseParScoring.hj with inputs of length
(approximately) 100,000. As before, the sequential version should be executed without the default
options options, and the parallel version with the “-places 1:8” option. The sequential HJ version
can often (but not always) be obtained by removing all parallel keywords (async, finish, etc.)
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2.5 Generation of Test Data

You are welcome to generate any test data that you choose to debug your programs. Just keep in mind that
they need to be strings of characters in {A,C, T,G}.
This is optional, but if you are interested in generating pairs of DNA sequences under realistic models
of evolution, you can use a free web service available at http://bibiserv.techfak.uni-bielefeld.de/

rose/submission.html. You should use the following options for this web service (with default values for
everything else):

• Sequence type: Select DNA.

• Number of sequences: Enter 2.

• Average length of sequences: Enter whatever length you need e.g., 10, 10000, 100000, etc.

• Average pairwise distance: This parameter impacts the number of gaps that you are likely to see in
the alignment (a larger alignment will lead to more gaps). We recommend entering 250 for sequences
of length O(105).
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