
COMP 322 Spring 2012

Homework 4: due by 11:55pm on Wednesday, March 20, 2013

(Total: 100 points)
Instructor: Vivek Sarkar

All homeworks should be submitted in a directory named hw 4 using the turn-in script. In
case of problems using the script, you should email a zip file containing the directory to
comp322-staff@mailman.rice.edu before the deadline. See course wiki for late submission penal-
ties.

Honor Code Policy: All submitted homeworks are expected to be the result of your individual effort. You
are free to discuss course material and approaches to problems with your other classmates, the teaching
assistants and the professor, but you should never misrepresent someone elses work as your own. If you use
any material from external sources, you must provide proper attribution.

1 Written Assignment (50 points total)

Please submit your solution to this assignment in a plain text file named hw 4 written.txt in the submis-
sion system. Syntactic errors in program text will not be penalized in the written assignment e.g., missing
semicolons, incorrect spelling of keywords, etc. Pseudo-code is acceptable so long as the meaning of your
program is unambiguous.

1.1 Phasers and Atomic Integers (25 points)

Consider the incomplete HJ program below in Listing 1, followed by a desired inter-task synchronization
pattern in Figure 1.

1. (15 points) Complete the missing phaser declarations and phaser registrations in lines 3, 8, 11, 14, to
obtain a complete HJ program that implements the inter-task synchronization pattern in Figure 1.

2. (10 points) Assume that a is a reference to a Java AtomicInteger object initialized to zero, and that
each of steps A() through L() include the following code, “int n = a.getAndAdd(1);”. What are the
possible values that variable n can receive in step H()?

Since the isolated statement is not available in Java, the version below in class AtomicPRNG (Listing 3)
attempts to implement the same functionality by using Java atomic variables instead.

1.2 HJ isolated statements vs. Java atomic variables (25 points)

Many applications use Pseudo-Random Number Generators (PRNGs) as in class IsolatedPRNG in Listing 2.
The idea is that the seed field takes a linear sequence of values obtained by successive calls to the nextInt()
method as shown in line 7. The use of the HJ isolated statement in lines 5–8 ensures that there will be
no data race on the seed field if nextSeed() is called in parallel by multiple tasks. The serialization of the
isolated statement instances will determine which task obtains which seed in the sequence.

1. (15 points) Assuming a scenario where nextSeed() is called by multiple tasks in parallel on the same
PRNG object, state if the implementation of AtomicPRNG.nextSeed() has the same semantics as that
of IsolatedPRNG.nextSeed(). If so, why? If not, why not?

By “same semantics”, we mean that for every IsolatedPRNG execution, we can find an equivalent
AtomicPRNG execution that results in the same answer, and for every AtomicPRNG execution, we
can find an equivalent IsolatedPRNG execution that results in the same answer.

2. (10 points) Why is the “while (true)” loop needed in line 5 of AtomicPRNG.nextSeed()? What would
happen if the while loop was removed?

1 of 6

comp322-staff@mailman.rice.edu

COMP 322
Spring 2012

Homework 4: due by 11:55pm on Wednesday, March 20, 2013

(Total: 100 points)

1 f in ish {
2 // INSERT MISSING PHASER DECLARATIONS AND INITIALIZATIONS BELOW
3
4
5
6
7 // INSERT MISSING PHASER REGISTRATIONS BELOW
8 async phased () {//Task T1
9 A() ; next ; B() ; next ; C() ; next ; D() ;

10 } // Task T1
11 async phased () {//Task T2
12 E() ; next ; F () ; next ; G() ; next ; H() ;
13 } // Task T2
14 async phased () {//Task T3
15 I () ; next ; J () ; next ; K() ; next ; L () ;
16 } // Task T3
17 } // f i n i s h

Listing 1: Incomplete HJ program with missing phaser declarations and registrations

Figure 1: Desired inter-task synchronization pattern using phasers

2 Programming Assignment (50 points total)

2.1 Constraint Satisfaction Search algorithms

Constraint-satisfaction problems arise frequently in several applications areas including puzzle-solving and
engineering design. These problems are computationally intensive and well suited for speedup through
parallel processing. This assignment explores parallelization of constraint-satisfaction search algorithms that
use forward checking. It is well known that some form of look-ahead, as in forward checking, reduces the
sequential execution time for the application thereby making it a more credible candidate for parallelization
than simple backtracking. This assignment will focus on the use of constraint-satisfaction search in puzzle-
solving, with n-queens and Sudoku puzzles as two use cases.

An intermediate state of a constraint-satisfaction search is characterized by a partial Problem State in which
some variables have a single assigned value, and a Feasible Value Table (FVT), that provides a set of possible
values for the remaining free variables. If the set becomes empty for any variable, then it implies that no
feasible solution can be derived from the given intermediate state. If an FVT has exactly one value per
variable, then it can be combined with the partial Problem State to obtain a complete Problem State.

2 of 6

COMP 322
Spring 2012

Homework 4: due by 11:55pm on Wednesday, March 20, 2013

(Total: 100 points)

1 class IsolatedPRNG {
2 private int seed ;
3 public int nextSeed () {
4 int re tVal ;
5 isolated {
6 retVal = seed ;
7 seed = nextInt (retVal) ;
8 }
9 return re tVal ;

10 } // nextSeed ()
11 . . . // De f i n i t i o n o f next Int () , cons t ruc to r s , e t c .
12 } // IsolatedPRNG

Listing 2: Concurrent PRNG implemented using isolated statement

1 class AtomicPRNG {
2 private AtomicInteger seed ;
3 public int nextSeed () {
4 int re tVal ;
5 while (true) {
6 int re tVal = seed . get () ;
7 int nextSeedVal = nextInt (retVal) ;
8 i f (seed . compareAndSet (retVal , nextSeedVal)) return re tVal ;
9 } // whi l e

10 } // nextSeed ()
11 . . . // De f i n i t i o n o f next Int () , cons t ruc to r s , e t c .
12 } // AtomicPRNG

Listing 3: Concurrent PRNG implemented using Java’s AtomicInteger class

In the sequential code given to you, you can find the constraint-satisfaction search code in method search()

of ConstraintSatisfaction.hj, which is also shown in Listing 4 below. In this method, parameter state

(of type ProblemState) contains the partial problem statement on entry, parameter curVar identifies the
current variable to be explored in the search, and parameter fvt contains the FVT on entry. Line 2 checks
if we are examining the last variable, in which case no further forward checking is needed; instead, state
and fvt together identify one or more solutions that can be added to the set of feasible solutions. The loop
body in lines 7–11 of Listing 4 is then repeated for each feasible value v of curVar in fvt. This can be seen
in line 9 which constructs a new state in which curVar = v. The call to forwardCheck() in line 10 prunes
fvt to obtained a reduced newFvt that removes values of variables that are not feasible in conjunction with
curVar = v. If newFvt is null it means that no feasible solution is possible for curVar = v. Otherwise, the
recursive call to search() in line 11 explores feasible values for later variables.

Listing 5 contains the sequential code for method forwardCheck() of ConstraintSatisfaction.hj, which
was called in line 10 of Listing 4. Line 3 iterates through the remaining free variables starting with curVar+1,
and line 5 iterates through the values v that can be taken by freeVar. The essence of forwardCheck() is
captured by the call to problem.isConsistent(curVar, curVal, freeVar, v) in line 7, which checks if
the assignment of v to freeVar is consistent with the assignment of curVal to curVar. If so, the assignment
of v to freeVar is added to newFvt (otherwise, it is not added). Line 10 checks if the set of feasible values
for freeVar is empty. If so, a null value is returned instead of newFvt since no feasible solution exists at
this point.

3 of 6

COMP 322
Spring 2012

Homework 4: due by 11:55pm on Wednesday, March 20, 2013

(Total: 100 points)

1 public void search (ProblemState s tate , int curVar , FVT fv t) {
2 i f (curVar == fv t . getNumVars ())
3 problem . addSolut ion (s t a t e) ; // f e a s i b l e s o l u t i o n found
4 else {
5 I t e r a t o r<Integer> i t r = f v t . getValues (curVar) . i t e r a t o r () ;
6 while (i t r . hasNext ()) {
7 In t eg e r v = i t r . next () ;
8 ProblemState newState = s t a t e . copy () ;
9 newState . setValue (curVar , v) ;

10 FVT newFvt = forwardCheck (curVar , v , f v t) ;
11 i f (newFvt != null) search (newState , curVar+1, newFvt) ;
12 } // whi l e
13 } // i f
14 } // search ()

Listing 4: search() method in ConstraintSatisfaction.hj

1 public FVT forwardCheck (int curVar , I n t eg e r curVal , FVT fv t) {
2 FVT newFvt = new FVT(f v t . getNumVars ()) ;
3 for (int f r eeVar = curVar+1; f reeVar < f v t . getNumVars () ; f r eeVar++) {
4 I t e r a t o r<Integer> i t r = f v t . getValues (f reeVar) . i t e r a t o r () ;
5 while (i t r . hasNext ()) {
6 In t eg e r v = i t r . next () ;
7 i f (problem . i sCon s i s t e n t (curVar , curVal , f reeVar , v))
8 newFvt . addValue (freeVar , v) ;
9 } // whi l e

10 i f (newFvt . getValues (f reeVar) . s i z e ()==0) return null ;
11 } // f o r
12 return newFvt ;
13 } // forwardCheck ()

Listing 5: forwardCheck() method in ConstraintSatisfaction.hj

2.2 The Sequential Constraint-Satisfaction Solver

We have provided you an implementation of a sequential constraint-satisfaction search algorithm in a zip
file containing the following:

1. IConstraintSystem.hj — this interface defines the methods that a game/puzzle should implement in
order for it to be solvable by our solver.

2. ProblemState.hj — this class represents the state of the game.

3. ConstraintSatisfaction.hj — this file contains two public methods, solve() and parallelSolve().
solve() contains a sequential implementation of the constraint-satisfaction search algorithm. parallelSolve()
calls parallelSearch() which is currently empty, and will need to be filled in by you in parts 1 and
2 of your assignment (Section 2.3). The main programs also perform a comparison test on the results
returned by solve() and parallelSolve(), which should pass after you’ve completed the assignments
(but which fails for parallelSolve() in the version provided).

4. NQueens.hj — client solver for the NQueens problem.

5. Sudoku.hj — client solver for Sudoku, with a Reader to read input problems from the disk.

4 of 6

COMP 322
Spring 2012

Homework 4: due by 11:55pm on Wednesday, March 20, 2013

(Total: 100 points)

6. NQueensMain.hj — main program that starts and validates the results of the NQueens solver.

7. SudokuMain.hj — main program that starts and validates the results of the Sudoku solver.

Many puzzles can be represented by a set of rules that, applied on the current state of the puzzle, decide
what are the possible actions that can be performed, which lead to a new puzzle state (with an assignment of
values to a subset of free variables), thereby making them amenable to constraint-satisfaction search. This
homework focuses on NQueens and Sudoku as two examples of such puzzles.

Alternative approaches to solving the NQueens puzzle have already been studied in class. The default size
used by NQueensMain for this problem is n = 12.

Sudoku is a popular puzzle game that requires players to fill in missing numbers from 0 to N-1 on a square
N×N board, taking into account the following constraints:

• No square contains more than a number

• Every number appears only once on each column of the board.

• Every number appears only once on each row of the board.

• Every number appears only once in each individual region of the board. Regions are usually rectangular
areas of size

√
N ×

√
N size.

Although Sudoku games are usually 9×9 with 3×3 regions, as in the 9x9.txt file, there are also variations
that take larger board sizes as input, such as 16x16.txt with 4x4 regions. If 9x9 boards use the digits 1..9
to fill the board, larger sizes use 1..9, A, B, C, etc for the same purpose. Furthermore, some variations of
Sudoku allow for multiple solutions, and the solver provided indeed finds all the possible solutions. If a cost
function is specified, the solver must find the “cheapest“ solution. The supplied serial solver already does
that for you; however, it is your responsibility to keep the solver working in all case. The default input used
by SudokuMain.hj is 9x9-2-multisol.txt.

2.3 Your Assignment: Parallel Constraint-Satisfaction Search

Your assignment is to design and implement a parallel algorithm for constraint-satisfaction search, using the
provided sequential implementation as a starting point. Your homework deliverables are as follows.

1. [Computation of all solutions (15 points)]
Create a new parallel version of ConstraintSatisfaction.hj that is designed to achieve the smallest
execution time on the parallel machine (with 2 or more cores) that you use for this homework. You will
be graded on the correctness and speedup of your parallel version. You can focus your attention on
parallelizing the search() method. Keep in mind that the call to problem.addSolution() in line 3 of
Listing 4 is not thread-safe i.e., it can lead to interference and data races if it is called multiple times
(with different solutions) in parallel.

Your solution should work for any constraint-satisfaction problem, but you should test it with NQueensMain.hj,
both for correctness and for achieving the best performance that you can relative to the sequential ver-
sion. The addSolution() method in NQueensCS.hj accumulates all solutions into a single array. (It
does not attempt to find the best solution according to some cost function.)

Please place all files related to this solution in a subdirectory named “hw 4/part1”. (You are allowed
to add or modify methods in any class, so long as your implementation still works for any constraint-
satisfaction problem, and the parallelSearch() method returns the same results as search().)

2. [Computation of lowest-cost solution (20 points)]
Create a new parallel version of ConstraintSatisfaction.hj that is designed to achieve the smallest
execution time to return a single solution with lowest cost (so long as at least one feasible solution
exists). While one approach is to simply reuse the solution from Part 1 above and return the solution

5 of 6

COMP 322
Spring 2012

Homework 4: due by 11:55pm on Wednesday, March 20, 2013

(Total: 100 points)

with lowest cost, you can be smarter and reduce the work done by pruning the exploration of partial
solutions that are guaranteed to never lead to a solution lower than the current best solution. You will
be graded on the real speedup achieved by both your sequential and parallel versions relative to this
brute-force approach. (The speedup will come from a combination of algorithmic improvements and
from parallel computing.)

Your solution should work for any constraint-satisfaction problem with a cost function, but you should
test it with SudokiMain.hj, both for correctness and for achieving the best performance that you can.
To make this general, assume that the getCost() method provides a cost for both complete solutions
and partial solutions, and that the cost of a partial solution is guaranteed to be non-decreasing as more
variables in the FVT are bound to single values.

The addSolution() method in SudokuCS.hj stores the best solution found (if any) using a (artificial)
cost function that corresponds to the single BigInteger value obtained by scanning the digits from
left-to-right and top-down in the solution. accumulates all solutions into a single array. As written,
getCost() only provides a meaningful cost if the solution is a final Sudoku solution. You are welcome
to extend it to provide useful bounds for partial solutions, so long as it obeys the non-decreasing
montonicity constraint mentioned above.

Please place all files related to this solution in a subdirectory named “hw 4/part2”. (You are allowed
to add or modify method definitions in any class, so long as your implementation still works for any
constraint-satisfaction problem with a cost function, and the parallelSearch() method returns a
solution with the same minimum cost as search() would.)

3. [Homework report (15 points)]
You should submit a brief report summarizing the design of your parallel algorithms in Parts 1 and 2
above, explaining why you believe that each implementation is correct and data-race-free.

Your report should also include the following measurements for both parts 1 and 2:

(a) Performance of the sequential version with the default input

(b) Performance of the parallel version with the default input, executed with the “-places 1:1”,
“-places 1:2”, “-places 1:4” and “-places 1:8” options on a Sugar compute node to run
with 1, 2, 4 and 8 workers.

Please place the report file(s) in the top-level hw 4 directory.

6 of 6

	Written Assignment (50 points total)
	Phasers and Atomic Integers (25 points)
	HJ isolated statements vs. Java atomic variables (25 points)

	Programming Assignment (50 points total)
	Constraint Satisfaction Search algorithms
	The Sequential Constraint-Satisfaction Solver
	Your Assignment: Parallel Constraint-Satisfaction Search

